mirror of
git://sourceware.org/git/glibc.git
synced 2024-12-15 04:20:28 +08:00
f1debaf682
2004-05-06 Ulrich Drepper <drepper@redhat.com> * math/tgmath.h (fabs): Use __TGMATH_UNARY_REAL_IMAG_RET_REAL. (carg): Likewise. Patch by Lev S Bishop <lev.bishop@yale.edu>. * math/bug-tgmath1.c (main): Test fabs and carg as well. 2004-05-06 Richard Henderson <rth@redhat.com> * elf/elf.h (AT_L1I_CACHESHAPE, AT_L1D_CACHESHAPE, AT_L2_CACHESHAPE, AT_L3_CACHESHAPE): New. * sysdeps/unix/sysv/linux/alpha/Versions: Export __libc_alpha_cache_shape as a private symbol. * sysdeps/unix/sysv/linux/alpha/dl-sysdep.c: New file. * sysdeps/unix/sysv/linux/alpha/sysconf.c: New file. * sysdeps/alpha/divl.S: Use them. * sysdeps/alpha/divq.S: Likewise. * sysdeps/alpha/divqu.S: Likewise. * sysdeps/alpha/reml.S: Likewise. * sysdeps/alpha/remq.S: Likewise. * sysdeps/alpha/remqu.S: Likewise.
460 lines
17 KiB
C
460 lines
17 KiB
C
/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2003, 2004
|
|
Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
/*
|
|
* ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
|
|
*/
|
|
|
|
#ifndef _TGMATH_H
|
|
#define _TGMATH_H 1
|
|
|
|
/* Include the needed headers. */
|
|
#include <math.h>
|
|
#include <complex.h>
|
|
|
|
|
|
/* Since `complex' is currently not really implemented in most C compilers
|
|
and if it is implemented, the implementations differ. This makes it
|
|
quite difficult to write a generic implementation of this header. We
|
|
do not try this for now and instead concentrate only on GNU CC. Once
|
|
we have more information support for other compilers might follow. */
|
|
|
|
#if __GNUC_PREREQ (2, 7)
|
|
|
|
# ifdef __NO_LONG_DOUBLE_MATH
|
|
# define __tgml(fct) fct
|
|
# else
|
|
# define __tgml(fct) fct ## l
|
|
# endif
|
|
|
|
/* This is ugly but unless gcc gets appropriate builtins we have to do
|
|
something like this. Don't ask how it works. */
|
|
|
|
/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
|
|
Allows for _Bool. Expands to an integer constant expression. */
|
|
# define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
|
|
|
|
/* The tgmath real type for T, where E is 0 if T is an integer type and
|
|
1 for a floating type. */
|
|
# define __tgmath_real_type_sub(T, E) \
|
|
__typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
|
|
: (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
|
|
|
|
/* The tgmath real type of EXPR. */
|
|
# define __tgmath_real_type(expr) \
|
|
__tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))
|
|
|
|
|
|
/* We have two kinds of generic macros: to support functions which are
|
|
only defined on real valued parameters and those which are defined
|
|
for complex functions as well. */
|
|
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
|
|
(__extension__ ({ __tgmath_real_type (Val) __tgmres; \
|
|
if (sizeof (Val) == sizeof (double) \
|
|
|| __builtin_classify_type (Val) != 8) \
|
|
__tgmres = Fct (Val); \
|
|
else if (sizeof (Val) == sizeof (float)) \
|
|
__tgmres = Fct##f (Val); \
|
|
else \
|
|
__tgmres = __tgml(Fct) (Val); \
|
|
__tgmres; }))
|
|
|
|
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \
|
|
(__extension__ ({ RetType __tgmres; \
|
|
if (sizeof (Val) == sizeof (double) \
|
|
|| __builtin_classify_type (Val) != 8) \
|
|
__tgmres = Fct (Val); \
|
|
else if (sizeof (Val) == sizeof (float)) \
|
|
__tgmres = Fct##f (Val); \
|
|
else \
|
|
__tgmres = __tgml(Fct) (Val); \
|
|
__tgmres; }))
|
|
|
|
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ({ __tgmath_real_type (Val1) __tgmres; \
|
|
if (sizeof (Val1) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8) \
|
|
__tgmres = Fct (Val1, Val2); \
|
|
else if (sizeof (Val1) == sizeof (float)) \
|
|
__tgmres = Fct##f (Val1, Val2); \
|
|
else \
|
|
__tgmres = __tgml(Fct) (Val1, Val2); \
|
|
__tgmres; }))
|
|
|
|
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
|
|
if ((sizeof (Val1) > sizeof (double) \
|
|
|| sizeof (Val2) > sizeof (double)) \
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
|
__tgmres = __tgml(Fct) (Val1, Val2); \
|
|
else if (sizeof (Val1) == sizeof (double) \
|
|
|| sizeof (Val2) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8) \
|
|
__tgmres = Fct (Val1, Val2); \
|
|
else \
|
|
__tgmres = Fct##f (Val1, Val2); \
|
|
__tgmres; }))
|
|
|
|
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
(__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
|
|
if ((sizeof (Val1) > sizeof (double) \
|
|
|| sizeof (Val2) > sizeof (double)) \
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
|
__tgmres = __tgml(Fct) (Val1, Val2, Val3); \
|
|
else if (sizeof (Val1) == sizeof (double) \
|
|
|| sizeof (Val2) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8) \
|
|
__tgmres = Fct (Val1, Val2, Val3); \
|
|
else \
|
|
__tgmres = Fct##f (Val1, Val2, Val3); \
|
|
__tgmres; }))
|
|
|
|
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
(__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\
|
|
if ((sizeof (Val1) > sizeof (double) \
|
|
|| sizeof (Val2) > sizeof (double) \
