mirror of
git://sourceware.org/git/glibc.git
synced 2024-12-09 04:11:27 +08:00
3920 lines
112 KiB
C
3920 lines
112 KiB
C
/* Extended regular expression matching and search library.
|
||
Copyright (C) 2002-2020 Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, see
|
||
<https://www.gnu.org/licenses/>. */
|
||
|
||
#ifdef _LIBC
|
||
# include <locale/weight.h>
|
||
#endif
|
||
|
||
static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern,
|
||
size_t length, reg_syntax_t syntax);
|
||
static void re_compile_fastmap_iter (regex_t *bufp,
|
||
const re_dfastate_t *init_state,
|
||
char *fastmap);
|
||
static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len);
|
||
#ifdef RE_ENABLE_I18N
|
||
static void free_charset (re_charset_t *cset);
|
||
#endif /* RE_ENABLE_I18N */
|
||
static void free_workarea_compile (regex_t *preg);
|
||
static reg_errcode_t create_initial_state (re_dfa_t *dfa);
|
||
#ifdef RE_ENABLE_I18N
|
||
static void optimize_utf8 (re_dfa_t *dfa);
|
||
#endif
|
||
static reg_errcode_t analyze (regex_t *preg);
|
||
static reg_errcode_t preorder (bin_tree_t *root,
|
||
reg_errcode_t (fn (void *, bin_tree_t *)),
|
||
void *extra);
|
||
static reg_errcode_t postorder (bin_tree_t *root,
|
||
reg_errcode_t (fn (void *, bin_tree_t *)),
|
||
void *extra);
|
||
static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node);
|
||
static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node);
|
||
static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg,
|
||
bin_tree_t *node);
|
||
static reg_errcode_t calc_first (void *extra, bin_tree_t *node);
|
||
static reg_errcode_t calc_next (void *extra, bin_tree_t *node);
|
||
static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node);
|
||
static Idx duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint);
|
||
static Idx search_duplicated_node (const re_dfa_t *dfa, Idx org_node,
|
||
unsigned int constraint);
|
||
static reg_errcode_t calc_eclosure (re_dfa_t *dfa);
|
||
static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa,
|
||
Idx node, bool root);
|
||
static reg_errcode_t calc_inveclosure (re_dfa_t *dfa);
|
||
static Idx fetch_number (re_string_t *input, re_token_t *token,
|
||
reg_syntax_t syntax);
|
||
static int peek_token (re_token_t *token, re_string_t *input,
|
||
reg_syntax_t syntax);
|
||
static bin_tree_t *parse (re_string_t *regexp, regex_t *preg,
|
||
reg_syntax_t syntax, reg_errcode_t *err);
|
||
static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
Idx nest, reg_errcode_t *err);
|
||
static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
Idx nest, reg_errcode_t *err);
|
||
static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
Idx nest, reg_errcode_t *err);
|
||
static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
Idx nest, reg_errcode_t *err);
|
||
static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp,
|
||
re_dfa_t *dfa, re_token_t *token,
|
||
reg_syntax_t syntax, reg_errcode_t *err);
|
||
static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
reg_errcode_t *err);
|
||
static reg_errcode_t parse_bracket_element (bracket_elem_t *elem,
|
||
re_string_t *regexp,
|
||
re_token_t *token, int token_len,
|
||
re_dfa_t *dfa,
|
||
reg_syntax_t syntax,
|
||
bool accept_hyphen);
|
||
static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem,
|
||
re_string_t *regexp,
|
||
re_token_t *token);
|
||
#ifdef RE_ENABLE_I18N
|
||
static reg_errcode_t build_equiv_class (bitset_t sbcset,
|
||
re_charset_t *mbcset,
|
||
Idx *equiv_class_alloc,
|
||
const unsigned char *name);
|
||
static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans,
|
||
bitset_t sbcset,
|
||
re_charset_t *mbcset,
|
||
Idx *char_class_alloc,
|
||
const char *class_name,
|
||
reg_syntax_t syntax);
|
||
#else /* not RE_ENABLE_I18N */
|
||
static reg_errcode_t build_equiv_class (bitset_t sbcset,
|
||
const unsigned char *name);
|
||
static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans,
|
||
bitset_t sbcset,
|
||
const char *class_name,
|
||
reg_syntax_t syntax);
|
||
#endif /* not RE_ENABLE_I18N */
|
||
static bin_tree_t *build_charclass_op (re_dfa_t *dfa,
|
||
RE_TRANSLATE_TYPE trans,
|
||
const char *class_name,
|
||
const char *extra,
|
||
bool non_match, reg_errcode_t *err);
|
||
static bin_tree_t *create_tree (re_dfa_t *dfa,
|
||
bin_tree_t *left, bin_tree_t *right,
|
||
re_token_type_t type);
|
||
static bin_tree_t *create_token_tree (re_dfa_t *dfa,
|
||
bin_tree_t *left, bin_tree_t *right,
|
||
const re_token_t *token);
|
||
static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa);
|
||
static void free_token (re_token_t *node);
|
||
static reg_errcode_t free_tree (void *extra, bin_tree_t *node);
|
||
static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node);
|
||
|
||
/* This table gives an error message for each of the error codes listed
|
||
in regex.h. Obviously the order here has to be same as there.
|
||
POSIX doesn't require that we do anything for REG_NOERROR,
|
||
but why not be nice? */
|
||
|
||
static const char __re_error_msgid[] =
|
||
{
|
||
#define REG_NOERROR_IDX 0
|
||
gettext_noop ("Success") /* REG_NOERROR */
|
||
"\0"
|
||
#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
|
||
gettext_noop ("No match") /* REG_NOMATCH */
|
||
"\0"
|
||
#define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
|
||
gettext_noop ("Invalid regular expression") /* REG_BADPAT */
|
||
"\0"
|
||
#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
|
||
gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
|
||
"\0"
|
||
#define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
|
||
gettext_noop ("Invalid character class name") /* REG_ECTYPE */
|
||
"\0"
|
||
#define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
|
||
gettext_noop ("Trailing backslash") /* REG_EESCAPE */
|
||
"\0"
|
||
#define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
|
||
gettext_noop ("Invalid back reference") /* REG_ESUBREG */
|
||
"\0"
|
||
#define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
|
||
gettext_noop ("Unmatched [, [^, [:, [., or [=") /* REG_EBRACK */
|
||
"\0"
|
||
#define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [, [^, [:, [., or [=")
|
||
gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
|
||
"\0"
|
||
#define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
|
||
gettext_noop ("Unmatched \\{") /* REG_EBRACE */
|
||
"\0"
|
||
#define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
|
||
gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
|
||
"\0"
|
||
#define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
|
||
gettext_noop ("Invalid range end") /* REG_ERANGE */
|
||
"\0"
|
||
#define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
|
||
gettext_noop ("Memory exhausted") /* REG_ESPACE */
|
||
"\0"
|
||
#define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
|
||
gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
|
||
"\0"
|
||
#define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
|
||
gettext_noop ("Premature end of regular expression") /* REG_EEND */
|
||
"\0"
|
||
#define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
|
||
gettext_noop ("Regular expression too big") /* REG_ESIZE */
|
||
"\0"
|
||
#define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
|
||
gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
|
||
};
|
||
|
||
static const size_t __re_error_msgid_idx[] =
|
||
{
|
||
REG_NOERROR_IDX,
|
||
REG_NOMATCH_IDX,
|
||
REG_BADPAT_IDX,
|
||
REG_ECOLLATE_IDX,
|
||
REG_ECTYPE_IDX,
|
||
REG_EESCAPE_IDX,
|
||
REG_ESUBREG_IDX,
|
||
REG_EBRACK_IDX,
|
||
REG_EPAREN_IDX,
|
||
REG_EBRACE_IDX,
|
||
REG_BADBR_IDX,
|
||
REG_ERANGE_IDX,
|
||
REG_ESPACE_IDX,
|
||
REG_BADRPT_IDX,
|
||
REG_EEND_IDX,
|
||
REG_ESIZE_IDX,
|
||
REG_ERPAREN_IDX
|
||
};
|
||
|
||
/* Entry points for GNU code. */
|
||
|
||
/* re_compile_pattern is the GNU regular expression compiler: it
|
||
compiles PATTERN (of length LENGTH) and puts the result in BUFP.
|
||
Returns 0 if the pattern was valid, otherwise an error string.
|
||
|
||
Assumes the 'allocated' (and perhaps 'buffer') and 'translate' fields
|
||
are set in BUFP on entry. */
|
||
|
||
const char *
|
||
re_compile_pattern (const char *pattern, size_t length,
|
||
struct re_pattern_buffer *bufp)
|
||
{
|
||
reg_errcode_t ret;
|
||
|
||
/* And GNU code determines whether or not to get register information
|
||
by passing null for the REGS argument to re_match, etc., not by
|
||
setting no_sub, unless RE_NO_SUB is set. */
|
||
bufp->no_sub = !!(re_syntax_options & RE_NO_SUB);
|
||
|
||
/* Match anchors at newline. */
|
||
bufp->newline_anchor = 1;
|
||
|
||
ret = re_compile_internal (bufp, pattern, length, re_syntax_options);
|
||
|
||
if (!ret)
|
||
return NULL;
|
||
return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
|
||
}
|
||
weak_alias (__re_compile_pattern, re_compile_pattern)
|
||
|
||
/* Set by 're_set_syntax' to the current regexp syntax to recognize. Can
|
||
also be assigned to arbitrarily: each pattern buffer stores its own
|
||
syntax, so it can be changed between regex compilations. */
|
||
/* This has no initializer because initialized variables in Emacs
|
||
become read-only after dumping. */
|
||
reg_syntax_t re_syntax_options;
|
||
|
||
|
||
/* Specify the precise syntax of regexps for compilation. This provides
|
||
for compatibility for various utilities which historically have
|
||
different, incompatible syntaxes.
|
||
|
||
The argument SYNTAX is a bit mask comprised of the various bits
|
||
defined in regex.h. We return the old syntax. */
|
||
|
||
reg_syntax_t
|
||
re_set_syntax (reg_syntax_t syntax)
|
||
{
|
||
reg_syntax_t ret = re_syntax_options;
|
||
|
||
re_syntax_options = syntax;
|
||
return ret;
|
||
}
|
||
weak_alias (__re_set_syntax, re_set_syntax)
|
||
|
||
int
|
||
re_compile_fastmap (struct re_pattern_buffer *bufp)
|
||
{
|
||
re_dfa_t *dfa = bufp->buffer;
|
||
char *fastmap = bufp->fastmap;
|
||
|
||
memset (fastmap, '\0', sizeof (char) * SBC_MAX);
|
||
re_compile_fastmap_iter (bufp, dfa->init_state, fastmap);
|
||
if (dfa->init_state != dfa->init_state_word)
|
||
re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap);
|
||
if (dfa->init_state != dfa->init_state_nl)
|
||
re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap);
|
||
if (dfa->init_state != dfa->init_state_begbuf)
|
||
re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap);
|
||
bufp->fastmap_accurate = 1;
|
||
return 0;
|
||
}
|
||
weak_alias (__re_compile_fastmap, re_compile_fastmap)
|
||
|
||
static inline void
|
||
__attribute__ ((always_inline))
|
||
re_set_fastmap (char *fastmap, bool icase, int ch)
|
||
{
|
||
fastmap[ch] = 1;
|
||
if (icase)
|
||
fastmap[tolower (ch)] = 1;
|
||
}
|
||
|
||
/* Helper function for re_compile_fastmap.
|
||
Compile fastmap for the initial_state INIT_STATE. */
|
||
|
||
static void
|
||
re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state,
|
||
char *fastmap)
|
||
{
|
||
re_dfa_t *dfa = bufp->buffer;
|
||
Idx node_cnt;
|
||
bool icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE));
|
||
for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt)
|
||
{
|
||
Idx node = init_state->nodes.elems[node_cnt];
|
||
re_token_type_t type = dfa->nodes[node].type;
|
||
|
||
if (type == CHARACTER)
|
||
{
|
||
re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c);
|
||
#ifdef RE_ENABLE_I18N
|
||
if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1)
|
||
{
|
||
unsigned char buf[MB_LEN_MAX];
|
||
unsigned char *p;
|
||
wchar_t wc;
|
||
mbstate_t state;
|
||
|
||
p = buf;
|
||
*p++ = dfa->nodes[node].opr.c;
|
||
while (++node < dfa->nodes_len
|
||
&& dfa->nodes[node].type == CHARACTER
|
||
&& dfa->nodes[node].mb_partial)
|
||
*p++ = dfa->nodes[node].opr.c;
|
||
memset (&state, '\0', sizeof (state));
|
||
if (__mbrtowc (&wc, (const char *) buf, p - buf,
|
||
&state) == p - buf
|
||
&& (__wcrtomb ((char *) buf, __towlower (wc), &state)
|
||
!= (size_t) -1))
|
||
re_set_fastmap (fastmap, false, buf[0]);
|
||
}
|
||
#endif
|
||
}
|
||
else if (type == SIMPLE_BRACKET)
|
||
{
|
||
int i, ch;
|
||
for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
|
||
{
|
||
int j;
|
||
bitset_word_t w = dfa->nodes[node].opr.sbcset[i];
|
||
for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
|
||
if (w & ((bitset_word_t) 1 << j))
|
||
re_set_fastmap (fastmap, icase, ch);
|
||
}
|
||
}
|
||
#ifdef RE_ENABLE_I18N
|
||
else if (type == COMPLEX_BRACKET)
|
||
{
|
||
re_charset_t *cset = dfa->nodes[node].opr.mbcset;
|
||
Idx i;
|
||
|
||
# ifdef _LIBC
|
||
/* See if we have to try all bytes which start multiple collation
|
||
elements.
