mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-12 12:07:12 +08:00
e93c264336
This came to light when adding hard-flaot support to ARC glibc port without hardware sqrt support causing glibc build to fail: | ../sysdeps/ieee754/dbl-64/e_sqrt.c: In function '__ieee754_sqrt': | ../sysdeps/ieee754/dbl-64/e_sqrt.c:58:54: error: unused variable 'ty' [-Werror=unused-variable] | double y, t, del, res, res1, hy, z, zz, p, hx, tx, ty, s; The reason being EMULV() macro uses the hardware provided __builtin_fma() variant, leaving temporary variables 'p, hx, tx, hy, ty' unused hence compiler warning and ensuing error. The intent of the patch was to fix that error, but EMULV is pervasive and used fair bit indirectly via othe rmacros, hence this patch. Functionally it should not result in code gen changes and if at all those would be better since the scope of those temporaries is greatly reduced now Built tested with aarch64-linux-gnu arm-linux-gnueabi arm-linux-gnueabihf hppa-linux-gnu x86_64-linux-gnu arm-linux-gnueabihf riscv64-linux-gnu-rv64imac-lp64 riscv64-linux-gnu-rv64imafdc-lp64 powerpc-linux-gnu microblaze-linux-gnu nios2-linux-gnu hppa-linux-gnu Also as suggested by Joseph [1] used --strip and compared the libs with and w/o patch and they are byte-for-byte unchanged (with gcc 9). | for i in `find . -name libm-2.31.9000.so`; | do | echo $i; diff $i /SCRATCH/vgupta/gnu2/install/glibcs/$i ; echo $?; | done | ./aarch64-linux-gnu/lib64/libm-2.31.9000.so | 0 | ./arm-linux-gnueabi/lib/libm-2.31.9000.so | 0 | ./x86_64-linux-gnu/lib64/libm-2.31.9000.so | 0 | ./arm-linux-gnueabihf/lib/libm-2.31.9000.so | 0 | ./riscv64-linux-gnu-rv64imac-lp64/lib64/lp64/libm-2.31.9000.so | 0 | ./riscv64-linux-gnu-rv64imafdc-lp64/lib64/lp64/libm-2.31.9000.so | 0 | ./powerpc-linux-gnu/lib/libm-2.31.9000.so | 0 | ./microblaze-linux-gnu/lib/libm-2.31.9000.so | 0 | ./nios2-linux-gnu/lib/libm-2.31.9000.so | 0 | ./hppa-linux-gnu/lib/libm-2.31.9000.so | 0 | ./s390x-linux-gnu/lib64/libm-2.31.9000.so [1] https://sourceware.org/pipermail/libc-alpha/2019-November/108267.html
836 lines
20 KiB
C
836 lines
20 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2020 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
/*********************************************************************/
|
|
/* MODULE_NAME: utan.c */
|
|
/* */
|
|
/* FUNCTIONS: utan */
|
|
/* tanMp */
|
|
/* */
|
|
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h */
|
|
/* branred.c sincos32.c mptan.c */
|
|
/* utan.tbl */
|
|
/* */
|
|
/* An ultimate tan routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of tan(x). */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/*********************************************************************/
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include "endian.h"
|
|
#include <dla.h>
|
|
#include "mpa.h"
|
|
#include "MathLib.h"
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <fenv_private.h>
|
|
#include <math-underflow.h>
|
|
#include <libm-alias-double.h>
|
|
#include <fenv.h>
|
|
#include <stap-probe.h>
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
