mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-18 12:16:13 +08:00
139 lines
3.4 KiB
C
139 lines
3.4 KiB
C
/* Complex cosine hyperbolic function for float types.
|
|
Copyright (C) 1997-2020 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <math-underflow.h>
|
|
#include <float.h>
|
|
|
|
CFLOAT
|
|
M_DECL_FUNC (__ccosh) (CFLOAT x)
|
|
{
|
|
CFLOAT retval;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__glibc_likely (rcls >= FP_ZERO))
|
|
{
|
|
/* Real part is finite. */
|
|
if (__glibc_likely (icls >= FP_ZERO))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
|
|
FLOAT sinix, cosix;
|
|
|
|
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
|
|
{
|
|
M_SINCOS (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1;
|
|
}
|
|
|
|
if (M_FABS (__real__ x) > t)
|
|
{
|
|
FLOAT exp_t = M_EXP (t);
|
|
FLOAT rx = M_FABS (__real__ x);
|
|
if (signbit (__real__ x))
|
|
sinix = -sinix;
|
|
rx -= t;
|
|
sinix *= exp_t / 2;
|
|
cosix *= exp_t / 2;
|
|
if (rx > t)
|
|
{
|
|
rx -= t;
|
|
sinix *= exp_t;
|
|
cosix *= exp_t;
|
|
}
|
|
if (rx > t)
|
|
{
|
|
/* Overflow (original real part of x > 3t). */
|
|
__real__ retval = M_MAX * cosix;
|
|
__imag__ retval = M_MAX * sinix;
|
|
}
|
|
else
|
|
{
|
|
FLOAT exp_val = M_EXP (rx);
|
|
__real__ retval = exp_val * cosix;
|
|
__imag__ retval = exp_val * sinix;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = M_COSH (__real__ x) * cosix;
|
|
__imag__ retval = M_SINH (__real__ x) * sinix;
|
|
}
|
|
|
|
math_check_force_underflow_complex (retval);
|
|
}
|
|
else
|
|
{
|
|
__imag__ retval = __real__ x == 0 ? 0 : M_NAN;
|
|
__real__ retval = __imag__ x - __imag__ x;
|
|
}
|
|
}
|
|
else if (rcls == FP_INFINITE)
|
|
{
|
|
/* Real part is infinite. */
|
|
if (__glibc_likely (icls > FP_ZERO))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
FLOAT sinix, cosix;
|
|
|
|
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
|
|
{
|
|
M_SINCOS (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1;
|
|
}
|
|
|
|
__real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix);
|
|
__imag__ retval = (M_COPYSIGN (M_HUGE_VAL, sinix)
|
|
* M_COPYSIGN (1, __real__ x));
|
|
}
|
|
else if (icls == FP_ZERO)
|
|
{
|
|
/* Imaginary part is 0.0. */
|
|
__real__ retval = M_HUGE_VAL;
|
|
__imag__ retval = __imag__ x * M_COPYSIGN (1, __real__ x);
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = M_HUGE_VAL;
|
|
__imag__ retval = __imag__ x - __imag__ x;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = M_NAN;
|
|
__imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
declare_mgen_alias (__ccosh, ccosh);
|