|
||
e.g. In da_DK, we want to catch 'a' since "aa" is a valid
|
||
collation element, and don't catch 'b' since 'b' is
|
||
the only collation element which starts from 'b' (and
|
||
it is caught by SIMPLE_BRACKET). */
|
||
if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0
|
||
&& (cset->ncoll_syms || cset->nranges))
|
||
{
|
||
const int32_t *table = (const int32_t *)
|
||
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
|
||
for (i = 0; i < SBC_MAX; ++i)
|
||
if (table[i] < 0)
|
||
re_set_fastmap (fastmap, icase, i);
|
||
}
|
||
# endif /* _LIBC */
|
||
|
||
/* See if we have to start the match at all multibyte characters,
|
||
i.e. where we would not find an invalid sequence. This only
|
||
applies to multibyte character sets; for single byte character
|
||
sets, the SIMPLE_BRACKET again suffices. */
|
||
if (dfa->mb_cur_max > 1
|
||
&& (cset->nchar_classes || cset->non_match || cset->nranges
|
||
# ifdef _LIBC
|
||
|| cset->nequiv_classes
|
||
# endif /* _LIBC */
|
||
))
|
||
{
|
||
unsigned char c = 0;
|
||
do
|
||
{
|
||
mbstate_t mbs;
|
||
memset (&mbs, 0, sizeof (mbs));
|
||
if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2)
|
||
re_set_fastmap (fastmap, false, (int) c);
|
||
}
|
||
while (++c != 0);
|
||
}
|
||
|
||
else
|
||
{
|
||
/* ... Else catch all bytes which can start the mbchars. */
|
||
for (i = 0; i < cset->nmbchars; ++i)
|
||
{
|
||
char buf[256];
|
||
mbstate_t state;
|
||
memset (&state, '\0', sizeof (state));
|
||
if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1)
|
||
re_set_fastmap (fastmap, icase, *(unsigned char *) buf);
|
||
if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1)
|
||
{
|
||
if (__wcrtomb (buf, __towlower (cset->mbchars[i]), &state)
|
||
!= (size_t) -1)
|
||
re_set_fastmap (fastmap, false, *(unsigned char *) buf);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
else if (type == OP_PERIOD
|
||
#ifdef RE_ENABLE_I18N
|
||
|| type == OP_UTF8_PERIOD
|
||
#endif /* RE_ENABLE_I18N */
|
||
|| type == END_OF_RE)
|
||
{
|
||
memset (fastmap, '\1', sizeof (char) * SBC_MAX);
|
||
if (type == END_OF_RE)
|
||
bufp->can_be_null = 1;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Entry point for POSIX code. */
|
||
/* regcomp takes a regular expression as a string and compiles it.
|
||
|
||
PREG is a regex_t *. We do not expect any fields to be initialized,
|
||
since POSIX says we shouldn't. Thus, we set
|
||
|
||
'buffer' to the compiled pattern;
|
||
'used' to the length of the compiled pattern;
|
||
'syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
||
REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
||
RE_SYNTAX_POSIX_BASIC;
|
||
'newline_anchor' to REG_NEWLINE being set in CFLAGS;
|
||
'fastmap' to an allocated space for the fastmap;
|
||
'fastmap_accurate' to zero;
|
||
're_nsub' to the number of subexpressions in PATTERN.
|
||
|
||
PATTERN is the address of the pattern string.
|
||
|
||
CFLAGS is a series of bits which affect compilation.
|
||
|
||
If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
||
use POSIX basic syntax.
|
||
|
||
If REG_NEWLINE is set, then . and [^...] don't match newline.
|
||
Also, regexec will try a match beginning after every newline.
|
||
|
||
If REG_ICASE is set, then we considers upper- and lowercase
|
||
versions of letters to be equivalent when matching.
|
||
|
||
If REG_NOSUB is set, then when PREG is passed to regexec, that
|
||
routine will report only success or failure, and nothing about the
|
||
registers.
|
||
|
||
It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
||
the return codes and their meanings.) */
|
||
|
||
int
|
||
regcomp (regex_t *__restrict preg, const char *__restrict pattern, int cflags)
|
||
{
|
||
reg_errcode_t ret;
|
||
reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED
|
||
: RE_SYNTAX_POSIX_BASIC);
|
||
|
||
preg->buffer = NULL;
|
||
preg->allocated = 0;
|
||
preg->used = 0;
|
||
|
||
/* Try to allocate space for the fastmap. */
|
||
preg->fastmap = re_malloc (char, SBC_MAX);
|
||
if (__glibc_unlikely (preg->fastmap == NULL))
|
||
return REG_ESPACE;
|
||
|
||
syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0;
|
||
|
||
/* If REG_NEWLINE is set, newlines are treated differently. */
|
||
if (cflags & REG_NEWLINE)
|
||
{ /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
||
syntax &= ~RE_DOT_NEWLINE;
|
||
syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
||
/* It also changes the matching behavior. */
|
||
preg->newline_anchor = 1;
|
||
}
|
||
else
|
||
preg->newline_anchor = 0;
|
||
preg->no_sub = !!(cflags & REG_NOSUB);
|
||
preg->translate = NULL;
|
||
|
||
ret = re_compile_internal (preg, pattern, strlen (pattern), syntax);
|
||
|
||
/* POSIX doesn't distinguish between an unmatched open-group and an
|
||
unmatched close-group: both are REG_EPAREN. */
|
||
if (ret == REG_ERPAREN)
|
||
ret = REG_EPAREN;
|
||
|
||
/* We have already checked preg->fastmap != NULL. */
|
||
if (__glibc_likely (ret == REG_NOERROR))
|
||
/* Compute the fastmap now, since regexec cannot modify the pattern
|
||
buffer. This function never fails in this implementation. */
|
||
(void) re_compile_fastmap (preg);
|
||
else
|
||
{
|
||
/* Some error occurred while compiling the expression. */
|
||
re_free (preg->fastmap);
|
||
preg->fastmap = NULL;
|
||
}
|
||
|
||
return (int) ret;
|
||
}
|
||
libc_hidden_def (__regcomp)
|
||
weak_alias (__regcomp, regcomp)
|
||
|
||
/* Returns a message corresponding to an error code, ERRCODE, returned
|
||
from either regcomp or regexec. We don't use PREG here. */
|
||
|
||
size_t
|
||
regerror (int errcode, const regex_t *__restrict preg, char *__restrict errbuf,
|
||
size_t errbuf_size)
|
||
{
|
||
const char *msg;
|
||
size_t msg_size;
|
||
int nerrcodes = sizeof __re_error_msgid_idx / sizeof __re_error_msgid_idx[0];
|
||
|
||
if (__glibc_unlikely (errcode < 0 || errcode >= nerrcodes))
|
||
/* Only error codes returned by the rest of the code should be passed
|
||
to this routine. If we are given anything else, or if other regex
|
||
code generates an invalid error code, then the program has a bug.
|
||
Dump core so we can fix it. */
|
||
abort ();
|
||
|
||
msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]);
|
||
|
||
msg_size = strlen (msg) + 1; /* Includes the null. */
|
||
|
||
if (__glibc_likely (errbuf_size != 0))
|
||
{
|
||
size_t cpy_size = msg_size;
|
||
if (__glibc_unlikely (msg_size > errbuf_size))
|
||
{
|
||
cpy_size = errbuf_size - 1;
|
||
errbuf[cpy_size] = '\0';
|
||
}
|
||
memcpy (errbuf, msg, cpy_size);
|
||
}
|
||
|
||
return msg_size;
|
||
}
|
||
weak_alias (__regerror, regerror)
|
||
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
/* This static array is used for the map to single-byte characters when
|
||
UTF-8 is used. Otherwise we would allocate memory just to initialize
|
||
it the same all the time. UTF-8 is the preferred encoding so this is
|
||
a worthwhile optimization. */
|
||
static const bitset_t utf8_sb_map =
|
||
{
|
||
/* Set the first 128 bits. */
|
||
# if defined __GNUC__ && !defined __STRICT_ANSI__
|
||
[0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX
|
||
# else
|
||
# if 4 * BITSET_WORD_BITS < ASCII_CHARS
|
||
# error "bitset_word_t is narrower than 32 bits"
|
||
# elif 3 * BITSET_WORD_BITS < ASCII_CHARS
|
||
BITSET_WORD_MAX, BITSET_WORD_MAX, BITSET_WORD_MAX,
|
||
# elif 2 * BITSET_WORD_BITS < ASCII_CHARS
|
||
BITSET_WORD_MAX, BITSET_WORD_MAX,
|
||
# elif 1 * BITSET_WORD_BITS < ASCII_CHARS
|
||
BITSET_WORD_MAX,
|
||
# endif
|
||
(BITSET_WORD_MAX
|
||
>> (SBC_MAX % BITSET_WORD_BITS == 0
|
||
? 0
|
||
: BITSET_WORD_BITS - SBC_MAX % BITSET_WORD_BITS))
|
||
# endif
|
||
};
|
||
#endif
|
||
|
||
|
||
static void
|
||
free_dfa_content (re_dfa_t *dfa)
|
||
{
|
||
Idx i, j;
|
||
|
||
if (dfa->nodes)
|
||
for (i = 0; i < dfa->nodes_len; ++i)
|
||
free_token (dfa->nodes + i);
|
||
re_free (dfa->nexts);
|
||
for (i = 0; i < dfa->nodes_len; ++i)
|
||
{
|
||
if (dfa->eclosures != NULL)
|
||
re_node_set_free (dfa->eclosures + i);
|
||
if (dfa->inveclosures != NULL)
|
||
re_node_set_free (dfa->inveclosures + i);
|
||
if (dfa->edests != NULL)
|
||
re_node_set_free (dfa->edests + i);
|
||
}
|
||
re_free (dfa->edests);
|
||
re_free (dfa->eclosures);
|
||
re_free (dfa->inveclosures);
|
||
re_free (dfa->nodes);
|
||
|
||
if (dfa->state_table)
|
||
for (i = 0; i <= dfa->state_hash_mask; ++i)
|
||
{
|
||
struct re_state_table_entry *entry = dfa->state_table + i;
|
||
for (j = 0; j < entry->num; ++j)
|
||
{
|
||
re_dfastate_t *state = entry->array[j];
|
||
free_state (state);
|
||
}
|
||
re_free (entry->array);
|
||
}
|
||
re_free (dfa->state_table);
|
||
#ifdef RE_ENABLE_I18N
|
||
if (dfa->sb_char != utf8_sb_map)
|
||
re_free (dfa->sb_char);
|
||
#endif
|
||
re_free (dfa->subexp_map);
|
||
#ifdef DEBUG
|
||
re_free (dfa->re_str);
|
||
#endif
|
||
|
||
re_free (dfa);
|
||
}
|
||
|
||
|
||
/* Free dynamically allocated space used by PREG. */
|
||
|
||
void
|
||
regfree (regex_t *preg)
|
||
{
|
||
re_dfa_t *dfa = preg->buffer;
|
||
if (__glibc_likely (dfa != NULL))
|
||
{
|
||
lock_fini (dfa->lock);
|
||
free_dfa_content (dfa);
|
||
}
|
||
preg->buffer = NULL;
|
||
preg->allocated = 0;
|
||
|
||
re_free (preg->fastmap);
|
||
preg->fastmap = NULL;
|
||
|
||
re_free (preg->translate);
|
||
preg->translate = NULL;
|
||
}
|
||
libc_hidden_def (__regfree)
|
||
weak_alias (__regfree, regfree)
|
||
|
||
/* Entry points compatible with 4.2 BSD regex library. We don't define
|
||
them unless specifically requested. */
|
||
|
||
#if defined _REGEX_RE_COMP || defined _LIBC
|
||
|
||
/* BSD has one and only one pattern buffer. */
|
||
static struct re_pattern_buffer re_comp_buf;
|
||
|
||
char *
|
||
# ifdef _LIBC
|
||
/* Make these definitions weak in libc, so POSIX programs can redefine
|
||
these names if they don't use our functions, and still use
|
||
regcomp/regexec above without link errors. */
|
||
weak_function
|
||
# endif
|
||
re_comp (const char *s)
|
||
{
|
||
reg_errcode_t ret;
|
||
char *fastmap;
|
||
|
||
if (!s)
|
||
{
|
||
if (!re_comp_buf.buffer)
|
||
return gettext ("No previous regular expression");
|
||
return 0;
|
||
}
|
||
|
||
if (re_comp_buf.buffer)
|
||
{
|
||
fastmap = re_comp_buf.fastmap;
|
||
re_comp_buf.fastmap = NULL;
|
||
__regfree (&re_comp_buf);
|
||
memset (&re_comp_buf, '\0', sizeof (re_comp_buf));
|
||
re_comp_buf.fastmap = fastmap;
|
||
}
|
||
|
||
if (re_comp_buf.fastmap == NULL)
|
||
{
|
||
re_comp_buf.fastmap = re_malloc (char, SBC_MAX);
|
||
if (re_comp_buf.fastmap == NULL)
|
||
return (char *) gettext (__re_error_msgid
|
||
+ __re_error_msgid_idx[(int) REG_ESPACE]);
|
||
}
|
||
|
||
/* Since 're_exec' always passes NULL for the 'regs' argument, we
|
||
don't need to initialize the pattern buffer fields which affect it. */
|
||
|
||
/* Match anchors at newlines. */
|
||
re_comp_buf.newline_anchor = 1;
|
||
|
||
ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options);
|
||
|
||
if (!ret)
|
||
return NULL;
|
||
|
||
/* Yes, we're discarding 'const' here if !HAVE_LIBINTL. */
|
||
return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
|
||
}
|
||
|
||
#ifdef _LIBC
|
||
libc_freeres_fn (free_mem)
|
||
{
|
||
__regfree (&re_comp_buf);
|
||
}
|
||
#endif
|
||
|
||
#endif /* _REGEX_RE_COMP */
|
||
|
||
/* Internal entry point.
|
||
Compile the regular expression PATTERN, whose length is LENGTH.