static double tanMp (double);
|
|
void __mptan (double, mp_no *, int);
|
|
|
|
double
|
|
SECTION
|
|
__tan (double x)
|
|
{
|
|
#include "utan.h"
|
|
#include "utan.tbl"
|
|
|
|
int ux, i, n;
|
|
double a, da, a2, b, db, c, dc, c1, cc1, c2, cc2, c3, cc3, fi, ffi, gi, pz,
|
|
s, sy, t, t1, t2, t3, t4, w, x2, xn, xx2, y, ya,
|
|
yya, z0, z, zz, z2, zz2;
|
|
int p;
|
|
number num, v;
|
|
mp_no mpa, mpt1, mpt2;
|
|
|
|
double retval;
|
|
|
|
int __branred (double, double *, double *);
|
|
int __mpranred (double, mp_no *, int);
|
|
|
|
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
|
|
|
/* x=+-INF, x=NaN */
|
|
num.d = x;
|
|
ux = num.i[HIGH_HALF];
|
|
if ((ux & 0x7ff00000) == 0x7ff00000)
|
|
{
|
|
if ((ux & 0x7fffffff) == 0x7ff00000)
|
|
__set_errno (EDOM);
|
|
retval = x - x;
|
|
goto ret;
|
|
}
|
|
|
|
w = (x < 0.0) ? -x : x;
|
|
|
|
/* (I) The case abs(x) <= 1.259e-8 */
|
|
if (w <= g1.d)
|
|
{
|
|
math_check_force_underflow_nonneg (w);
|
|
retval = x;
|
|
goto ret;
|
|
}
|
|
|
|
/* (II) The case 1.259e-8 < abs(x) <= 0.0608 */
|
|
if (w <= g2.d)
|
|
{
|
|
/* First stage */
|
|
x2 = x * x;
|
|
|
|
t2 = d9.d + x2 * d11.d;
|
|
t2 = d7.d + x2 * t2;
|
|
t2 = d5.d + x2 * t2;
|
|
t2 = d3.d + x2 * t2;
|
|
t2 *= x * x2;
|
|
|
|
if ((y = x + (t2 - u1.d * t2)) == x + (t2 + u1.d * t2))
|
|
{
|
|
retval = y;
|
|
goto ret;
|
|
}
|
|
|
|
/* Second stage */
|
|
c1 = a25.d + x2 * a27.d;
|
|
c1 = a23.d + x2 * c1;
|
|
c1 = a21.d + x2 * c1;
|
|
c1 = a19.d + x2 * c1;
|
|
c1 = a17.d + x2 * c1;
|
|
c1 = a15.d + x2 * c1;
|
|
c1 *= x2;
|
|
|
|
EMULV (x, x, x2, xx2);
|
|
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
MUL2 (x, 0.0, c1, cc1, c2, cc2, t1, t2);
|
|
ADD2 (x, 0.0, c2, cc2, c1, cc1, t1, t2);
|
|
if ((y = c1 + (cc1 - u2.d * c1)) == c1 + (cc1 + u2.d * c1))
|
|
{
|
|
retval = y;
|
|
goto ret;
|
|
}
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (III) The case 0.0608 < abs(x) <= 0.787 */
|
|
if (w <= g3.d)
|
|
{
|
|
/* First stage */
|
|
i = ((int) (mfftnhf.d + TWO8 * w));
|
|
z = w - xfg[i][0].d;
|
|
z2 = z * z;
|
|
s = (x < 0.0) ? -1 : 1;
|
|
pz = z + z * z2 * (e0.d + z2 * e1.d);
|
|
fi = xfg[i][1].d;
|
|
gi = xfg[i][2].d;
|
|
t2 = pz * (gi + fi) / (gi - pz);
|
|
if ((y = fi + (t2 - fi * u3.d)) == fi + (t2 + fi * u3.d))
|
|
{
|
|
retval = (s * y);
|
|
goto ret;
|
|
}
|
|
t3 = (t2 < 0.0) ? -t2 : t2;
|
|
t4 = fi * ua3.d + t3 * ub3.d;
|
|
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
|
|
{
|
|
retval = (s * y);
|
|
goto ret;
|
|
}
|
|
|
|
/* Second stage */
|
|
ffi = xfg[i][3].d;
|
|
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
|
|
EMULV (z, z, z2, zz2);
|
|
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
|
|
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2);
|
|
MUL2 (z, 0.0, c1, cc1, c2, cc2, t1, t2);
|
|
ADD2 (z, 0.0, c2, cc2, c1, cc1, t1, t2);
|
|
|
|
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2);
|
|
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
|
|
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4);
|
|
|
|
if ((y = c3 + (cc3 - u4.d * c3)) == c3 + (cc3 + u4.d * c3))
|
|
{
|
|
retval = (s * y);
|
|
goto ret;
