mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-12 12:07:12 +08:00
9ba8164eb6
* sysdeps/unix/sysv/linux/alpha/syscalls.list: Add adjtimex. * sysdeps/unix/sysv/linux/alpha/adjtimex.S: Remove. * sysdeps/alpha/fpu/bits/mathinline.h (isunordered et al): New. Implement copysign* with and without __ prefix. Likewise for fabs; use builtin for gcc 2.8. (floor*): New. (fdim*): New. * elf/elf.h (EF_SPARC*, EF_ALPHA*, SHT_ALPHA*, SHF_ALPHA*): New. (R_SPARC*): Match current v9 ABI. * sysdeps/wordsize-64/stdint.h (intptr_t): Is a long. * sunrpc/clnt_udp.c (clntudp_call): Use socklen_t. * sunrpc/pmap_rmt.c (clnt_broadcast): Likewise. * sunrpc/svc_tcp.c (svctcp_create, rendezvous_request): Likewise. * sysdeps/generic/getresgid.c: Use prototype form because of warning. * sysdeps/unix/sysv/linux/getdents.c: Likewise. * sysdeps/unix/sysv/linux/alpha/adjtime.c: Likewise. * sysdeps/unix/grantpt.c (argv): Fix consts. * sysdeps/unix/sysv/linux/getpt.c: Include <string.h> * sysdeps/unix/sysv/linux/sigaction.c: Likewise.
166 lines
4.8 KiB
C
166 lines
4.8 KiB
C
/* Inline math functions for Alpha.
|
|
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by David Mosberger-Tang.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#ifndef _MATH_H
|
|
# error "Never use <bits/mathinline.h> directly; include <math.h> instead."
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
# define __MATH_INLINE __inline
|
|
#else
|
|
# define __MATH_INLINE extern __inline
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC9X
|
|
# define isunordered(x, y) \
|
|
(__extension__ \
|
|
({ double __r; \
|
|
__asm ("cmptun/su %1,%2,%0\n\ttrapb" \
|
|
: "=&f" (__r) : "f" (x), "f"(y)); \
|
|
__r != 0; }))
|
|
|
|
# define isgreater(x, y) \
|
|
(__extension__ \
|
|
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
|
|
!isunordered(__x, __y) && __x > __y; }))
|
|
# define isgreaterequal(x, y) \
|
|
(__extension__ \
|
|
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
|
|
!isunordered(__x, __y) && __x >= __y; }))
|
|
# define isless(x, y) \
|
|
(__extension__ \
|
|
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
|
|
!isunordered(__x, __y) && __x < __y; }))
|
|
# define islessequal(x, y) \
|
|
(__extension__ \
|
|
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
|
|
!isunordered(__x, __y) && __x <= __y; }))
|
|
# define islessgreater(x, y) \
|
|
(__extension__ \
|
|
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
|
|
!isunordered(__x, __y) && __x != __y; }))
|
|
#endif /* ISOC9X */
|
|
|
|
#define __inline_copysign(NAME, TYPE) \
|
|
__MATH_INLINE TYPE \
|
|
NAME (TYPE __x, TYPE __y) \
|
|
{ \
|
|
TYPE __z; \
|
|
__asm ("cpys %1, %2, %0" : "=f" (__z) : "f" (__y), "f" (__x)); \
|
|
return __z; \
|
|
}
|
|
|
|
__inline_copysign(__copysignf, float)
|
|
__inline_copysign(copysignf, float)
|
|
__inline_copysign(__copysign, double)
|
|
__inline_copysign(copysign, double)
|
|
|
|
#undef __MATH_INLINE_copysign
|
|
|
|
|
|
#if defined __GNUC__ && (__GNUC__ > 2 || __GNUC__ == 2 && __GNUC_MINOR__ >= 8)
|
|
__MATH_INLINE float __fabsf (float __x) { return __builtin_fabsf (__x); }
|
|
__MATH_INLINE float fabsf (float __x) { return __builtin_fabsf (__x); }
|
|
__MATH_INLINE double __fabs (double __x) { return __builtin_fabs (__x); }
|
|
__MATH_INLINE double fabs (double __x) { return __builtin_fabs (__x); }
|
|
#else
|
|
#define __inline_fabs(NAME, TYPE) \
|
|
__MATH_INLINE TYPE \
|
|
NAME (TYPE __x) \
|
|
{ \
|
|
TYPE __z; \
|
|
__asm ("cpys $f31, %1, %0" : "=f" (__z) : "f" (__x)); \
|
|
return __z; \
|
|
}
|
|
|
|
__inline_fabs(__fabsf, float)
|
|
__inline_fabs(fabsf, float)
|
|
__inline_fabs(__fabs, double)
|
|
__inline_fabs(fabs, double)
|
|
|
|
#undef __inline_fabs
|
|
#endif
|
|
|
|
|
|
/* Use the -inf rounding mode conversion instructions to implement
|
|
floor. We note when the exponent is large enough that the value
|
|
must be integral, as this avoids unpleasant integer overflows. */
|
|
|
|
__MATH_INLINE float
|
|
__floorf (float __x)
|
|
{
|
|
if (fabsf (__x) < 16777216.0f) /* 1 << FLT_MANT_DIG */
|
|
{
|
|
/* Note that Alpha S_Floating is stored in registers in a
|
|
restricted T_Floating format, so we don't even need to
|
|
convert back to S_Floating in the end. The initial
|
|
conversion to T_Floating is needed to handle denormals. */
|
|
|
|
float __tmp1, __tmp2;
|
|
|
|
__asm ("cvtst/s %3,%2\n\t"
|
|
"cvttq/svim %2,%1\n\t"
|
|
"cvtqt/suim %1,%0\n\t"
|
|
"trapb"
|
|
: "=&f"(__x), "=&f"(__tmp1), "=&f"(__tmp2)
|
|
: "f"(__x));
|
|
}
|
|
return __x;
|
|
}
|
|
|
|
__MATH_INLINE double
|
|
__floor (double __x)
|
|
{
|
|
if (fabs (__x) < 9007199254740992.0) /* 1 << DBL_MANT_DIG */
|
|
{
|
|
double __tmp1;
|
|
__asm ("cvttq/svim %2,%1\n\t"
|
|
"cvtqt/suim %1,%0\n\t"
|
|
"trapb"
|
|
: "=&f"(__x), "=&f"(__tmp1)
|
|
: "f"(__x));
|
|
}
|
|
return __x;
|
|
}
|
|
|
|
__MATH_INLINE float floorf (float __x) { return __floorf(__x); }
|
|
__MATH_INLINE double floor (double __x) { return __floor(__x); }
|
|
|
|
|
|
__MATH_INLINE float __fdimf (float __x, float __y)
|
|
{
|
|
return __x < __y ? 0.0f : __x - __y;
|
|
}
|
|
|
|
__MATH_INLINE float fdimf (float __x, float __y)
|
|
{
|
|
return __x < __y ? 0.0f : __x - __y;
|
|
}
|
|
|
|
__MATH_INLINE double __fdim (double __x, double __y)
|
|
{
|
|
return __x < __y ? 0.0 : __x - __y;
|
|
}
|
|
|
|
__MATH_INLINE double fdim (double __x, double __y)
|
|
{
|
|
return __x < __y ? 0.0 : __x - __y;
|
|
}
|