|
||
SYNTAX indicate regular expression's syntax. */
|
||
|
||
static reg_errcode_t
|
||
re_compile_internal (regex_t *preg, const char * pattern, size_t length,
|
||
reg_syntax_t syntax)
|
||
{
|
||
reg_errcode_t err = REG_NOERROR;
|
||
re_dfa_t *dfa;
|
||
re_string_t regexp;
|
||
|
||
/* Initialize the pattern buffer. */
|
||
preg->fastmap_accurate = 0;
|
||
preg->syntax = syntax;
|
||
preg->not_bol = preg->not_eol = 0;
|
||
preg->used = 0;
|
||
preg->re_nsub = 0;
|
||
preg->can_be_null = 0;
|
||
preg->regs_allocated = REGS_UNALLOCATED;
|
||
|
||
/* Initialize the dfa. */
|
||
dfa = preg->buffer;
|
||
if (__glibc_unlikely (preg->allocated < sizeof (re_dfa_t)))
|
||
{
|
||
/* If zero allocated, but buffer is non-null, try to realloc
|
||
enough space. This loses if buffer's address is bogus, but
|
||
that is the user's responsibility. If ->buffer is NULL this
|
||
is a simple allocation. */
|
||
dfa = re_realloc (preg->buffer, re_dfa_t, 1);
|
||
if (dfa == NULL)
|
||
return REG_ESPACE;
|
||
preg->allocated = sizeof (re_dfa_t);
|
||
preg->buffer = dfa;
|
||
}
|
||
preg->used = sizeof (re_dfa_t);
|
||
|
||
err = init_dfa (dfa, length);
|
||
if (__glibc_unlikely (err == REG_NOERROR && lock_init (dfa->lock) != 0))
|
||
err = REG_ESPACE;
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
{
|
||
free_dfa_content (dfa);
|
||
preg->buffer = NULL;
|
||
preg->allocated = 0;
|
||
return err;
|
||
}
|
||
#ifdef DEBUG
|
||
/* Note: length+1 will not overflow since it is checked in init_dfa. */
|
||
dfa->re_str = re_malloc (char, length + 1);
|
||
strncpy (dfa->re_str, pattern, length + 1);
|
||
#endif
|
||
|
||
err = re_string_construct (®exp, pattern, length, preg->translate,
|
||
(syntax & RE_ICASE) != 0, dfa);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
{
|
||
re_compile_internal_free_return:
|
||
free_workarea_compile (preg);
|
||
re_string_destruct (®exp);
|
||
lock_fini (dfa->lock);
|
||
free_dfa_content (dfa);
|
||
preg->buffer = NULL;
|
||
preg->allocated = 0;
|
||
return err;
|
||
}
|
||
|
||
/* Parse the regular expression, and build a structure tree. */
|
||
preg->re_nsub = 0;
|
||
dfa->str_tree = parse (®exp, preg, syntax, &err);
|
||
if (__glibc_unlikely (dfa->str_tree == NULL))
|
||
goto re_compile_internal_free_return;
|
||
|
||
/* Analyze the tree and create the nfa. */
|
||
err = analyze (preg);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
goto re_compile_internal_free_return;
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
/* If possible, do searching in single byte encoding to speed things up. */
|
||
if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL)
|
||
optimize_utf8 (dfa);
|
||
#endif
|
||
|
||
/* Then create the initial state of the dfa. */
|
||
err = create_initial_state (dfa);
|
||
|
||
/* Release work areas. */
|
||
free_workarea_compile (preg);
|
||
re_string_destruct (®exp);
|
||
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
{
|
||
lock_fini (dfa->lock);
|
||
free_dfa_content (dfa);
|
||
preg->buffer = NULL;
|
||
preg->allocated = 0;
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Initialize DFA. We use the length of the regular expression PAT_LEN
|
||
as the initial length of some arrays. */
|
||
|
||
static reg_errcode_t
|
||
init_dfa (re_dfa_t *dfa, size_t pat_len)
|
||
{
|
||
__re_size_t table_size;
|
||
#ifndef _LIBC
|
||
const char *codeset_name;
|
||
#endif
|
||
#ifdef RE_ENABLE_I18N
|
||
size_t max_i18n_object_size = MAX (sizeof (wchar_t), sizeof (wctype_t));
|
||
#else
|
||
size_t max_i18n_object_size = 0;
|
||
#endif
|
||
size_t max_object_size =
|
||
MAX (sizeof (struct re_state_table_entry),
|
||
MAX (sizeof (re_token_t),
|
||
MAX (sizeof (re_node_set),
|
||
MAX (sizeof (regmatch_t),
|
||
max_i18n_object_size))));
|
||
|
||
memset (dfa, '\0', sizeof (re_dfa_t));
|
||
|
||
/* Force allocation of str_tree_storage the first time. */
|
||
dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE;
|
||
|
||
/* Avoid overflows. The extra "/ 2" is for the table_size doubling
|
||
calculation below, and for similar doubling calculations
|
||
elsewhere. And it's <= rather than <, because some of the
|
||
doubling calculations add 1 afterwards. */
|
||
if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size) / 2
|
||
<= pat_len))
|
||
return REG_ESPACE;
|
||
|
||
dfa->nodes_alloc = pat_len + 1;
|
||
dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc);
|
||
|
||
/* table_size = 2 ^ ceil(log pat_len) */
|
||
for (table_size = 1; ; table_size <<= 1)
|
||
if (table_size > pat_len)
|
||
break;
|
||
|
||
dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size);
|
||
dfa->state_hash_mask = table_size - 1;
|
||
|
||
dfa->mb_cur_max = MB_CUR_MAX;
|
||
#ifdef _LIBC
|
||
if (dfa->mb_cur_max == 6
|
||
&& strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0)
|
||
dfa->is_utf8 = 1;
|
||
dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII)
|
||
!= 0);
|
||
#else
|
||
codeset_name = nl_langinfo (CODESET);
|
||
if ((codeset_name[0] == 'U' || codeset_name[0] == 'u')
|
||
&& (codeset_name[1] == 'T' || codeset_name[1] == 't')
|
||
&& (codeset_name[2] == 'F' || codeset_name[2] == 'f')
|
||
&& strcmp (codeset_name + 3 + (codeset_name[3] == '-'), "8") == 0)
|
||
dfa->is_utf8 = 1;
|
||
|
||
/* We check exhaustively in the loop below if this charset is a
|
||
superset of ASCII. */
|
||
dfa->map_notascii = 0;
|
||
#endif
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
if (dfa->mb_cur_max > 1)
|
||
{
|
||
if (dfa->is_utf8)
|
||
dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map;
|
||
else
|
||
{
|
||
int i, j, ch;
|
||
|
||
dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
|
||
if (__glibc_unlikely (dfa->sb_char == NULL))
|
||
return REG_ESPACE;
|
||
|
||
/* Set the bits corresponding to single byte chars. */
|
||
for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
|
||
for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
|
||
{
|
||
wint_t wch = __btowc (ch);
|
||
if (wch != WEOF)
|
||
dfa->sb_char[i] |= (bitset_word_t) 1 << j;
|
||
# ifndef _LIBC
|
||
if (isascii (ch) && wch != ch)
|
||
dfa->map_notascii = 1;
|
||
# endif
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (__glibc_unlikely (dfa->nodes == NULL || dfa->state_table == NULL))
|
||
return REG_ESPACE;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Initialize WORD_CHAR table, which indicate which character is
|
||
"word". In this case "word" means that it is the word construction
|
||
character used by some operators like "\<", "\>", etc. */
|
||
|
||
static void
|
||
init_word_char (re_dfa_t *dfa)
|
||
{
|
||
int i = 0;
|
||
int j;
|
||
int ch = 0;
|
||
dfa->word_ops_used = 1;
|
||
if (__glibc_likely (dfa->map_notascii == 0))
|
||
{
|
||
/* Avoid uint32_t and uint64_t as some non-GCC platforms lack
|
||
them, an issue when this code is used in Gnulib. */
|
||
bitset_word_t bits0 = 0x00000000;
|
||
bitset_word_t bits1 = 0x03ff0000;
|
||
bitset_word_t bits2 = 0x87fffffe;
|
||
bitset_word_t bits3 = 0x07fffffe;
|
||
if (BITSET_WORD_BITS == 64)
|
||
{
|
||
/* Pacify gcc -Woverflow on 32-bit platformns. */
|
||
dfa->word_char[0] = bits1 << 31 << 1 | bits0;
|
||
dfa->word_char[1] = bits3 << 31 << 1 | bits2;
|
||
i = 2;
|
||
}
|
||
else if (BITSET_WORD_BITS == 32)
|
||
{
|
||
dfa->word_char[0] = bits0;
|
||
dfa->word_char[1] = bits1;
|
||
dfa->word_char[2] = bits2;
|
||
dfa->word_char[3] = bits3;
|
||
i = 4;
|
||
}
|
||
else
|
||
goto general_case;
|
||
ch = 128;
|
||
|
||
if (__glibc_likely (dfa->is_utf8))
|
||
{
|
||
memset (&dfa->word_char[i], '\0', (SBC_MAX - ch) / 8);
|
||
return;
|
||
}
|
||
}
|
||
|
||
general_case:
|
||
for (; i < BITSET_WORDS; ++i)
|
||
for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
|
||
if (isalnum (ch) || ch == '_')
|
||
dfa->word_char[i] |= (bitset_word_t) 1 << j;
|
||
}
|
||
|
||
/* Free the work area which are only used while compiling. */
|
||
|
||
static void
|
||
free_workarea_compile (regex_t *preg)
|
||
{
|
||
re_dfa_t *dfa = preg->buffer;
|
||
bin_tree_storage_t *storage, *next;
|
||
for (storage = dfa->str_tree_storage; storage; storage = next)
|
||
{
|
||
next = storage->next;
|
||
re_free (storage);
|
||
}
|
||
dfa->str_tree_storage = NULL;
|
||
dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE;
|
||
dfa->str_tree = NULL;
|
||
re_free (dfa->org_indices);
|
||
dfa->org_indices = NULL;
|
||
}
|
||
|
||
/* Create initial states for all contexts. */
|
||
|
||
static reg_errcode_t
|
||
create_initial_state (re_dfa_t *dfa)
|
||
{
|
||
Idx first, i;
|
||
reg_errcode_t err;
|
||
re_node_set init_nodes;
|
||
|
||
/* Initial states have the epsilon closure of the node which is
|
||
the first node of the regular expression. */
|
||
first = dfa->str_tree->first->node_idx;
|
||
dfa->init_node = first;
|
||
err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
|
||
/* The back-references which are in initial states can epsilon transit,
|
||
since in this case all of the subexpressions can be null.
|
||
Then we add epsilon closures of the nodes which are the next nodes of
|
||
the back-references. */
|
||
if (dfa->nbackref > 0)
|
||
for (i = 0; i < init_nodes.nelem; ++i)
|
||
{
|
||
Idx node_idx = init_nodes.elems[i];
|
||
re_token_type_t type = dfa->nodes[node_idx].type;
|
||
|
||
Idx clexp_idx;
|
||
if (type != OP_BACK_REF)
|
||
continue;
|
||
for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx)
|
||
{
|
||
re_token_t *clexp_node;
|
||
clexp_node = dfa->nodes + init_nodes.elems[clexp_idx];
|
||
if (clexp_node->type == OP_CLOSE_SUBEXP
|
||
&& clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx)
|
||
break;
|
||
}
|
||
if (clexp_idx == init_nodes.nelem)
|
||
continue;
|
||
|
||
if (type == OP_BACK_REF)
|
||
{
|
||
Idx dest_idx = dfa->edests[node_idx].elems[0];
|
||
if (!re_node_set_contains (&init_nodes, dest_idx))
|
||
{
|
||
reg_errcode_t merge_err
|
||
= re_node_set_merge (&init_nodes, dfa->eclosures + dest_idx);
|
||
if (merge_err != REG_NOERROR)
|
||
return merge_err;
|
||
i = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* It must be the first time to invoke acquire_state. */
|
||
dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0);
|
||
/* We don't check ERR here, since the initial state must not be NULL. */
|
||
if (__glibc_unlikely (dfa->init_state == NULL))
|
||
return err;
|
||
if (dfa->init_state->has_constraint)
|
||
{
|
||
dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes,
|
||
CONTEXT_WORD);
|
||
dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes,
|
||
CONTEXT_NEWLINE);
|
||
dfa->init_state_begbuf = re_acquire_state_context (&err, dfa,
|
||
&init_nodes,
|
||
CONTEXT_NEWLINE
|
||
| CONTEXT_BEGBUF);
|
||
if (__glibc_unlikely (dfa->init_state_word == NULL
|
||
|| dfa->init_state_nl == NULL
|
||
|| dfa->init_state_begbuf == NULL))
|
||
return err;
|
||
}
|
||
else
|
||
dfa->init_state_word = dfa->init_state_nl
|
||
= dfa->init_state_begbuf = dfa->init_state;
|
||
|
||
re_node_set_free (&init_nodes);
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
/* If it is possible to do searching in single byte encoding instead of UTF-8
|
||
to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change
|
||
DFA nodes where needed. */
|
||
|
||
static void
|
||
optimize_utf8 (re_dfa_t *dfa)
|
||
{
|
||
Idx node;
|
||
int i;
|
||
bool mb_chars = false;
|
||
bool has_period = false;
|
||
|
||
for (node = 0; node < dfa->nodes_len; ++node)
|
||
switch (dfa->nodes[node].type)
|
||
{
|
||
case CHARACTER:
|
||
if (dfa->nodes[node].opr.c >= ASCII_CHARS)
|
||
mb_chars = true;
|
||
break;
|
||
case ANCHOR:
|
||
switch (dfa->nodes[node].opr.ctx_type)
|
||
{
|
||
case LINE_FIRST:
|
||
case LINE_LAST:
|
||
case BUF_FIRST:
|
||
case BUF_LAST:
|
||
break;
|
||
default:
|
||
/* Word anchors etc. cannot be handled. It's okay to test
|
||
opr.ctx_type since constraints (for all DFA nodes) are
|
||
created by ORing one or more opr.ctx_type values. */
|
||
return;
|
||
}
|
||
break;
|
||
case OP_PERIOD:
|
||
has_period = true;
|
||
break;
|
||
case OP_BACK_REF:
|
||
case OP_ALT:
|
||
case END_OF_RE:
|
||
case OP_DUP_ASTERISK:
|
||
case OP_OPEN_SUBEXP:
|
||
case OP_CLOSE_SUBEXP:
|
||
break;
|
||
case COMPLEX_BRACKET:
|
||
return;
|
||
case SIMPLE_BRACKET:
|
||
/* Just double check. */
|
||
{
|
||
int rshift = (ASCII_CHARS % BITSET_WORD_BITS == 0
|
||
? 0
|
||
: BITSET_WORD_BITS - ASCII_CHARS % BITSET_WORD_BITS);
|
||
for (i = ASCII_CHARS / BITSET_WORD_BITS; i < BITSET_WORDS; ++i)
|
||
{
|
||
if (dfa->nodes[node].opr.sbcset[i] >> rshift != 0)
|
||
return;
|
||
rshift = 0;
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (mb_chars || has_period)
|
||
for (node = 0; node < dfa->nodes_len; ++node)
|
||
{
|
||
if (dfa->nodes[node].type == CHARACTER
|
||
&& dfa->nodes[node].opr.c >= ASCII_CHARS)
|
||
dfa->nodes[node].mb_partial = 0;
|
||
else if (dfa->nodes[node].type == OP_PERIOD)
|
||
dfa->nodes[node].type = OP_UTF8_PERIOD;
|
||
}
|
||
|
||
/* The search can be in single byte locale. */
|
||
dfa->mb_cur_max = 1;
|
||
dfa->is_utf8 = 0;
|
||
dfa->has_mb_node = dfa->nbackref > 0 || has_period;
|
||
}
|
||
#endif
|
||
|
||
/* Analyze the structure tree, and calculate "first", "next", "edest",
|
||
"eclosure", and "inveclosure". */
|
||
|
||
static reg_errcode_t
|
||
analyze (regex_t *preg)
|
||
{
|
||
re_dfa_t *dfa = preg->buffer;
|
||
reg_errcode_t ret;
|
||
|
||
/* Allocate arrays. */
|
||
dfa->nexts = re_malloc (Idx, dfa->nodes_alloc);
|
||
dfa->org_indices = re_malloc (Idx, dfa->nodes_alloc);
|
||
dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc);
|
||
dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc);
|
||