|
|
}
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (---) The case 0.787 < abs(x) <= 25 */
|
|
if (w <= g4.d)
|
|
{
|
|
/* Range reduction by algorithm i */
|
|
t = (x * hpinv.d + toint.d);
|
|
xn = t - toint.d;
|
|
v.d = t;
|
|
t1 = (x - xn * mp1.d) - xn * mp2.d;
|
|
n = v.i[LOW_HALF] & 0x00000001;
|
|
da = xn * mp3.d;
|
|
a = t1 - da;
|
|
da = (t1 - a) - da;
|
|
if (a < 0.0)
|
|
{
|
|
ya = -a;
|
|
yya = -da;
|
|
sy = -1;
|
|
}
|
|
else
|
|
{
|
|
ya = a;
|
|
yya = da;
|
|
sy = 1;
|
|
}
|
|
|
|
/* (IV),(V) The case 0.787 < abs(x) <= 25, abs(y) <= 1e-7 */
|
|
if (ya <= gy1.d)
|
|
{
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (VI) The case 0.787 < abs(x) <= 25, 1e-7 < abs(y) <= 0.0608 */
|
|
if (ya <= gy2.d)
|
|
{
|
|
a2 = a * a;
|
|
t2 = d9.d + a2 * d11.d;
|
|
t2 = d7.d + a2 * t2;
|
|
t2 = d5.d + a2 * t2;
|
|
t2 = d3.d + a2 * t2;
|
|
t2 = da + a * a2 * t2;
|
|
|
|
if (n)
|
|
{
|
|
/* First stage -cot */
|
|
EADD (a, t2, b, db);
|
|
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4);
|
|
if ((y = c + (dc - u6.d * c)) == c + (dc + u6.d * c))
|
|
{
|
|
retval = (-y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* First stage tan */
|
|
if ((y = a + (t2 - u5.d * a)) == a + (t2 + u5.d * a))
|
|
{
|
|
retval = y;
|
|
goto ret;
|
|
}
|
|
}
|
|
/* Second stage */
|
|
/* Range reduction by algorithm ii */
|
|
t = (x * hpinv.d + toint.d);
|
|
xn = t - toint.d;
|
|
v.d = t;
|
|
t1 = (x - xn * mp1.d) - xn * mp2.d;
|
|
n = v.i[LOW_HALF] & 0x00000001;
|
|
da = xn * pp3.d;
|
|
t = t1 - da;
|
|
da = (t1 - t) - da;
|
|
t1 = xn * pp4.d;
|
|
a = t - t1;
|
|
da = ((t - a) - t1) + da;
|
|
|
|
/* Second stage */
|
|
EADD (a, da, t1, t2);
|
|
a = t1;
|
|
da = t2;
|
|
MUL2 (a, da, a, da, x2, xx2, t1, t2);
|
|
|
|
c1 = a25.d + x2 * a27.d;
|
|
c1 = a23.d + x2 * c1;
|
|
c1 = a21.d + x2 * c1;
|
|
c1 = a19.d + x2 * c1;
|
|
c1 = a17.d + x2 * c1;
|
|
c1 = a15.d + x2 * c1;
|
|
c1 *= x2;
|
|
|
|
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2);
|
|
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
|
|
|
|
if (n)
|
|
{
|
|
/* Second stage -cot */
|
|
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4);
|
|
if ((y = c2 + (cc2 - u8.d * c2)) == c2 + (cc2 + u8.d * c2))
|
|
{
|
|
retval = (-y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Second stage tan */
|
|
if ((y = c1 + (cc1 - u7.d * c1)) == c1 + (cc1 + u7.d * c1))
|
|
{
|
|
retval = y;
|
|
goto ret;
|
|
}
|
|
}
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */
|
|
|
|
/* First stage */
|
|
i = ((int) (mfftnhf.d + TWO8 * ya));
|
|
z = (z0 = (ya - xfg[i][0].d)) + yya;
|
|
z2 = z * z;
|
|
pz = z + z * z2 * (e0.d + z2 * e1.d);
|
|
fi = xfg[i][1].d;
|
|
gi = xfg[i][2].d;
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
t2 = pz * (fi + gi) / (fi + pz);
|
|
if ((y = gi - (t2 - gi * u10.d)) == gi - (t2 + gi * u10.d))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
t3 = (t2 < 0.0) ? -t2 : t2;
|
|
t4 = gi * ua10.d + t3 * ub10.d;
|
|
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
t2 = pz * (gi + fi) / (gi - pz);
|
|
if ((y = fi + (t2 - fi * u9.d)) == fi + (t2 + fi * u9.d))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
