glibc/manual
Adhemerval Zanella ab5ee31e14 Move vtimes to a compatibility symbol
I couldn't pinpoint which standard has added it, but no other POSIX
system supports it and/or no longer provide it.  The 'struct vtimes'
also has a lot of drawbacks due its limited internal type size.

I couldn't also see find any project that actually uses this symbol,
either in some dignostic way (such as sanitizer).  So I think it should
be safer to just move to compat symbol, instead of deprecated.  The
idea it to avoid new ports to export such broken interface (riscv32
for instance).

Checked on x86_64-linux-gnu and i686-linux-gnu.
2020-10-19 16:44:20 -03:00
..
examples
argp.texi
arith.texi
charset.texi
check-safety.sh
conf.texi
contrib.texi
creature.texi
crypt.texi
ctype.texi
debug.texi
dir
errno.texi manual: Put the istrerrorname_np and strerrordesc_np return type in braces 2020-08-07 17:14:49 -03:00
fdl-1.3.texi
filesys.texi
freemanuals.texi
getopt.texi
header.texi
install-plain.texi
install.texi Linux: Require properly configured /dev/pts for PTYs 2020-10-07 14:55:50 +02:00
intro.texi
io.texi
ipc.texi
job.texi
lang.texi
lgpl-2.1.texi
libc-texinfo.sh
libc.texinfo
libcbook.texi
libdl.texi
llio.texi
locale.texi
macros.texi
maint.texi
Makefile
math.texi manual: Use Unicode instead HTML entities for characters (bug 19737) 2020-07-16 10:17:31 +02:00
memory.texi manual: correct the spelling of "MALLOC_PERTURB_" [BZ #23015] 2020-10-13 14:58:16 +02:00
message.texi
nss.texi Remove --enable-obsolete-rpc configure flag 2020-07-13 19:36:35 +02:00
nsswitch.texi
pattern.texi
pipe.texi
platform.texi <sys/platform/x86.h>: Add FSRCS/FSRS/FZLRM support 2020-10-09 11:52:30 -07:00
probes.texi
process.texi
README.pretty-printers
README.tunables Set tunable value as well as min/max values 2020-09-29 09:03:47 -07:00
resource.texi Move vtimes to a compatibility symbol 2020-10-19 16:44:20 -03:00
search.texi
setjmp.texi
signal.texi manual: Fix sigdescr_np and sigabbrev_np return type (BZ #26343) 2020-08-08 16:51:26 -03:00
socket.texi
startup.texi
stdio-fp.c
stdio.texi
string.texi manual: replace an obsolete collation example with a valid one 2020-10-13 14:58:16 +02:00
summary.pl
sysinfo.texi
syslog.texi
terminal.texi
texinfo.tex
texis.awk
threads.texi manual: Fix typo 2020-10-05 17:29:46 +01:00
time.texi manual: Fix some @code/@var formatting glitches chapter Date And Time 2020-08-05 09:22:21 +02:00
tsort.awk
tunables.texi Reversing calculation of __x86_shared_non_temporal_threshold 2020-09-28 22:10:39 +00:00
users.texi
xtract-typefun.awk

			TUNABLE FRAMEWORK
			=================

Tunables is a feature in the GNU C Library that allows application authors and
distribution maintainers to alter the runtime library behaviour to match their
workload.

The tunable framework allows modules within glibc to register variables that
may be tweaked through an environment variable.  It aims to enforce a strict
namespace rule to bring consistency to naming of these tunable environment
variables across the project.  This document is a guide for glibc developers to
add tunables to the framework.

ADDING A NEW TUNABLE
--------------------

The TOP_NAMESPACE macro is defined by default as 'glibc'.  If distributions
intend to add their own tunables, they should do so in a different top
namespace by overriding the TOP_NAMESPACE macro for that tunable.  Downstream
implementations are discouraged from using the 'glibc' top namespace for
tunables they don't already have consensus to push upstream.