if (__glibc_unlikely (dfa->nexts == NULL || dfa->org_indices == NULL
|
||
|| dfa->edests == NULL || dfa->eclosures == NULL))
|
||
return REG_ESPACE;
|
||
|
||
dfa->subexp_map = re_malloc (Idx, preg->re_nsub);
|
||
if (dfa->subexp_map != NULL)
|
||
{
|
||
Idx i;
|
||
for (i = 0; i < preg->re_nsub; i++)
|
||
dfa->subexp_map[i] = i;
|
||
preorder (dfa->str_tree, optimize_subexps, dfa);
|
||
for (i = 0; i < preg->re_nsub; i++)
|
||
if (dfa->subexp_map[i] != i)
|
||
break;
|
||
if (i == preg->re_nsub)
|
||
{
|
||
re_free (dfa->subexp_map);
|
||
dfa->subexp_map = NULL;
|
||
}
|
||
}
|
||
|
||
ret = postorder (dfa->str_tree, lower_subexps, preg);
|
||
if (__glibc_unlikely (ret != REG_NOERROR))
|
||
return ret;
|
||
ret = postorder (dfa->str_tree, calc_first, dfa);
|
||
if (__glibc_unlikely (ret != REG_NOERROR))
|
||
return ret;
|
||
preorder (dfa->str_tree, calc_next, dfa);
|
||
ret = preorder (dfa->str_tree, link_nfa_nodes, dfa);
|
||
if (__glibc_unlikely (ret != REG_NOERROR))
|
||
return ret;
|
||
ret = calc_eclosure (dfa);
|
||
if (__glibc_unlikely (ret != REG_NOERROR))
|
||
return ret;
|
||
|
||
/* We only need this during the prune_impossible_nodes pass in regexec.c;
|
||
skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */
|
||
if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match)
|
||
|| dfa->nbackref)
|
||
{
|
||
dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len);
|
||
if (__glibc_unlikely (dfa->inveclosures == NULL))
|
||
return REG_ESPACE;
|
||
ret = calc_inveclosure (dfa);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Our parse trees are very unbalanced, so we cannot use a stack to
|
||
implement parse tree visits. Instead, we use parent pointers and
|
||
some hairy code in these two functions. */
|
||
static reg_errcode_t
|
||
postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)),
|
||
void *extra)
|
||
{
|
||
bin_tree_t *node, *prev;
|
||
|
||
for (node = root; ; )
|
||
{
|
||
/* Descend down the tree, preferably to the left (or to the right
|
||
if that's the only child). */
|
||
while (node->left || node->right)
|
||
if (node->left)
|
||
node = node->left;
|
||
else
|
||
node = node->right;
|
||
|
||
do
|
||
{
|
||
reg_errcode_t err = fn (extra, node);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
if (node->parent == NULL)
|
||
return REG_NOERROR;
|
||
prev = node;
|
||
node = node->parent;
|
||
}
|
||
/* Go up while we have a node that is reached from the right. */
|
||
while (node->right == prev || node->right == NULL);
|
||
node = node->right;
|
||
}
|
||
}
|
||
|
||
static reg_errcode_t
|
||
preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)),
|
||
void *extra)
|
||
{
|
||
bin_tree_t *node;
|
||
|
||
for (node = root; ; )
|
||
{
|
||
reg_errcode_t err = fn (extra, node);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
|
||
/* Go to the left node, or up and to the right. */
|
||
if (node->left)
|
||
node = node->left;
|
||
else
|
||
{
|
||
bin_tree_t *prev = NULL;
|
||
while (node->right == prev || node->right == NULL)
|
||
{
|
||
prev = node;
|
||
node = node->parent;
|
||
if (!node)
|
||
return REG_NOERROR;
|
||
}
|
||
node = node->right;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Optimization pass: if a SUBEXP is entirely contained, strip it and tell
|
||
re_search_internal to map the inner one's opr.idx to this one's. Adjust
|
||
backreferences as well. Requires a preorder visit. */
|
||
static reg_errcode_t
|
||
optimize_subexps (void *extra, bin_tree_t *node)
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) extra;
|
||
|
||
if (node->token.type == OP_BACK_REF && dfa->subexp_map)
|
||
{
|
||
int idx = node->token.opr.idx;
|
||
node->token.opr.idx = dfa->subexp_map[idx];
|
||
dfa->used_bkref_map |= 1 << node->token.opr.idx;
|
||
}
|
||
|
||
else if (node->token.type == SUBEXP
|
||
&& node->left && node->left->token.type == SUBEXP)
|
||
{
|
||
Idx other_idx = node->left->token.opr.idx;
|
||
|
||
node->left = node->left->left;
|
||
if (node->left)
|
||
node->left->parent = node;
|
||
|
||
dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx];
|
||
if (other_idx < BITSET_WORD_BITS)
|
||
dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx);
|
||
}
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Lowering pass: Turn each SUBEXP node into the appropriate concatenation
|
||
of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */
|
||
static reg_errcode_t
|
||
lower_subexps (void *extra, bin_tree_t *node)
|
||
{
|
||
regex_t *preg = (regex_t *) extra;
|
||
reg_errcode_t err = REG_NOERROR;
|
||
|
||
if (node->left && node->left->token.type == SUBEXP)
|
||
{
|
||
node->left = lower_subexp (&err, preg, node->left);
|
||
if (node->left)
|
||
node->left->parent = node;
|
||
}
|
||
if (node->right && node->right->token.type == SUBEXP)
|
||
{
|
||
node->right = lower_subexp (&err, preg, node->right);
|
||
if (node->right)
|
||
node->right->parent = node;
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
static bin_tree_t *
|
||
lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node)
|
||
{
|
||
re_dfa_t *dfa = preg->buffer;
|
||
bin_tree_t *body = node->left;
|
||
bin_tree_t *op, *cls, *tree1, *tree;
|
||
|
||
if (preg->no_sub
|
||
/* We do not optimize empty subexpressions, because otherwise we may
|
||
have bad CONCAT nodes with NULL children. This is obviously not
|
||
very common, so we do not lose much. An example that triggers
|
||
this case is the sed "script" /\(\)/x. */
|
||
&& node->left != NULL
|
||
&& (node->token.opr.idx >= BITSET_WORD_BITS
|
||
|| !(dfa->used_bkref_map
|
||
& ((bitset_word_t) 1 << node->token.opr.idx))))
|
||
return node->left;
|
||
|
||
/* Convert the SUBEXP node to the concatenation of an
|
||
OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */
|
||
op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP);
|
||
cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP);
|
||
tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls;
|
||
tree = create_tree (dfa, op, tree1, CONCAT);
|
||
if (__glibc_unlikely (tree == NULL || tree1 == NULL
|
||
|| op == NULL || cls == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
|
||
op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx;
|
||
op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp;
|
||
return tree;
|
||
}
|
||
|
||
/* Pass 1 in building the NFA: compute FIRST and create unlinked automaton
|
||
nodes. Requires a postorder visit. */
|
||
static reg_errcode_t
|
||
calc_first (void *extra, bin_tree_t *node)
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) extra;
|
||
if (node->token.type == CONCAT)
|
||
{
|
||
node->first = node->left->first;
|
||
node->node_idx = node->left->node_idx;
|
||
}
|
||
else
|
||
{
|
||
node->first = node;
|
||
node->node_idx = re_dfa_add_node (dfa, node->token);
|
||
if (__glibc_unlikely (node->node_idx == -1))
|
||
return REG_ESPACE;
|
||
if (node->token.type == ANCHOR)
|
||
dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Pass 2: compute NEXT on the tree. Preorder visit. */
|
||
static reg_errcode_t
|
||
calc_next (void *extra, bin_tree_t *node)
|
||
{
|
||
switch (node->token.type)
|
||
{
|
||
case OP_DUP_ASTERISK:
|
||
node->left->next = node;
|
||
break;
|
||
case CONCAT:
|
||
node->left->next = node->right->first;
|
||
node->right->next = node->next;
|
||
break;
|
||
default:
|
||
if (node->left)
|
||
node->left->next = node->next;
|
||
if (node->right)
|
||
node->right->next = node->next;
|
||
break;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Pass 3: link all DFA nodes to their NEXT node (any order will do). */
|
||
static reg_errcode_t
|
||
link_nfa_nodes (void *extra, bin_tree_t *node)
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) extra;
|
||
Idx idx = node->node_idx;
|
||
reg_errcode_t err = REG_NOERROR;
|
||
|
||
switch (node->token.type)
|
||
{
|
||
case CONCAT:
|
||
break;
|
||
|
||
case END_OF_RE:
|
||
DEBUG_ASSERT (node->next == NULL);
|
||
break;
|
||
|
||
case OP_DUP_ASTERISK:
|
||
case OP_ALT:
|
||
{
|
||
Idx left, right;
|
||
dfa->has_plural_match = 1;
|
||
if (node->left != NULL)
|
||
left = node->left->first->node_idx;
|
||
else
|
||
left = node->next->node_idx;
|
||
if (node->right != NULL)
|
||
right = node->right->first->node_idx;
|
||
else
|
||
right = node->next->node_idx;
|
||
DEBUG_ASSERT (left > -1);
|
||
DEBUG_ASSERT (right > -1);
|
||
err = re_node_set_init_2 (dfa->edests + idx, left, right);
|
||
}
|
||
break;
|
||
|
||
case ANCHOR:
|
||
case OP_OPEN_SUBEXP:
|
||
case OP_CLOSE_SUBEXP:
|
||
err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx);
|
||
break;
|
||
|
||
case OP_BACK_REF:
|
||
dfa->nexts[idx] = node->next->node_idx;
|
||
if (node->token.type == OP_BACK_REF)
|
||
err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]);
|
||
break;
|
||
|
||
default:
|
||
DEBUG_ASSERT (!IS_EPSILON_NODE (node->token.type));
|
||
dfa->nexts[idx] = node->next->node_idx;
|
||
break;
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Duplicate the epsilon closure of the node ROOT_NODE.
|
||
Note that duplicated nodes have constraint INIT_CONSTRAINT in addition
|
||
to their own constraint. */
|
||
|
||
static reg_errcode_t
|
||
duplicate_node_closure (re_dfa_t *dfa, Idx top_org_node, Idx top_clone_node,
|
||
Idx root_node, unsigned int init_constraint)
|
||
{
|
||
Idx org_node, clone_node;
|
||
bool ok;
|
||
unsigned int constraint = init_constraint;
|
||
for (org_node = top_org_node, clone_node = top_clone_node;;)
|
||
{
|
||
Idx org_dest, clone_dest;
|
||
if (dfa->nodes[org_node].type == OP_BACK_REF)
|
||
{
|
||
/* If the back reference epsilon-transit, its destination must
|
||
also have the constraint. Then duplicate the epsilon closure
|
||
of the destination of the back reference, and store it in
|
||
edests of the back reference. */
|
||
org_dest = dfa->nexts[org_node];
|
||
re_node_set_empty (dfa->edests + clone_node);
|
||
clone_dest = duplicate_node (dfa, org_dest, constraint);
|
||
if (__glibc_unlikely (clone_dest == -1))
|
||
return REG_ESPACE;
|
||
dfa->nexts[clone_node] = dfa->nexts[org_node];
|
||
ok = re_node_set_insert (dfa->edests + clone_node, clone_dest);
|
||
if (__glibc_unlikely (! ok))
|
||
return REG_ESPACE;
|
||
}
|
||
else if (dfa->edests[org_node].nelem == 0)
|
||
{
|
||
/* In case of the node can't epsilon-transit, don't duplicate the
|
||
destination and store the original destination as the
|
||
destination of the node. */
|
||
dfa->nexts[clone_node] = dfa->nexts[org_node];
|
||
break;
|
||
}
|
||
else if (dfa->edests[org_node].nelem == 1)
|
||
{
|
||
/* In case of the node can epsilon-transit, and it has only one
|
||
destination. */
|
||
org_dest = dfa->edests[org_node].elems[0];
|
||
re_node_set_empty (dfa->edests + clone_node);
|
||
/* If the node is root_node itself, it means the epsilon closure
|
||
has a loop. Then tie it to the destination of the root_node. */
|
||
if (org_node == root_node && clone_node != org_node)
|
||
{
|
||
ok = re_node_set_insert (dfa->edests + clone_node, org_dest);
|
||
if (__glibc_unlikely (! ok))
|
||
return REG_ESPACE;
|
||
break;
|
||
}
|
||
/* In case the node has another constraint, append it. */
|
||
constraint |= dfa->nodes[org_node].constraint;
|
||
clone_dest = duplicate_node (dfa, org_dest, constraint);
|
||
if (__glibc_unlikely (clone_dest == -1))
|
||
return REG_ESPACE;
|
||
ok = re_node_set_insert (dfa->edests + clone_node, clone_dest);
|
||
if (__glibc_unlikely (! ok))
|
||
return REG_ESPACE;
|
||
}
|
||
else /* dfa->edests[org_node].nelem == 2 */
|
||
{
|
||
/* In case of the node can epsilon-transit, and it has two
|
||
destinations. In the bin_tree_t and DFA, that's '|' and '*'. */
|
||
org_dest = dfa->edests[org_node].elems[0];
|
||
re_node_set_empty (dfa->edests + clone_node);
|
||
/* Search for a duplicated node which satisfies the constraint. */
|
||
clone_dest = search_duplicated_node (dfa, org_dest, constraint);
|
||
if (clone_dest == -1)
|
||
{
|
||
/* There is no such duplicated node, create a new one. */
|
||
reg_errcode_t err;
|
||
clone_dest = duplicate_node (dfa, org_dest, constraint);
|
||
if (__glibc_unlikely (clone_dest == -1))
|
||
return REG_ESPACE;
|
||
ok = re_node_set_insert (dfa->edests + clone_node, clone_dest);
|
||
if (__glibc_unlikely (! ok))
|
||
return REG_ESPACE;
|
||
err = duplicate_node_closure (dfa, org_dest, clone_dest,
|
||
root_node, constraint);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
}
|
||
else
|
||
{
|
||
/* There is a duplicated node which satisfies the constraint,
|
||
use it to avoid infinite loop. */
|
||
ok = re_node_set_insert (dfa->edests + clone_node, clone_dest);
|
||
if (__glibc_unlikely (! ok))
|
||
return REG_ESPACE;
|
||
}
|
||
|
||
org_dest = dfa->edests[org_node].elems[1];
|
||
clone_dest = duplicate_node (dfa, org_dest, constraint);
|
||
if (__glibc_unlikely (clone_dest == -1))
|
||
return REG_ESPACE;
|
||
ok = re_node_set_insert (dfa->edests + clone_node, clone_dest);
|
||
if (__glibc_unlikely (! ok))
|
||
return REG_ESPACE;
|
||
}
|
||
org_node = org_dest;
|
||
clone_node = clone_dest;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Search for a node which is duplicated from the node ORG_NODE, and
|
||
satisfies the constraint CONSTRAINT. */
|
||
|
||
static Idx
|
||
search_duplicated_node (const re_dfa_t *dfa, Idx org_node,
|
||
unsigned int constraint)
|
||
{
|
||
Idx idx;
|
||
for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx)
|
||
{
|
||
if (org_node == dfa->org_indices[idx]
|
||
&& constraint == dfa->nodes[idx].constraint)
|
||
return idx; /* Found. */
|
||
}
|
||
return -1; /* Not found. */
|
||
}
|
||
|
||
/* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT.