|
|
|| sizeof (Val3) > sizeof (double)) \
|
|
&& __builtin_classify_type ((Val1) + (Val2) \
|
|
+ (Val3)) == 8) \
|
|
__tgmres = __tgml(Fct) (Val1, Val2, Val3); \
|
|
else if (sizeof (Val1) == sizeof (double) \
|
|
|| sizeof (Val2) == sizeof (double) \
|
|
|| sizeof (Val3) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8 \
|
|
|| __builtin_classify_type (Val3) != 8) \
|
|
__tgmres = Fct (Val1, Val2, Val3); \
|
|
else \
|
|
__tgmres = Fct##f (Val1, Val2, Val3); \
|
|
__tgmres; }))
|
|
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
|
|
(__extension__ ({ __tgmath_real_type (Val) __tgmres; \
|
|
if (sizeof (__real__ (Val)) > sizeof (double) \
|
|
&& __builtin_classify_type (__real__ (Val)) == 8) \
|
|
{ \
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
|
__tgmres = __tgml(Fct) (Val); \
|
|
else \
|
|
__tgmres = __tgml(Cfct) (Val); \
|
|
} \
|
|
else if (sizeof (__real__ (Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val)) \
|
|
!= 8) \
|
|
{ \
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
|
__tgmres = Fct (Val); \
|
|
else \
|
|
__tgmres = Cfct (Val); \
|
|
} \
|
|
else \
|
|
{ \
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
|
__tgmres = Fct##f (Val); \
|
|
else \
|
|
__tgmres = Cfct##f (Val); \
|
|
} \
|
|
__tgmres; }))
|
|
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
|
|
(__extension__ ({ __tgmath_real_type (Val) __tgmres; \
|
|
if (sizeof (__real__ (Val)) > sizeof (double) \
|
|
&& __builtin_classify_type (__real__ (Val)) == 8) \
|
|
{ \
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
|
__tgmres = __tgml(Fct) (Val); \
|
|
else \
|
|
__tgmres = __tgml(Cfct) (Val); \
|
|
} \
|
|
else if (sizeof (__real__ (Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val)) \
|
|
!= 8) \
|
|
{ \
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
|
__tgmres = Fct (Val); \
|
|
else \
|
|
__tgmres = Cfct (Val); \
|
|
} \
|
|
else \
|
|
{ \
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
|
__tgmres = Fct##f (Val); \
|
|
else \
|
|
__tgmres = Cfct##f (Val); \
|
|
} \
|
|
__real__ __tgmres; }))
|
|
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
|
|
(__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
|
|
if ((sizeof (__real__ (Val1)) > sizeof (double) \
|
|
|| sizeof (__real__ (Val2)) > sizeof (double)) \
|
|
&& __builtin_classify_type (__real__ (Val1) \
|
|
+ __real__ (Val2)) \
|
|
== 8) \
|
|
{ \
|
|
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
|
|
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
|
|
__tgmres = __tgml(Fct) (Val1, Val2); \
|
|
else \
|
|
__tgmres = __tgml(Cfct) (Val1, Val2); \
|
|
} \
|
|
else if (sizeof (__real__ (Val1)) == sizeof (double) \
|
|
|| sizeof (__real__ (Val2)) == sizeof(double) \
|
|
|| (__builtin_classify_type (__real__ (Val1)) \
|
|
!= 8) \
|
|
|| (__builtin_classify_type (__real__ (Val2)) \
|
|
!= 8)) \
|
|
{ \
|
|
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
|
|
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
|
|
__tgmres = Fct (Val1, Val2); \
|
|
else \
|
|
__tgmres = Cfct (Val1, Val2); \
|
|
} \
|
|
else \
|
|
{ \
|
|
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
|
|
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
|
|
__tgmres = Fct##f (Val1, Val2); \
|
|
else \
|
|
__tgmres = Cfct##f (Val1, Val2); \
|
|
} \
|
|
__tgmres; }))
|
|
#else
|
|
# error "Unsupported compiler; you cannot use <tgmath.h>"
|
|
#endif
|
|
|
|
|
|
/* Unary functions defined for real and complex values. */
|
|
|
|
|
|
/* Trigonometric functions. */
|
|
|
|
/* Arc cosine of X. */
|
|
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
|
|
/* Arc sine of X. */
|
|
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
|
|
/* Arc tangent of X. */
|
|
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
|
|
/* Arc tangent of Y/X. */
|
|
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
|
|
|
|
/* Cosine of X. */
|
|
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
|
|
/* Sine of X. */
|
|
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
|
|
/* Tangent of X. */
|
|
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
|
|
|
|
|
|
/* Hyperbolic functions. */
|
|
|
|
/* Hyperbolic arc cosine of X. */
|
|
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
|
|
/* Hyperbolic arc sine of X. */
|
|
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
|
|
/* Hyperbolic arc tangent of X. */
|
|
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
|
|
|
|
/* Hyperbolic cosine of X. */
|
|
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
|
|
/* Hyperbolic sine of X. */
|
|
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
|
|
/* Hyperbolic tangent of X. */
|
|
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
|
|
|
|
|
|
/* Exponential and logarithmic functions. */
|
|
|
|
/* Exponential function of X. */
|
|
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
|
|
|
|
/* Break VALUE into a normalized fraction and an integral power of 2. */
|
|
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
|
|
|
|