There are three steps to adding a tunable:

1. Add a tunable to the list and fully specify its properties:

For each tunable you want to add, make an entry in elf/dl-tunables.list.  The
format of the file is as follows:

TOP_NAMESPACE {
  NAMESPACE1 {
    TUNABLE1 {
      # tunable attributes, one per line
    }
    # A tunable with default attributes, i.e. string variable.
    TUNABLE2
    TUNABLE3 {
      # its attributes
    }
  }
  NAMESPACE2 {
    ...
  }
}

The list of allowed attributes are:

- type:			Data type.  Defaults to STRING.  Allowed types are:
			INT_32, UINT_64, SIZE_T and STRING.  Numeric types may
			be in octal or hexadecimal format too.

- minval:		Optional minimum acceptable value.  For a string type
			this is the minimum length of the value.

- maxval:		Optional maximum acceptable value.  For a string type
			this is the maximum length of the value.

- default:		Specify an optional default value for the tunable.

- env_alias:		An alias environment variable

- security_level:	Specify security level of the tunable.  Valid values:

			SXID_ERASE: (default) Don't read for AT_SECURE binaries and
				    removed so that child processes can't read it.
			SXID_IGNORE: Don't read for AT_SECURE binaries, but retained for
				     non-AT_SECURE subprocesses.
			NONE: Read all the time.

2. Use TUNABLE_GET/TUNABLE_SET/TUNABLE_SET_WITH_BOUNDS to get and set tunables.

3. OPTIONAL: If tunables in a namespace are being used multiple times within a
   specific module, set the TUNABLE_NAMESPACE macro to reduce the amount of
   typing.

GETTING AND SETTING TUNABLES
----------------------------

When the TUNABLE_NAMESPACE macro is defined, one may get tunables in that
module using the TUNABLE_GET macro as follows:

  val = TUNABLE_GET (check, int32_t, TUNABLE_CALLBACK (check_callback))

where 'check' is the tunable name, 'int32_t' is the C type of the tunable and
'check_callback' is the function to call if the tunable got initialized to a
non-default value.  The macro returns the value as type 'int32_t'.

The callback function should be defined as follows:

  void
  TUNABLE_CALLBACK (check_callback) (int32_t *valp)
  {
  ...
  }

where it can expect the tunable value to be passed in VALP.

Tunables in the module can be updated using:

  TUNABLE_SET (check, int32_t, val)

where 'check' is the tunable name, 'int32_t' is the C type of the tunable and
'val' is a value of same type.

To get and set tunables in a different namespace from that module, use the full
form of the macros as follows:

  val = TUNABLE_GET_FULL (glibc, cpu, hwcap_mask, uint64_t, NULL)

  TUNABLE_SET_FULL (glibc, cpu, hwcap_mask, uint64_t, val)

where 'glibc' is the top namespace, 'cpu' is the tunable namespace and the
remaining arguments are the same as the short form macros.

The minimum and maximum values can updated together with the tunable value
using:

  TUNABLE_SET_WITH_BOUNDS (check, int32_t, val, min, max)

where 'check' is the tunable name, 'int32_t' is the C type of the tunable,
'val' is a value of same type, 'min' and 'max' are the minimum and maximum
values of the tunable.

To set the minimum and maximum values of tunables in a different namespace
from that module, use the full form of the macros as follows:

  val = TUNABLE_GET_FULL (glibc, cpu, hwcap_mask, uint64_t, NULL)

  TUNABLE_SET_WITH_BOUNDS_FULL (glibc, cpu, hwcap_mask, uint64_t, val, min, max)

where 'glibc' is the top namespace, 'cpu' is the tunable namespace and the
remaining arguments are the same as the short form macros.

When TUNABLE_NAMESPACE is not defined in a module, TUNABLE_GET is equivalent to
TUNABLE_GET_FULL, so you will need to provide full namespace information for
both macros.  Likewise for TUNABLE_SET, TUNABLE_SET_FULL,
TUNABLE_SET_WITH_BOUNDS and TUNABLE_SET_WITH_BOUNDS_FULL.

** IMPORTANT NOTE **

The tunable list is set as read-only after the dynamic linker relocates itself,
so setting tunable values must be limited only to tunables within the dynamic
linker, that too before relocation.

FUTURE WORK
-----------

The framework currently only allows a one-time initialization of variables
through environment variables and in some cases, modification of variables via
an API call.  A future goals for this project include:

- Setting system-wide and user-wide defaults for tunables through some
  mechanism like a configuration file.

- Allow tweaking of some tunables at runtime