|
||
Return the index of the new node, or -1 if insufficient storage is
|
||
available. */
|
||
|
||
static Idx
|
||
duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint)
|
||
{
|
||
Idx dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]);
|
||
if (__glibc_likely (dup_idx != -1))
|
||
{
|
||
dfa->nodes[dup_idx].constraint = constraint;
|
||
dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint;
|
||
dfa->nodes[dup_idx].duplicated = 1;
|
||
|
||
/* Store the index of the original node. */
|
||
dfa->org_indices[dup_idx] = org_idx;
|
||
}
|
||
return dup_idx;
|
||
}
|
||
|
||
static reg_errcode_t
|
||
calc_inveclosure (re_dfa_t *dfa)
|
||
{
|
||
Idx src, idx;
|
||
bool ok;
|
||
for (idx = 0; idx < dfa->nodes_len; ++idx)
|
||
re_node_set_init_empty (dfa->inveclosures + idx);
|
||
|
||
for (src = 0; src < dfa->nodes_len; ++src)
|
||
{
|
||
Idx *elems = dfa->eclosures[src].elems;
|
||
for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx)
|
||
{
|
||
ok = re_node_set_insert_last (dfa->inveclosures + elems[idx], src);
|
||
if (__glibc_unlikely (! ok))
|
||
return REG_ESPACE;
|
||
}
|
||
}
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate "eclosure" for all the node in DFA. */
|
||
|
||
static reg_errcode_t
|
||
calc_eclosure (re_dfa_t *dfa)
|
||
{
|
||
Idx node_idx;
|
||
bool incomplete;
|
||
DEBUG_ASSERT (dfa->nodes_len > 0);
|
||
incomplete = false;
|
||
/* For each nodes, calculate epsilon closure. */
|
||
for (node_idx = 0; ; ++node_idx)
|
||
{
|
||
reg_errcode_t err;
|
||
re_node_set eclosure_elem;
|
||
if (node_idx == dfa->nodes_len)
|
||
{
|
||
if (!incomplete)
|
||
break;
|
||
incomplete = false;
|
||
node_idx = 0;
|
||
}
|
||
|
||
DEBUG_ASSERT (dfa->eclosures[node_idx].nelem != -1);
|
||
|
||
/* If we have already calculated, skip it. */
|
||
if (dfa->eclosures[node_idx].nelem != 0)
|
||
continue;
|
||
/* Calculate epsilon closure of 'node_idx'. */
|
||
err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, true);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
|
||
if (dfa->eclosures[node_idx].nelem == 0)
|
||
{
|
||
incomplete = true;
|
||
re_node_set_free (&eclosure_elem);
|
||
}
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate epsilon closure of NODE. */
|
||
|
||
static reg_errcode_t
|
||
calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, Idx node, bool root)
|
||
{
|
||
reg_errcode_t err;
|
||
Idx i;
|
||
re_node_set eclosure;
|
||
bool ok;
|
||
bool incomplete = false;
|
||
err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
|
||
/* This indicates that we are calculating this node now.
|
||
We reference this value to avoid infinite loop. */
|
||
dfa->eclosures[node].nelem = -1;
|
||
|
||
/* If the current node has constraints, duplicate all nodes
|
||
since they must inherit the constraints. */
|
||
if (dfa->nodes[node].constraint
|
||
&& dfa->edests[node].nelem
|
||
&& !dfa->nodes[dfa->edests[node].elems[0]].duplicated)
|
||
{
|
||
err = duplicate_node_closure (dfa, node, node, node,
|
||
dfa->nodes[node].constraint);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
}
|
||
|
||
/* Expand each epsilon destination nodes. */
|
||
if (IS_EPSILON_NODE(dfa->nodes[node].type))
|
||
for (i = 0; i < dfa->edests[node].nelem; ++i)
|
||
{
|
||
re_node_set eclosure_elem;
|
||
Idx edest = dfa->edests[node].elems[i];
|
||
/* If calculating the epsilon closure of 'edest' is in progress,
|
||
return intermediate result. */
|
||
if (dfa->eclosures[edest].nelem == -1)
|
||
{
|
||
incomplete = true;
|
||
continue;
|
||
}
|
||
/* If we haven't calculated the epsilon closure of 'edest' yet,
|
||
calculate now. Otherwise use calculated epsilon closure. */
|
||
if (dfa->eclosures[edest].nelem == 0)
|
||
{
|
||
err = calc_eclosure_iter (&eclosure_elem, dfa, edest, false);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
}
|
||
else
|
||
eclosure_elem = dfa->eclosures[edest];
|
||
/* Merge the epsilon closure of 'edest'. */
|
||
err = re_node_set_merge (&eclosure, &eclosure_elem);
|
||
if (__glibc_unlikely (err != REG_NOERROR))
|
||
return err;
|
||
/* If the epsilon closure of 'edest' is incomplete,
|
||
the epsilon closure of this node is also incomplete. */
|
||
if (dfa->eclosures[edest].nelem == 0)
|
||
{
|
||
incomplete = true;
|
||
re_node_set_free (&eclosure_elem);
|
||
}
|
||
}
|
||
|
||
/* An epsilon closure includes itself. */
|
||
ok = re_node_set_insert (&eclosure, node);
|
||
if (__glibc_unlikely (! ok))
|
||
return REG_ESPACE;
|
||
if (incomplete && !root)
|
||
dfa->eclosures[node].nelem = 0;
|
||
else
|
||
dfa->eclosures[node] = eclosure;
|
||
*new_set = eclosure;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Functions for token which are used in the parser. */
|
||
|
||
/* Fetch a token from INPUT.
|
||
We must not use this function inside bracket expressions. */
|
||
|
||
static void
|
||
fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax)
|
||
{
|
||
re_string_skip_bytes (input, peek_token (result, input, syntax));
|
||
}
|
||
|
||
/* Peek a token from INPUT, and return the length of the token.
|
||
We must not use this function inside bracket expressions. */
|
||
|
||
static int
|
||
peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax)
|
||
{
|
||
unsigned char c;
|
||
|
||
if (re_string_eoi (input))
|
||
{
|
||
token->type = END_OF_RE;
|
||
return 0;
|
||
}
|
||
|
||
c = re_string_peek_byte (input, 0);
|
||
token->opr.c = c;
|
||
|
||
token->word_char = 0;
|
||
#ifdef RE_ENABLE_I18N
|
||
token->mb_partial = 0;
|
||
if (input->mb_cur_max > 1
|
||
&& !re_string_first_byte (input, re_string_cur_idx (input)))
|
||
{
|
||
token->type = CHARACTER;
|
||
token->mb_partial = 1;
|
||
return 1;
|
||
}
|
||
#endif
|
||
if (c == '\\')
|
||
{
|
||
unsigned char c2;
|
||
if (re_string_cur_idx (input) + 1 >= re_string_length (input))
|
||
{
|
||
token->type = BACK_SLASH;
|
||
return 1;
|
||
}
|
||
|
||
c2 = re_string_peek_byte_case (input, 1);
|
||
token->opr.c = c2;
|
||
token->type = CHARACTER;
|
||
#ifdef RE_ENABLE_I18N
|
||
if (input->mb_cur_max > 1)
|
||
{
|
||
wint_t wc = re_string_wchar_at (input,
|
||
re_string_cur_idx (input) + 1);
|
||
token->word_char = IS_WIDE_WORD_CHAR (wc) != 0;
|
||
}
|
||
else
|
||
#endif
|
||
token->word_char = IS_WORD_CHAR (c2) != 0;
|
||
|
||
switch (c2)
|
||
{
|
||
case '|':
|
||
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR))
|
||
token->type = OP_ALT;
|
||
break;
|
||
case '1': case '2': case '3': case '4': case '5':
|
||
case '6': case '7': case '8': case '9':
|
||
if (!(syntax & RE_NO_BK_REFS))
|
||
{
|
||
token->type = OP_BACK_REF;
|
||
token->opr.idx = c2 - '1';
|
||
}
|
||
break;
|
||
case '<':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.ctx_type = WORD_FIRST;
|
||
}
|
||
break;
|
||
case '>':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.ctx_type = WORD_LAST;
|
||
}
|
||
break;
|
||
case 'b':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.ctx_type = WORD_DELIM;
|
||
}
|
||
break;
|
||
case 'B':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.ctx_type = NOT_WORD_DELIM;
|
||
}
|
||
break;
|
||
case 'w':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
token->type = OP_WORD;
|
||
break;
|
||
case 'W':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
token->type = OP_NOTWORD;
|
||
break;
|
||
case 's':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
token->type = OP_SPACE;
|
||
break;
|
||
case 'S':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
token->type = OP_NOTSPACE;
|
||
break;
|
||
case '`':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.ctx_type = BUF_FIRST;
|
||
}
|
||
break;
|
||
case '\'':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.ctx_type = BUF_LAST;
|
||
}
|
||
break;
|
||
case '(':
|
||
if (!(syntax & RE_NO_BK_PARENS))
|
||
token->type = OP_OPEN_SUBEXP;
|
||
break;
|
||
case ')':
|
||
if (!(syntax & RE_NO_BK_PARENS))
|
||
token->type = OP_CLOSE_SUBEXP;
|
||
break;
|
||
case '+':
|
||
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
|
||
token->type = OP_DUP_PLUS;
|
||
break;
|
||
case '?':
|
||
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
|
||
token->type = OP_DUP_QUESTION;
|
||
break;
|
||
case '{':
|
||
if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
|
||
token->type = OP_OPEN_DUP_NUM;
|
||
break;
|
||
case '}':
|
||
if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
|
||
token->type = OP_CLOSE_DUP_NUM;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return 2;
|
||
}
|
||
|
||
token->type = CHARACTER;
|
||
#ifdef RE_ENABLE_I18N
|
||
if (input->mb_cur_max > 1)
|
||
{
|
||
wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input));
|
||
token->word_char = IS_WIDE_WORD_CHAR (wc) != 0;
|
||
}
|
||
else
|
||
#endif
|
||
token->word_char = IS_WORD_CHAR (token->opr.c);
|
||
|
||
switch (c)
|
||
{
|
||
case '\n':
|
||
if (syntax & RE_NEWLINE_ALT)
|
||
token->type = OP_ALT;
|
||
break;
|
||
case '|':
|
||
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR))
|
||
token->type = OP_ALT;
|
||
break;
|
||
case '*':
|
||
token->type = OP_DUP_ASTERISK;
|
||
break;
|
||
case '+':
|
||
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
|
||
token->type = OP_DUP_PLUS;
|
||
break;
|
||
case '?':
|
||
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
|
||
token->type = OP_DUP_QUESTION;
|
||
break;
|
||
case '{':
|
||
if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
||
token->type = OP_OPEN_DUP_NUM;
|
||
break;
|
||
case '}':
|
||
if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
||
token->type = OP_CLOSE_DUP_NUM;
|
||
break;
|
||
case '(':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
token->type = OP_OPEN_SUBEXP;
|
||
break;
|
||
case ')':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
token->type = OP_CLOSE_SUBEXP;
|
||
break;
|
||
case '[':
|
||
token->type = OP_OPEN_BRACKET;
|
||
break;
|
||
case '.':
|
||
token->type = OP_PERIOD;
|
||
break;
|
||
case '^':
|
||
if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE))
|
||
&& re_string_cur_idx (input) != 0)
|
||
{
|
||
char prev = re_string_peek_byte (input, -1);
|
||
if (!(syntax & RE_NEWLINE_ALT) || prev != '\n')
|
||
break;
|
||
}
|
||
token->type = ANCHOR;
|
||
token->opr.ctx_type = LINE_FIRST;
|
||
break;
|
||
case '$':
|
||
if (!(syntax & RE_CONTEXT_INDEP_ANCHORS)
|
||
&& re_string_cur_idx (input) + 1 != re_string_length (input))
|
||
{
|
||
re_token_t next;
|
||
re_string_skip_bytes (input, 1);
|
||
peek_token (&next, input, syntax);
|
||
re_string_skip_bytes (input, -1);
|
||
if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP)
|
||
break;
|
||
}
|
||
token->type = ANCHOR;
|
||
token->opr.ctx_type = LINE_LAST;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Peek a token from INPUT, and return the length of the token.