/* X times (two to the EXP power). */
|
|
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
|
|
|
|
/* Natural logarithm of X. */
|
|
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
|
|
|
|
/* Base-ten logarithm of X. */
|
|
#ifdef __USE_GNU
|
|
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
|
|
#else
|
|
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
|
|
#endif
|
|
|
|
/* Return exp(X) - 1. */
|
|
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
|
|
|
|
/* Return log(1 + X). */
|
|
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
|
|
|
|
/* Return the base 2 signed integral exponent of X. */
|
|
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
|
|
|
|
/* Compute base-2 exponential of X. */
|
|
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
|
|
|
|
/* Compute base-2 logarithm of X. */
|
|
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
|
|
|
|
|
|
/* Power functions. */
|
|
|
|
/* Return X to the Y power. */
|
|
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
|
|
|
|
/* Return the square root of X. */
|
|
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
|
|
|
|
/* Return `sqrt(X*X + Y*Y)'. */
|
|
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
|
|
|
|
/* Return the cube root of X. */
|
|
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
|
|
|
|
|
|
/* Nearest integer, absolute value, and remainder functions. */
|
|
|
|
/* Smallest integral value not less than X. */
|
|
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
|
|
|
|
/* Absolute value of X. */
|
|
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
|
|
|
|
/* Largest integer not greater than X. */
|
|
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
|
|
|
|
/* Floating-point modulo remainder of X/Y. */
|
|
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
|
|
|
|
/* Round X to integral valuein floating-point format using current
|
|
rounding direction, but do not raise inexact exception. */
|
|
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
|
|
|
|
/* Round X to the integral value in floating-point format nearest but
|
|
not larger in magnitude. */
|
|
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
|
|
|
|
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
|
|
and magnitude congruent `mod 2^n' to the magnitude of the integral
|
|
quotient x/y, with n >= 3. */
|
|
#define remquo(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
|
|
|
|
/* Round X to nearest integral value according to current rounding
|
|
direction. */
|
|
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint)
|
|
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint)
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround)
|
|
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround)
|
|
|
|
|
|
/* Return X with its signed changed to Y's. */
|
|
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
|
|
|
|
/* Error and gamma functions. */
|
|
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
|
|
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
|
|
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
|
|
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
|
|
|
|
|
|
/* Return the integer nearest X in the direction of the
|
|
prevailing rounding mode. */
|
|
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
|
|
|
|
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
|
|
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
|
|
#define nexttoward(Val1, Val2) \
|
|
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
|
|
|
|
/* Return the remainder of integer divison X / Y with infinite precision. */
|
|
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
|
|
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
|
|
#endif
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#define scalbln(Val1, Val2) \
|
|
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
|
|
|
|
/* Return the binary exponent of X, which must be nonzero. */
|
|
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb)
|
|
|
|
|
|
/* Return positive difference between X and Y. */
|
|
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
|
|
|
|
/* Return maximum numeric value from X and Y. */
|
|
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
|
|
|
|
|
|
/* Multiply-add function computed as a ternary operation. */
|
|
#define fma(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
|
|
|
|
|
|
/* Absolute value, conjugates, and projection. */
|
|
|
|
/* Argument value of Z. */
|
|
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)
|
|
|
|
/* Complex conjugate of Z. */
|
|
#define conj(Val) __TGMATH_UNARY_REAL_IMAG (Val, conj, conj)
|
|
|
|
/* Projection of Z onto the Riemann sphere. */
|
|
#define cproj(Val) __TGMATH_UNARY_REAL_IMAG (Val, cproj, cproj)
|
|
|
|
|
|
/* Decomposing complex values. */
|
|
|
|
/* Imaginary part of Z. */
|
|
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)
|
|
|
|
/* Real part of Z. */
|
|
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)
|
|
|
|
#endif /* tgmath.h */
|