t3 = (t2 < 0.0) ? -t2 : t2;
|
|
t4 = fi * ua9.d + t3 * ub9.d;
|
|
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* Second stage */
|
|
ffi = xfg[i][3].d;
|
|
EADD (z0, yya, z, zz)
|
|
MUL2 (z, zz, z, zz, z2, zz2, t1, t2);
|
|
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
|
|
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
|
|
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2);
|
|
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2);
|
|
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
|
|
|
|
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2);
|
|
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4);
|
|
if ((y = c3 + (cc3 - u12.d * c3)) == c3 + (cc3 + u12.d * c3))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4);
|
|
if ((y = c3 + (cc3 - u11.d * c3)) == c3 + (cc3 + u11.d * c3))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (---) The case 25 < abs(x) <= 1e8 */
|
|
if (w <= g5.d)
|
|
{
|
|
/* Range reduction by algorithm ii */
|
|
t = (x * hpinv.d + toint.d);
|
|
xn = t - toint.d;
|
|
v.d = t;
|
|
t1 = (x - xn * mp1.d) - xn * mp2.d;
|
|
n = v.i[LOW_HALF] & 0x00000001;
|
|
da = xn * pp3.d;
|
|
t = t1 - da;
|
|
da = (t1 - t) - da;
|
|
t1 = xn * pp4.d;
|
|
a = t - t1;
|
|
da = ((t - a) - t1) + da;
|
|
EADD (a, da, t1, t2);
|
|
a = t1;
|
|
da = t2;
|
|
if (a < 0.0)
|
|
{
|
|
ya = -a;
|
|
yya = -da;
|
|
sy = -1;
|
|
}
|
|
else
|
|
{
|
|
ya = a;
|
|
yya = da;
|
|
sy = 1;
|
|
}
|
|
|
|
/* (+++) The case 25 < abs(x) <= 1e8, abs(y) <= 1e-7 */
|
|
if (ya <= gy1.d)
|
|
{
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (VIII) The case 25 < abs(x) <= 1e8, 1e-7 < abs(y) <= 0.0608 */
|
|
if (ya <= gy2.d)
|
|
{
|
|
a2 = a * a;
|
|
t2 = d9.d + a2 * d11.d;
|
|
t2 = d7.d + a2 * t2;
|
|
t2 = d5.d + a2 * t2;
|
|
t2 = d3.d + a2 * t2;
|
|
t2 = da + a * a2 * t2;
|
|
|
|
if (n)
|
|
{
|
|
/* First stage -cot */
|
|
EADD (a, t2, b, db);
|
|
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4);
|
|
if ((y = c + (dc - u14.d * c)) == c + (dc + u14.d * c))
|
|
{
|
|
retval = (-y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* First stage tan */
|
|
if ((y = a + (t2 - u13.d * a)) == a + (t2 + u13.d * a))
|
|
{
|
|
retval = y;
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* Second stage */
|
|
MUL2 (a, da, a, da, x2, xx2, t1, t2);
|
|
c1 = a25.d + x2 * a27.d;
|
|
c1 = a23.d + x2 * c1;
|
|
c1 = a21.d + x2 * c1;
|
|
c1 = a19.d + x2 * c1;
|
|
c1 = a17.d + x2 * c1;
|
|
c1 = a15.d + x2 * c1;
|
|
c1 *= x2;
|
|
|
|
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2);
|
|
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
|
|
|
|
if (n)
|
|
{
|
|
/* Second stage -cot */
|
|
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4);
|
|
if ((y = c2 + (cc2 - u16.d * c2)) == c2 + (cc2 + u16.d * c2))
|
|
{
|
|
retval = (-y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Second stage tan */
|
|
if ((y = c1 + (cc1 - u15.d * c1)) == c1 + (cc1 + u15.d * c1))
|
|
{
|
|
retval = (y);
|
|
goto ret;
|
|
}
|
|
}
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */
|
|
/* First stage */