|
||
We must not use this function out of bracket expressions. */
|
||
|
||
static int
|
||
peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax)
|
||
{
|
||
unsigned char c;
|
||
if (re_string_eoi (input))
|
||
{
|
||
token->type = END_OF_RE;
|
||
return 0;
|
||
}
|
||
c = re_string_peek_byte (input, 0);
|
||
token->opr.c = c;
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
if (input->mb_cur_max > 1
|
||
&& !re_string_first_byte (input, re_string_cur_idx (input)))
|
||
{
|
||
token->type = CHARACTER;
|
||
return 1;
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS)
|
||
&& re_string_cur_idx (input) + 1 < re_string_length (input))
|
||
{
|
||
/* In this case, '\' escape a character. */
|
||
unsigned char c2;
|
||
re_string_skip_bytes (input, 1);
|
||
c2 = re_string_peek_byte (input, 0);
|
||
token->opr.c = c2;
|
||
token->type = CHARACTER;
|
||
return 1;
|
||
}
|
||
if (c == '[') /* '[' is a special char in a bracket exps. */
|
||
{
|
||
unsigned char c2;
|
||
int token_len;
|
||
if (re_string_cur_idx (input) + 1 < re_string_length (input))
|
||
c2 = re_string_peek_byte (input, 1);
|
||
else
|
||
c2 = 0;
|
||
token->opr.c = c2;
|
||
token_len = 2;
|
||
switch (c2)
|
||
{
|
||
case '.':
|
||
token->type = OP_OPEN_COLL_ELEM;
|
||
break;
|
||
|
||
case '=':
|
||
token->type = OP_OPEN_EQUIV_CLASS;
|
||
break;
|
||
|
||
case ':':
|
||
if (syntax & RE_CHAR_CLASSES)
|
||
{
|
||
token->type = OP_OPEN_CHAR_CLASS;
|
||
break;
|
||
}
|
||
FALLTHROUGH;
|
||
default:
|
||
token->type = CHARACTER;
|
||
token->opr.c = c;
|
||
token_len = 1;
|
||
break;
|
||
}
|
||
return token_len;
|
||
}
|
||
switch (c)
|
||
{
|
||
case '-':
|
||
token->type = OP_CHARSET_RANGE;
|
||
break;
|
||
case ']':
|
||
token->type = OP_CLOSE_BRACKET;
|
||
break;
|
||
case '^':
|
||
token->type = OP_NON_MATCH_LIST;
|
||
break;
|
||
default:
|
||
token->type = CHARACTER;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Functions for parser. */
|
||
|
||
/* Entry point of the parser.
|
||
Parse the regular expression REGEXP and return the structure tree.
|
||
If an error occurs, ERR is set by error code, and return NULL.
|
||
This function build the following tree, from regular expression <reg_exp>:
|
||
CAT
|
||
/ \
|
||
/ \
|
||
<reg_exp> EOR
|
||
|
||
CAT means concatenation.
|
||
EOR means end of regular expression. */
|
||
|
||
static bin_tree_t *
|
||
parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax,
|
||
reg_errcode_t *err)
|
||
{
|
||
re_dfa_t *dfa = preg->buffer;
|
||
bin_tree_t *tree, *eor, *root;
|
||
re_token_t current_token;
|
||
dfa->syntax = syntax;
|
||
fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE);
|
||
tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL))
|
||
return NULL;
|
||
eor = create_tree (dfa, NULL, NULL, END_OF_RE);
|
||
if (tree != NULL)
|
||
root = create_tree (dfa, tree, eor, CONCAT);
|
||
else
|
||
root = eor;
|
||
if (__glibc_unlikely (eor == NULL || root == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
return root;
|
||
}
|
||
|
||
/* This function build the following tree, from regular expression
|
||
<branch1>|<branch2>:
|
||
ALT
|
||
/ \
|
||
/ \
|
||
<branch1> <branch2>
|
||
|
||
ALT means alternative, which represents the operator '|'. */
|
||
|
||
static bin_tree_t *
|
||
parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token,
|
||
reg_syntax_t syntax, Idx nest, reg_errcode_t *err)
|
||
{
|
||
re_dfa_t *dfa = preg->buffer;
|
||
bin_tree_t *tree, *branch = NULL;
|
||
bitset_word_t initial_bkref_map = dfa->completed_bkref_map;
|
||
tree = parse_branch (regexp, preg, token, syntax, nest, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL))
|
||
return NULL;
|
||
|
||
while (token->type == OP_ALT)
|
||
{
|
||
fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE);
|
||
if (token->type != OP_ALT && token->type != END_OF_RE
|
||
&& (nest == 0 || token->type != OP_CLOSE_SUBEXP))
|
||
{
|
||
bitset_word_t accumulated_bkref_map = dfa->completed_bkref_map;
|
||
dfa->completed_bkref_map = initial_bkref_map;
|
||
branch = parse_branch (regexp, preg, token, syntax, nest, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && branch == NULL))
|
||
{
|
||
if (tree != NULL)
|
||
postorder (tree, free_tree, NULL);
|
||
return NULL;
|
||
}
|
||
dfa->completed_bkref_map |= accumulated_bkref_map;
|
||
}
|
||
else
|
||
branch = NULL;
|
||
tree = create_tree (dfa, tree, branch, OP_ALT);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
}
|
||
return tree;
|
||
}
|
||
|
||
/* This function build the following tree, from regular expression
|
||
<exp1><exp2>:
|
||
CAT
|
||
/ \
|
||
/ \
|
||
<exp1> <exp2>
|
||
|
||
CAT means concatenation. */
|
||
|
||
static bin_tree_t *
|
||
parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token,
|
||
reg_syntax_t syntax, Idx nest, reg_errcode_t *err)
|
||
{
|
||
bin_tree_t *tree, *expr;
|
||
re_dfa_t *dfa = preg->buffer;
|
||
tree = parse_expression (regexp, preg, token, syntax, nest, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL))
|
||
return NULL;
|
||
|
||
while (token->type != OP_ALT && token->type != END_OF_RE
|
||
&& (nest == 0 || token->type != OP_CLOSE_SUBEXP))
|
||
{
|
||
expr = parse_expression (regexp, preg, token, syntax, nest, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && expr == NULL))
|
||
{
|
||
if (tree != NULL)
|
||
postorder (tree, free_tree, NULL);
|
||
return NULL;
|
||
}
|
||
if (tree != NULL && expr != NULL)
|
||
{
|
||
bin_tree_t *newtree = create_tree (dfa, tree, expr, CONCAT);
|
||
if (newtree == NULL)
|
||
{
|
||
postorder (expr, free_tree, NULL);
|
||
postorder (tree, free_tree, NULL);
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
tree = newtree;
|
||
}
|
||
else if (tree == NULL)
|
||
tree = expr;
|
||
/* Otherwise expr == NULL, we don't need to create new tree. */
|
||
}
|
||
return tree;
|
||
}
|
||
|
||
/* This function build the following tree, from regular expression a*:
|
||
*
|
||
|
|
||
a
|
||
*/
|
||
|
||
static bin_tree_t *
|
||
parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token,
|
||
reg_syntax_t syntax, Idx nest, reg_errcode_t *err)
|
||
{
|
||
re_dfa_t *dfa = preg->buffer;
|
||
bin_tree_t *tree;
|
||
switch (token->type)
|
||
{
|
||
case CHARACTER:
|
||
tree = create_token_tree (dfa, NULL, NULL, token);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
#ifdef RE_ENABLE_I18N
|
||
if (dfa->mb_cur_max > 1)
|
||
{
|
||
while (!re_string_eoi (regexp)
|
||
&& !re_string_first_byte (regexp, re_string_cur_idx (regexp)))
|
||
{
|
||
bin_tree_t *mbc_remain;
|
||
fetch_token (token, regexp, syntax);
|
||
mbc_remain = create_token_tree (dfa, NULL, NULL, token);
|
||
tree = create_tree (dfa, tree, mbc_remain, CONCAT);
|
||
if (__glibc_unlikely (mbc_remain == NULL || tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
break;
|
||
|
||
case OP_OPEN_SUBEXP:
|
||
tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL))
|
||
return NULL;
|
||
break;
|
||
|
||
case OP_OPEN_BRACKET:
|
||
tree = parse_bracket_exp (regexp, dfa, token, syntax, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL))
|
||
return NULL;
|
||
break;
|
||
|
||
case OP_BACK_REF:
|
||
if (!__glibc_likely (dfa->completed_bkref_map & (1 << token->opr.idx)))
|
||
{
|
||
*err = REG_ESUBREG;
|
||
return NULL;
|
||
}
|
||
dfa->used_bkref_map |= 1 << token->opr.idx;
|
||
tree = create_token_tree (dfa, NULL, NULL, token);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
++dfa->nbackref;
|
||
dfa->has_mb_node = 1;
|
||
break;
|
||
|
||
case OP_OPEN_DUP_NUM:
|
||
if (syntax & RE_CONTEXT_INVALID_DUP)
|
||
{
|
||
*err = REG_BADRPT;
|
||
return NULL;
|
||
}
|
||
FALLTHROUGH;
|
||
case OP_DUP_ASTERISK:
|
||
case OP_DUP_PLUS:
|
||
case OP_DUP_QUESTION:
|
||
if (syntax & RE_CONTEXT_INVALID_OPS)
|
||
{
|
||
*err = REG_BADRPT;
|
||
return NULL;
|
||
}
|
||
else if (syntax & RE_CONTEXT_INDEP_OPS)
|
||
{
|
||
fetch_token (token, regexp, syntax);
|
||
return parse_expression (regexp, preg, token, syntax, nest, err);
|
||
}
|
||
FALLTHROUGH;
|
||
case OP_CLOSE_SUBEXP:
|
||
if ((token->type == OP_CLOSE_SUBEXP)
|
||
&& !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD))
|
||
{
|
||
*err = REG_ERPAREN;
|
||
return NULL;
|
||
}
|
||
FALLTHROUGH;
|
||
case OP_CLOSE_DUP_NUM:
|
||
/* We treat it as a normal character. */
|
||
|
||
/* Then we can these characters as normal characters. */
|
||
token->type = CHARACTER;
|
||
/* mb_partial and word_char bits should be initialized already
|
||
by peek_token. */
|
||
tree = create_token_tree (dfa, NULL, NULL, token);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
break;
|
||
|
||
case ANCHOR:
|
||
if ((token->opr.ctx_type
|
||
& (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST))
|
||
&& dfa->word_ops_used == 0)
|
||
init_word_char (dfa);
|
||
if (token->opr.ctx_type == WORD_DELIM
|
||
|| token->opr.ctx_type == NOT_WORD_DELIM)
|
||
{
|
||
bin_tree_t *tree_first, *tree_last;
|
||
if (token->opr.ctx_type == WORD_DELIM)
|
||
{
|
||
token->opr.ctx_type = WORD_FIRST;
|
||
tree_first = create_token_tree (dfa, NULL, NULL, token);
|
||
token->opr.ctx_type = WORD_LAST;
|
||
}
|
||
else
|
||
{
|
||
token->opr.ctx_type = INSIDE_WORD;
|
||
tree_first = create_token_tree (dfa, NULL, NULL, token);
|
||
token->opr.ctx_type = INSIDE_NOTWORD;
|
||
}
|
||
tree_last = create_token_tree (dfa, NULL, NULL, token);
|
||
tree = create_tree (dfa, tree_first, tree_last, OP_ALT);
|
||
if (__glibc_unlikely (tree_first == NULL || tree_last == NULL
|
||
|| tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree = create_token_tree (dfa, NULL, NULL, token);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
}
|
||
/* We must return here, since ANCHORs can't be followed
|
||
by repetition operators.
|
||
eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>",
|
||
it must not be "<ANCHOR(^)><REPEAT(*)>". */
|
||
fetch_token (token, regexp, syntax);
|
||
return tree;
|
||
|
||
case OP_PERIOD:
|
||
tree = create_token_tree (dfa, NULL, NULL, token);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
if (dfa->mb_cur_max > 1)
|
||
dfa->has_mb_node = 1;
|
||
break;
|
||
|
||
case OP_WORD:
|
||
case OP_NOTWORD:
|
||
tree = build_charclass_op (dfa, regexp->trans,
|
||
"alnum",
|
||
"_",
|
||
token->type == OP_NOTWORD, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL))
|
||
return NULL;
|
||
break;
|
||
|
||
case OP_SPACE:
|
||
case OP_NOTSPACE:
|
||
tree = build_charclass_op (dfa, regexp->trans,
|
||
"space",
|
||
"",
|
||
token->type == OP_NOTSPACE, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL))
|
||
return NULL;
|
||
break;
|
||
|
||
case OP_ALT:
|
||
case END_OF_RE:
|
||
return NULL;
|
||
|
||
case BACK_SLASH:
|
||
*err = REG_EESCAPE;
|
||
return NULL;
|
||
|
||
default:
|
||
/* Must not happen? */
|
||
DEBUG_ASSERT (false);
|
||
return NULL;
|
||
}
|
||
fetch_token (token, regexp, syntax);
|
||
|
||
while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS
|
||
|| token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM)
|
||
{
|
||
bin_tree_t *dup_tree = parse_dup_op (tree, regexp, dfa, token,
|
||
syntax, err);
|
||
if (__glibc_unlikely (*err != REG_NOERROR && dup_tree == NULL))
|
||
{
|
||
if (tree != NULL)
|
||
postorder (tree, free_tree, NULL);
|
||
return NULL;
|
||
}
|
||
tree = dup_tree;
|
||
/* In BRE consecutive duplications are not allowed. */
|
||
if ((syntax & RE_CONTEXT_INVALID_DUP)
|
||
&& (token->type == OP_DUP_ASTERISK
|
||
|| token->type == OP_OPEN_DUP_NUM))
|
||
{
|
||
if (tree != NULL)
|
||
postorder (tree, free_tree, NULL);
|
||
*err = REG_BADRPT;
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
return tree;
|
||
}
|
||
|
||
/* This function build the following tree, from regular expression
|
||
(<reg_exp>):
|
||
SUBEXP
|
||
|
|
||
<reg_exp>
|
||
*/
|
||
|
||
static bin_tree_t *
|
||
parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token,
|
||
reg_syntax_t syntax, Idx nest, reg_errcode_t *err)
|
||
{
|
||
re_dfa_t *dfa = preg->buffer;
|
||
bin_tree_t *tree;
|
||
size_t cur_nsub;
|
||
cur_nsub = preg->re_nsub++;
|
||
|
||
fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE);
|
||
|
||
/* The subexpression may be a null string. */
|
||
if (token->type == OP_CLOSE_SUBEXP)
|
||
tree = NULL;
|
||
else
|
||
{
|
||
tree = parse_reg_exp (regexp, preg, token, syntax, nest, err);
|
||
if (__glibc_unlikely (*err == REG_NOERROR
|
||
&& token->type != OP_CLOSE_SUBEXP))
|
||
{
|
||
if (tree != NULL)
|
||
postorder (tree, free_tree, NULL);
|
||
*err = REG_EPAREN;
|
||
}
|
||
if (__glibc_unlikely (*err != REG_NOERROR))
|
||
return NULL;
|
||
}
|
||
|
||
if (cur_nsub <= '9' - '1')
|
||
dfa->completed_bkref_map |= 1 << cur_nsub;
|
||
|
||
tree = create_tree (dfa, tree, NULL, SUBEXP);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
tree->token.opr.idx = cur_nsub;
|
||
return tree;
|
||
}
|
||
|
||
/* This function parse repetition operators like "*", "+", "{1,3}" etc. */
|
||
|
||
static bin_tree_t *
|
||
parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa,
|
||
re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err)
|
||
{
|
||
bin_tree_t *tree = NULL, *old_tree = NULL;
|
||
Idx i, start, end, start_idx = re_string_cur_idx (regexp);
|
||
re_token_t start_token = *token;
|
||
|
||
if (token->type == OP_OPEN_DUP_NUM)
|
||
{
|
||
end = 0;
|
||
start = fetch_number (regexp, token, syntax);
|
||
if (start == -1)
|
||
{
|
||
if (token->type == CHARACTER && token->opr.c == ',')
|
||
start = 0; /* We treat "{,m}" as "{0,m}". */
|
||
else
|
||
{
|
||
*err = REG_BADBR; /* <re>{} is invalid. */
|
||
return NULL;
|
||
}
|
||
}
|
||
if (__glibc_likely (start != -2))
|
||
{
|
||
/* We treat "{n}" as "{n,n}". */
|
||
end = ((token->type == OP_CLOSE_DUP_NUM) ? start
|
||
: ((token->type == CHARACTER && token->opr.c == ',')
|
||
? fetch_number (regexp, token, syntax) : -2));
|
||
}
|
||
if (__glibc_unlikely (start == -2 || end == -2))
|
||
{
|
||
/* Invalid sequence. */
|
||
if (__glibc_unlikely (!(syntax & RE_INVALID_INTERVAL_ORD)))
|
||
{
|
||
if (token->type == END_OF_RE)
|
||
*err = REG_EBRACE;
|
||
else
|
||
*err = REG_BADBR;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* If the syntax bit is set, rollback. */
|
||
re_string_set_index (regexp, start_idx);
|
||
*token = start_token;
|
||
token->type = CHARACTER;
|
||
/* mb_partial and word_char bits should be already initialized by
|
||
peek_token. */
|
||
return elem;
|
||
}
|
||
|
||
if (__glibc_unlikely ((end != -1 && start > end)
|
||
|| token->type != OP_CLOSE_DUP_NUM))
|
||
{
|
||
/* First number greater than second. */
|
||
*err = REG_BADBR;
|
||
return NULL;
|
||
}
|
||
|
||
if (__glibc_unlikely (RE_DUP_MAX < (end == -1 ? start : end)))
|
||
{
|
||
*err = REG_ESIZE;
|
||
return NULL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
start = (token->type == OP_DUP_PLUS) ? 1 : 0;
|
||
end = (token->type == OP_DUP_QUESTION) ? 1 : -1;
|
||
}
|
||
|
||
fetch_token (token, regexp, syntax);
|
||
|
||
if (__glibc_unlikely (elem == NULL))
|
||
return NULL;
|
||
if (__glibc_unlikely (start == 0 && end == 0))
|
||
{
|
||
postorder (elem, free_tree, NULL);
|
||
return NULL;
|
||
}
|
||
|
||
/* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */
|
||
if (__glibc_unlikely (start > 0))
|
||
{
|
||
tree = elem;
|
||
for (i = 2; i <= start; ++i)
|
||
{
|
||
elem = duplicate_tree (elem, dfa);
|
||
tree = create_tree (dfa, tree, elem, CONCAT);
|
||
if (__glibc_unlikely (elem == NULL || tree == NULL))
|
||
goto parse_dup_op_espace;
|
||
}
|
||
|
||
if (start == end)
|
||
return tree;
|
||
|
||
/* Duplicate ELEM before it is marked optional. */
|
||
elem = duplicate_tree (elem, dfa);
|
||
if (__glibc_unlikely (elem == NULL))
|
||
goto parse_dup_op_espace;
|
||
old_tree = tree;
|
||
}
|
||
else
|
||
old_tree = NULL;
|
||
|
||
if (elem->token.type == SUBEXP)
|
||
{
|
||
uintptr_t subidx = elem->token.opr.idx;
|
||
postorder (elem, mark_opt_subexp, (void *) subidx);
|
||
}
|
||
|
||
tree = create_tree (dfa, elem, NULL,
|
||
(end == -1 ? OP_DUP_ASTERISK : OP_ALT));
|
||
if (__glibc_unlikely (tree == NULL))
|
||
goto parse_dup_op_espace;
|
||
|
||
/* This loop is actually executed only when end != -1,
|
||
to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have
|
||
already created the start+1-th copy. */
|
||
if (TYPE_SIGNED (Idx) || end != -1)
|
||
for (i = start + 2; i <= end; ++i)
|
||
{
|
||
elem = duplicate_tree (elem, dfa);
|
||
tree = create_tree (dfa, tree, elem, CONCAT);
|
||
if (__glibc_unlikely (elem == NULL || tree == NULL))
|
||
goto parse_dup_op_espace;
|
||
|
||
tree = create_tree (dfa, tree, NULL, OP_ALT);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
goto parse_dup_op_espace;
|
||
}
|
||
|
||
if (old_tree)
|
||
tree = create_tree (dfa, old_tree, tree, CONCAT);
|
||
|
||
return tree;
|
||
|
||
parse_dup_op_espace:
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
|
||
/* Size of the names for collating symbol/equivalence_class/character_class.
|
||
I'm not sure, but maybe enough. */
|
||
#define BRACKET_NAME_BUF_SIZE 32
|
||
|
||
#ifndef _LIBC
|
||
|
||
# ifdef RE_ENABLE_I18N
|
||
/* Convert the byte B to the corresponding wide character. In a
|
||
unibyte locale, treat B as itself. In a multibyte locale, return
|
||
WEOF if B is an encoding error. */
|
||
static wint_t
|
||
parse_byte (unsigned char b, re_charset_t *mbcset)
|
||
{
|
||
return mbcset == NULL ? b : __btowc (b);
|
||
}
|
||
# endif
|
||
|
||
/* Local function for parse_bracket_exp only used in case of NOT _LIBC.
|
||
Build the range expression which starts from START_ELEM, and ends
|
||
at END_ELEM. The result are written to MBCSET and SBCSET.
|
||
RANGE_ALLOC is the allocated size of mbcset->range_starts, and
|
||
mbcset->range_ends, is a pointer argument since we may
|
||
update it. */
|
||
|
||
static reg_errcode_t
|
||
# ifdef RE_ENABLE_I18N
|
||
build_range_exp (const reg_syntax_t syntax,
|
||
bitset_t sbcset,
|
||
re_charset_t *mbcset,
|
||
Idx *range_alloc,
|
||
const bracket_elem_t *start_elem,
|
||
const bracket_elem_t *end_elem)
|
||
# else /* not RE_ENABLE_I18N */
|
||
build_range_exp (const reg_syntax_t syntax,
|
||
bitset_t sbcset,
|
||
const bracket_elem_t *start_elem,
|
||
const bracket_elem_t *end_elem)
|
||
# endif /* not RE_ENABLE_I18N */
|
||
{
|
||
unsigned int start_ch, end_ch;
|
||
/* Equivalence Classes and Character Classes can't be a range start/end. */
|
||
if (__glibc_unlikely (start_elem->type == EQUIV_CLASS
|
||
|| start_elem->type == CHAR_CLASS
|
||
|| end_elem->type == EQUIV_CLASS
|
||
|| end_elem->type == CHAR_CLASS))
|
||
return REG_ERANGE;
|
||
|
||
/* We can handle no multi character collating elements without libc
|
||
support. */
|
||
if (__glibc_unlikely ((start_elem->type == COLL_SYM
|
||
&& strlen ((char *) start_elem->opr.name) > 1)
|
||
|| (end_elem->type == COLL_SYM
|
||
&& strlen ((char *) end_elem->opr.name) > 1)))
|
||
return REG_ECOLLATE;
|
||
|
||
# ifdef RE_ENABLE_I18N
|
||
{
|
||
wchar_t wc;
|
||
wint_t start_wc;
|
||
wint_t end_wc;
|
||
|
||
start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch
|
||
: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
|
||
: 0));
|
||
end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch
|
||
: ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
|
||
: 0));
|
||
start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM)
|
||
? parse_byte (start_ch, mbcset) : start_elem->opr.wch);
|
||
end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM)
|
||
? parse_byte (end_ch, mbcset) : end_elem->opr.wch);
|
||
if (start_wc == WEOF || end_wc == WEOF)
|
||
return REG_ECOLLATE;
|
||
else if (__glibc_unlikely ((syntax & RE_NO_EMPTY_RANGES)
|
||
&& start_wc > end_wc))
|
||
return REG_ERANGE;
|
||
|
||
/* Got valid collation sequence values, add them as a new entry.
|
||
However, for !_LIBC we have no collation elements: if the
|
||
character set is single byte, the single byte character set
|
||
that we build below suffices. parse_bracket_exp passes
|
||
no MBCSET if dfa->mb_cur_max == 1. */
|
||
if (mbcset)
|
||
{
|
||
/* Check the space of the arrays. */
|
||
if (__glibc_unlikely (*range_alloc == mbcset->nranges))
|
||
{
|
||
/* There is not enough space, need realloc. */
|
||
wchar_t *new_array_start, *new_array_end;
|
||
Idx new_nranges;
|
||
|
||
/* +1 in case of mbcset->nranges is 0. */
|
||
new_nranges = 2 * mbcset->nranges + 1;
|
||
/* Use realloc since mbcset->range_starts and mbcset->range_ends
|
||
are NULL if *range_alloc == 0. */
|
||
new_array_start = re_realloc (mbcset->range_starts, wchar_t,
|
||
new_nranges);
|
||
new_array_end = re_realloc (mbcset->range_ends, wchar_t,
|
||
new_nranges);
|
||
|
||
if (__glibc_unlikely (new_array_start == NULL
|
||
|| new_array_end == NULL))
|
||
{
|
||
re_free (new_array_start);
|
||
re_free (new_array_end);
|
||
return REG_ESPACE;
|
||
}
|
||
|
||
mbcset->range_starts = new_array_start;
|
||
mbcset->range_ends = new_array_end;
|
||
*range_alloc = new_nranges;
|
||
}
|
||
|
||
mbcset->range_starts[mbcset->nranges] = start_wc;
|
||
mbcset->range_ends[mbcset->nranges++] = end_wc;
|
||
}
|
||
|
||
/* Build the table for single byte characters. */
|
||
for (wc = 0; wc < SBC_MAX; ++wc)
|
||
{
|
||
if (start_wc <= wc && wc <= end_wc)
|
||
bitset_set (sbcset, wc);
|
||
}
|
||
}
|
||
# else /* not RE_ENABLE_I18N */
|
||
{
|
||
unsigned int ch;
|
||
start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch
|
||
: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
|
||
: 0));
|
||
end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch
|
||
: ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
|
||
: 0));
|
||
if (start_ch > end_ch)
|
||
return REG_ERANGE;
|
||
/* Build the table for single byte characters. */
|
||
for (ch = 0; ch < SBC_MAX; ++ch)
|
||
if (start_ch <= ch && ch <= end_ch)
|
||
bitset_set (sbcset, ch);
|
||
}
|
||
# endif /* not RE_ENABLE_I18N */
|
||
return REG_NOERROR;
|
||
}
|
||
#endif /* not _LIBC */
|
||
|
||
#ifndef _LIBC
|
||
/* Helper function for parse_bracket_exp only used in case of NOT _LIBC..
|
||
Build the collating element which is represented by NAME.
|
||
The result are written to MBCSET and SBCSET.
|
||
COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
|
||
pointer argument since we may update it. */
|
||
|
||
static reg_errcode_t
|
||
# ifdef RE_ENABLE_I18N
|
||
build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset,
|
||
Idx *coll_sym_alloc, const unsigned char *name)
|
||
# else /* not RE_ENABLE_I18N */
|
||
build_collating_symbol (bitset_t sbcset, const unsigned char *name)
|
||
# endif /* not RE_ENABLE_I18N */
|
||
{
|
||
size_t name_len = strlen ((const char *) name);
|
||
if (__glibc_unlikely (name_len != 1))
|
||
return REG_ECOLLATE;
|
||
else
|
||
{
|
||
bitset_set (sbcset, name[0]);
|
||
return REG_NOERROR;
|
||
}
|
||
}
|
||
#endif /* not _LIBC */
|
||
|
||
/* This function parse bracket expression like "[abc]", "[a-c]",
|
||
"[[.a-a.]]" etc. */
|
||
|
||
static bin_tree_t *
|
||
parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token,
|
||
reg_syntax_t syntax, reg_errcode_t *err)
|
||
{
|
||
#ifdef _LIBC
|
||
const unsigned char *collseqmb;
|
||
const char *collseqwc;
|
||
uint32_t nrules;
|
||
int32_t table_size;
|
||
const int32_t *symb_table;
|
||
const unsigned char *extra;
|
||
|
||
/* Local function for parse_bracket_exp used in _LIBC environment.
|
||
Seek the collating symbol entry corresponding to NAME.
|
||
Return the index of the symbol in the SYMB_TABLE,
|
||
or -1 if not found. */
|
||
|
||
auto inline int32_t
|
||
__attribute__ ((always_inline))
|
||
seek_collating_symbol_entry (const unsigned char *name, size_t name_len)
|
||
{
|
||
int32_t elem;
|
||
|
||
for (elem = 0; elem < table_size; elem++)
|
||
if (symb_table[2 * elem] != 0)
|
||
{
|
||
int32_t idx = symb_table[2 * elem + 1];
|
||
/* Skip the name of collating element name. */
|
||
idx += 1 + extra[idx];
|
||
if (/* Compare the length of the name. */
|
||
name_len == extra[idx]
|
||
/* Compare the name. */
|
||
&& memcmp (name, &extra[idx + 1], name_len) == 0)
|
||
/* Yep, this is the entry. */
|
||
return elem;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* Local function for parse_bracket_exp used in _LIBC environment.
|
||
Look up the collation sequence value of BR_ELEM.