|
|
i = ((int) (mfftnhf.d + TWO8 * ya));
|
|
z = (z0 = (ya - xfg[i][0].d)) + yya;
|
|
z2 = z * z;
|
|
pz = z + z * z2 * (e0.d + z2 * e1.d);
|
|
fi = xfg[i][1].d;
|
|
gi = xfg[i][2].d;
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
t2 = pz * (fi + gi) / (fi + pz);
|
|
if ((y = gi - (t2 - gi * u18.d)) == gi - (t2 + gi * u18.d))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
t3 = (t2 < 0.0) ? -t2 : t2;
|
|
t4 = gi * ua18.d + t3 * ub18.d;
|
|
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
t2 = pz * (gi + fi) / (gi - pz);
|
|
if ((y = fi + (t2 - fi * u17.d)) == fi + (t2 + fi * u17.d))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
t3 = (t2 < 0.0) ? -t2 : t2;
|
|
t4 = fi * ua17.d + t3 * ub17.d;
|
|
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* Second stage */
|
|
ffi = xfg[i][3].d;
|
|
EADD (z0, yya, z, zz);
|
|
MUL2 (z, zz, z, zz, z2, zz2, t1, t2);
|
|
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
|
|
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
|
|
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2);
|
|
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2);
|
|
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
|
|
|
|
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2);
|
|
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4);
|
|
if ((y = c3 + (cc3 - u20.d * c3)) == c3 + (cc3 + u20.d * c3))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4);
|
|
if ((y = c3 + (cc3 - u19.d * c3)) == c3 + (cc3 + u19.d * c3))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (---) The case 1e8 < abs(x) < 2**1024 */
|
|
/* Range reduction by algorithm iii */
|
|
n = (__branred (x, &a, &da)) & 0x00000001;
|
|
EADD (a, da, t1, t2);
|
|
a = t1;
|
|
da = t2;
|
|
if (a < 0.0)
|
|
{
|
|
ya = -a;
|
|
yya = -da;
|
|
sy = -1;
|
|
}
|
|
else
|
|
{
|
|
ya = a;
|
|
yya = da;
|
|
sy = 1;
|
|
}
|
|
|
|
/* (+++) The case 1e8 < abs(x) < 2**1024, abs(y) <= 1e-7 */
|
|
if (ya <= gy1.d)
|
|
{
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (X) The case 1e8 < abs(x) < 2**1024, 1e-7 < abs(y) <= 0.0608 */
|
|
if (ya <= gy2.d)
|
|
{
|
|
a2 = a * a;
|
|
t2 = d9.d + a2 * d11.d;
|
|
t2 = d7.d + a2 * t2;
|
|
t2 = d5.d + a2 * t2;
|
|
t2 = d3.d + a2 * t2;
|
|
t2 = da + a * a2 * t2;
|
|
if (n)
|
|
{
|
|
/* First stage -cot */
|
|
EADD (a, t2, b, db);
|
|
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4);
|
|
if ((y = c + (dc - u22.d * c)) == c + (dc + u22.d * c))
|
|
{
|
|
retval = (-y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* First stage tan */
|
|
if ((y = a + (t2 - u21.d * a)) == a + (t2 + u21.d * a))
|
|
{
|
|
retval = y;
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* Second stage */
|
|
/* Reduction by algorithm iv */
|
|
p = 10;
|
|
n = (__mpranred (x, &mpa, p)) & 0x00000001;
|
|
__mp_dbl (&mpa, &a, p);
|
|
__dbl_mp (a, &mpt1, p);
|
|
__sub (&mpa, &mpt1, &mpt2, p);
|
|
__mp_dbl (&mpt2, &da, p);
|
|
|
|
MUL2 (a, da, a, da, x2, xx2, t1, t2);
|
|
|
|
c1 = a25.d + x2 * a27.d;
|
|
c1 = a23.d + x2 * c1;
|
|
c1 = a21.d + x2 * c1;
|
|
c1 = a19.d + x2 * c1;
|
|
c1 = a17.d + x2 * c1;
|
|
c1 = a15.d + x2 * c1;
|
|
c1 *= x2;
|
|
|
|
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2);
|
|
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2);
|
|
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
|
|
|
|
if (n)
|
|
{
|
|
/* Second stage -cot */
|
|
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4);
|
|
if ((y = c2 + (cc2 - u24.d * c2)) == c2 + (cc2 + u24.d * c2))
|
|
{
|
|
retval = (-y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Second stage tan */
|
|
if ((y = c1 + (cc1 - u23.d * c1)) == c1 + (cc1 + u23.d * c1))
|
|
{
|
|
retval = y;
|
|
goto ret;
|
|
}
|
|
}
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
}
|
|
|
|
/* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */
|
|
/* First stage */
|
|
i = ((int) (mfftnhf.d + TWO8 * ya));
|
|
z = (z0 = (ya - xfg[i][0].d)) + yya;
|
|
z2 = z * z;
|
|
pz = z + z * z2 * (e0.d + z2 * e1.d);
|
|
fi = xfg[i][1].d;
|
|
gi = xfg[i][2].d;
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
t2 = pz * (fi + gi) / (fi + pz);
|
|
if ((y = gi - (t2 - gi * u26.d)) == gi - (t2 + gi * u26.d))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
t3 = (t2 < 0.0) ? -t2 : t2;
|
|
t4 = gi * ua26.d + t3 * ub26.d;
|
|
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
t2 = pz * (gi + fi) / (gi - pz);
|
|
if ((y = fi + (t2 - fi * u25.d)) == fi + (t2 + fi * u25.d))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
t3 = (t2 < 0.0) ? -t2 : t2;
|
|
t4 = fi * ua25.d + t3 * ub25.d;
|
|
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* Second stage */
|
|
ffi = xfg[i][3].d;
|
|
EADD (z0, yya, z, zz);
|
|
MUL2 (z, zz, z, zz, z2, zz2, t1, t2);
|
|
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
|
|
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
|
|
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2);
|
|
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2);
|
|
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2);
|
|
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
|
|
|
|
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
|
|
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2);
|
|
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
|
|
|
|
if (n)
|
|
{
|
|
/* -cot */
|
|
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4);
|
|
if ((y = c3 + (cc3 - u28.d * c3)) == c3 + (cc3 + u28.d * c3))
|
|
{
|
|
retval = (-sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* tan */
|
|
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4);
|
|
if ((y = c3 + (cc3 - u27.d * c3)) == c3 + (cc3 + u27.d * c3))
|
|
{
|
|
retval = (sy * y);
|
|
goto ret;
|
|
}
|
|
}
|
|
retval = tanMp (x);
|
|
goto ret;
|
|
|
|
ret:
|
|
return retval;
|
|
}
|
|
|
|
/* multiple precision stage */
|
|
/* Convert x to multi precision number,compute tan(x) by mptan() routine */
|
|
/* and converts result back to double */
|
|
static double
|
|
SECTION
|
|
tanMp (double x)
|
|
{
|
|
int p;
|
|
double y;
|
|
mp_no mpy;
|
|
p = 32;
|
|
__mptan (x, &mpy, p);
|
|
__mp_dbl (&mpy, &y, p);
|
|
LIBC_PROBE (slowtan, 2, &x, &y);
|
|
return y;
|
|
}
|
|
|
|
#ifndef __tan
|
|
libm_alias_double (__tan, tan)
|
|
#endif
|