|
||
Return the value if succeeded, UINT_MAX otherwise. */
|
||
|
||
auto inline unsigned int
|
||
__attribute__ ((always_inline))
|
||
lookup_collation_sequence_value (bracket_elem_t *br_elem)
|
||
{
|
||
if (br_elem->type == SB_CHAR)
|
||
{
|
||
/*
|
||
if (MB_CUR_MAX == 1)
|
||
*/
|
||
if (nrules == 0)
|
||
return collseqmb[br_elem->opr.ch];
|
||
else
|
||
{
|
||
wint_t wc = __btowc (br_elem->opr.ch);
|
||
return __collseq_table_lookup (collseqwc, wc);
|
||
}
|
||
}
|
||
else if (br_elem->type == MB_CHAR)
|
||
{
|
||
if (nrules != 0)
|
||
return __collseq_table_lookup (collseqwc, br_elem->opr.wch);
|
||
}
|
||
else if (br_elem->type == COLL_SYM)
|
||
{
|
||
size_t sym_name_len = strlen ((char *) br_elem->opr.name);
|
||
if (nrules != 0)
|
||
{
|
||
int32_t elem, idx;
|
||
elem = seek_collating_symbol_entry (br_elem->opr.name,
|
||
sym_name_len);
|
||
if (elem != -1)
|
||
{
|
||
/* We found the entry. */
|
||
idx = symb_table[2 * elem + 1];
|
||
/* Skip the name of collating element name. */
|
||
idx += 1 + extra[idx];
|
||
/* Skip the byte sequence of the collating element. */
|
||
idx += 1 + extra[idx];
|
||
/* Adjust for the alignment. */
|
||
idx = (idx + 3) & ~3;
|
||
/* Skip the multibyte collation sequence value. */
|
||
idx += sizeof (unsigned int);
|
||
/* Skip the wide char sequence of the collating element. */
|
||
idx += sizeof (unsigned int) *
|
||
(1 + *(unsigned int *) (extra + idx));
|
||
/* Return the collation sequence value. */
|
||
return *(unsigned int *) (extra + idx);
|
||
}
|
||
else if (sym_name_len == 1)
|
||
{
|
||
/* No valid character. Match it as a single byte
|
||
character. */
|
||
return collseqmb[br_elem->opr.name[0]];
|
||
}
|
||
}
|
||
else if (sym_name_len == 1)
|
||
return collseqmb[br_elem->opr.name[0]];
|
||
}
|
||
return UINT_MAX;
|
||
}
|
||
|
||
/* Local function for parse_bracket_exp used in _LIBC environment.
|
||
Build the range expression which starts from START_ELEM, and ends
|
||
at END_ELEM. The result are written to MBCSET and SBCSET.
|
||
RANGE_ALLOC is the allocated size of mbcset->range_starts, and
|
||
mbcset->range_ends, is a pointer argument since we may
|
||
update it. */
|
||
|
||
auto inline reg_errcode_t
|
||
__attribute__ ((always_inline))
|
||
build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc,
|
||
bracket_elem_t *start_elem, bracket_elem_t *end_elem)
|
||
{
|
||
unsigned int ch;
|
||
uint32_t start_collseq;
|
||
uint32_t end_collseq;
|
||
|
||
/* Equivalence Classes and Character Classes can't be a range
|
||
start/end. */
|
||
if (__glibc_unlikely (start_elem->type == EQUIV_CLASS
|
||
|| start_elem->type == CHAR_CLASS
|
||
|| end_elem->type == EQUIV_CLASS
|
||
|| end_elem->type == CHAR_CLASS))
|
||
return REG_ERANGE;
|
||
|
||
/* FIXME: Implement rational ranges here, too. */
|
||
start_collseq = lookup_collation_sequence_value (start_elem);
|
||
end_collseq = lookup_collation_sequence_value (end_elem);
|
||
/* Check start/end collation sequence values. */
|
||
if (__glibc_unlikely (start_collseq == UINT_MAX
|
||
|| end_collseq == UINT_MAX))
|
||
return REG_ECOLLATE;
|
||
if (__glibc_unlikely ((syntax & RE_NO_EMPTY_RANGES)
|
||
&& start_collseq > end_collseq))
|
||
return REG_ERANGE;
|
||
|
||
/* Got valid collation sequence values, add them as a new entry.
|
||
However, if we have no collation elements, and the character set
|
||
is single byte, the single byte character set that we
|
||
build below suffices. */
|
||
if (nrules > 0 || dfa->mb_cur_max > 1)
|
||
{
|
||
/* Check the space of the arrays. */
|
||
if (__glibc_unlikely (*range_alloc == mbcset->nranges))
|
||
{
|
||
/* There is not enough space, need realloc. */
|
||
uint32_t *new_array_start;
|
||
uint32_t *new_array_end;
|
||
Idx new_nranges;
|
||
|
||
/* +1 in case of mbcset->nranges is 0. */
|
||
new_nranges = 2 * mbcset->nranges + 1;
|
||
new_array_start = re_realloc (mbcset->range_starts, uint32_t,
|
||
new_nranges);
|
||
new_array_end = re_realloc (mbcset->range_ends, uint32_t,
|
||
new_nranges);
|
||
|
||
if (__glibc_unlikely (new_array_start == NULL
|
||
|| new_array_end == NULL))
|
||
return REG_ESPACE;
|
||
|
||
mbcset->range_starts = new_array_start;
|
||
mbcset->range_ends = new_array_end;
|
||
*range_alloc = new_nranges;
|
||
}
|
||
|
||
mbcset->range_starts[mbcset->nranges] = start_collseq;
|
||
mbcset->range_ends[mbcset->nranges++] = end_collseq;
|
||
}
|
||
|
||
/* Build the table for single byte characters. */
|
||
for (ch = 0; ch < SBC_MAX; ch++)
|
||
{
|
||
uint32_t ch_collseq;
|
||
/*
|
||
if (MB_CUR_MAX == 1)
|
||
*/
|
||
if (nrules == 0)
|
||
ch_collseq = collseqmb[ch];
|
||
else
|
||
ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch));
|
||
if (start_collseq <= ch_collseq && ch_collseq <= end_collseq)
|
||
bitset_set (sbcset, ch);
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Local function for parse_bracket_exp used in _LIBC environment.
|
||
Build the collating element which is represented by NAME.
|
||
The result are written to MBCSET and SBCSET.
|
||
COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
|
||
pointer argument since we may update it. */
|
||
|
||
auto inline reg_errcode_t
|
||
__attribute__ ((always_inline))
|
||
build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset,
|
||
Idx *coll_sym_alloc, const unsigned char *name)
|
||
{
|
||
int32_t elem, idx;
|
||
size_t name_len = strlen ((const char *) name);
|
||
if (nrules != 0)
|
||
{
|
||
elem = seek_collating_symbol_entry (name, name_len);
|
||
if (elem != -1)
|
||
{
|
||
/* We found the entry. */
|
||
idx = symb_table[2 * elem + 1];
|
||
/* Skip the name of collating element name. */
|
||
idx += 1 + extra[idx];
|
||
}
|
||
else if (name_len == 1)
|
||
{
|
||
/* No valid character, treat it as a normal
|
||
character. */
|
||
bitset_set (sbcset, name[0]);
|
||
return REG_NOERROR;
|
||
}
|
||
else
|
||
return REG_ECOLLATE;
|
||
|
||
/* Got valid collation sequence, add it as a new entry. */
|
||
/* Check the space of the arrays. */
|
||
if (__glibc_unlikely (*coll_sym_alloc == mbcset->ncoll_syms))
|
||
{
|
||
/* Not enough, realloc it. */
|
||
/* +1 in case of mbcset->ncoll_syms is 0. */
|
||
Idx new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1;
|
||
/* Use realloc since mbcset->coll_syms is NULL
|
||
if *alloc == 0. */
|
||
int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t,
|
||
new_coll_sym_alloc);
|
||
if (__glibc_unlikely (new_coll_syms == NULL))
|
||
return REG_ESPACE;
|
||
mbcset->coll_syms = new_coll_syms;
|
||
*coll_sym_alloc = new_coll_sym_alloc;
|
||
}
|
||
mbcset->coll_syms[mbcset->ncoll_syms++] = idx;
|
||
return REG_NOERROR;
|
||
}
|
||
else
|
||
{
|
||
if (__glibc_unlikely (name_len != 1))
|
||
return REG_ECOLLATE;
|
||
else
|
||
{
|
||
bitset_set (sbcset, name[0]);
|
||
return REG_NOERROR;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
re_token_t br_token;
|
||
re_bitset_ptr_t sbcset;
|
||
#ifdef RE_ENABLE_I18N
|
||
re_charset_t *mbcset;
|
||
Idx coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0;
|
||
Idx equiv_class_alloc = 0, char_class_alloc = 0;
|
||
#endif /* not RE_ENABLE_I18N */
|
||
bool non_match = false;
|
||
bin_tree_t *work_tree;
|
||
int token_len;
|
||
bool first_round = true;
|
||
#ifdef _LIBC
|
||
collseqmb = (const unsigned char *)
|
||
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
|
||
nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
||
if (nrules)
|
||
{
|
||
/*
|
||
if (MB_CUR_MAX > 1)
|
||
*/
|
||
collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
|
||
table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB);
|
||
symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_SYMB_TABLEMB);
|
||
extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_SYMB_EXTRAMB);
|
||
}
|
||
#endif
|
||
sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
|
||
#ifdef RE_ENABLE_I18N
|
||
mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
|
||
#endif /* RE_ENABLE_I18N */
|
||
#ifdef RE_ENABLE_I18N
|
||
if (__glibc_unlikely (sbcset == NULL || mbcset == NULL))
|
||
#else
|
||
if (__glibc_unlikely (sbcset == NULL))
|
||
#endif /* RE_ENABLE_I18N */
|
||
{
|
||
re_free (sbcset);
|
||
#ifdef RE_ENABLE_I18N
|
||
re_free (mbcset);
|
||
#endif
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
|
||
token_len = peek_token_bracket (token, regexp, syntax);
|
||
if (__glibc_unlikely (token->type == END_OF_RE))
|
||
{
|
||
*err = REG_BADPAT;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
if (token->type == OP_NON_MATCH_LIST)
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
mbcset->non_match = 1;
|
||
#endif /* not RE_ENABLE_I18N */
|
||
non_match = true;
|
||
if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
|
||
bitset_set (sbcset, '\n');
|
||
re_string_skip_bytes (regexp, token_len); /* Skip a token. */
|
||
token_len = peek_token_bracket (token, regexp, syntax);
|
||
if (__glibc_unlikely (token->type == END_OF_RE))
|
||
{
|
||
*err = REG_BADPAT;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
}
|
||
|
||
/* We treat the first ']' as a normal character. */
|
||
if (token->type == OP_CLOSE_BRACKET)
|
||
token->type = CHARACTER;
|
||
|
||
while (1)
|
||
{
|
||
bracket_elem_t start_elem, end_elem;
|
||
unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE];
|
||
unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE];
|
||
reg_errcode_t ret;
|
||
int token_len2 = 0;
|
||
bool is_range_exp = false;
|
||
re_token_t token2;
|
||
|
||
start_elem.opr.name = start_name_buf;
|
||
start_elem.type = COLL_SYM;
|
||
ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa,
|
||
syntax, first_round);
|
||
if (__glibc_unlikely (ret != REG_NOERROR))
|
||
{
|
||
*err = ret;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
first_round = false;
|
||
|
||
/* Get information about the next token. We need it in any case. */
|
||
token_len = peek_token_bracket (token, regexp, syntax);
|
||
|
||
/* Do not check for ranges if we know they are not allowed. */
|
||
if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS)
|
||
{
|
||
if (__glibc_unlikely (token->type == END_OF_RE))
|
||
{
|
||
*err = REG_EBRACK;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
if (token->type == OP_CHARSET_RANGE)
|
||
{
|
||
re_string_skip_bytes (regexp, token_len); /* Skip '-'. */
|
||
token_len2 = peek_token_bracket (&token2, regexp, syntax);
|
||
if (__glibc_unlikely (token2.type == END_OF_RE))
|
||
{
|
||
*err = REG_EBRACK;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
if (token2.type == OP_CLOSE_BRACKET)
|
||
{
|
||
/* We treat the last '-' as a normal character. */
|
||
re_string_skip_bytes (regexp, -token_len);
|
||
token->type = CHARACTER;
|
||
}
|
||
else
|
||
is_range_exp = true;
|
||
}
|
||
}
|
||
|
||
if (is_range_exp == true)
|
||
{
|
||
end_elem.opr.name = end_name_buf;
|
||
end_elem.type = COLL_SYM;
|
||
ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2,
|
||
dfa, syntax, true);
|
||
if (__glibc_unlikely (ret != REG_NOERROR))
|
||
{
|
||
*err = ret;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
|
||
token_len = peek_token_bracket (token, regexp, syntax);
|
||
|
||
#ifdef _LIBC
|
||
*err = build_range_exp (sbcset, mbcset, &range_alloc,
|
||
&start_elem, &end_elem);
|
||
#else
|
||
# ifdef RE_ENABLE_I18N
|
||
*err = build_range_exp (syntax, sbcset,
|
||
dfa->mb_cur_max > 1 ? mbcset : NULL,
|
||
&range_alloc, &start_elem, &end_elem);
|
||
# else
|
||
*err = build_range_exp (syntax, sbcset, &start_elem, &end_elem);
|
||
# endif
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (__glibc_unlikely (*err != REG_NOERROR))
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
else
|
||
{
|
||
switch (start_elem.type)
|
||
{
|
||
case SB_CHAR:
|
||
bitset_set (sbcset, start_elem.opr.ch);
|
||
break;
|
||
#ifdef RE_ENABLE_I18N
|
||
case MB_CHAR:
|
||
/* Check whether the array has enough space. */
|
||
if (__glibc_unlikely (mbchar_alloc == mbcset->nmbchars))
|
||
{
|
||
wchar_t *new_mbchars;
|
||
/* Not enough, realloc it. */
|
||
/* +1 in case of mbcset->nmbchars is 0. */
|
||
mbchar_alloc = 2 * mbcset->nmbchars + 1;
|
||
/* Use realloc since array is NULL if *alloc == 0. */
|
||
new_mbchars = re_realloc (mbcset->mbchars, wchar_t,
|
||
mbchar_alloc);
|
||
if (__glibc_unlikely (new_mbchars == NULL))
|
||
goto parse_bracket_exp_espace;
|
||
mbcset->mbchars = new_mbchars;
|
||
}
|
||
mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch;
|
||
break;
|
||
#endif /* RE_ENABLE_I18N */
|
||
case EQUIV_CLASS:
|
||
*err = build_equiv_class (sbcset,
|
||
#ifdef RE_ENABLE_I18N
|
||
mbcset, &equiv_class_alloc,
|
||
#endif /* RE_ENABLE_I18N */
|
||
start_elem.opr.name);
|
||
if (__glibc_unlikely (*err != REG_NOERROR))
|
||
goto parse_bracket_exp_free_return;
|
||
break;
|
||
case COLL_SYM:
|
||
*err = build_collating_symbol (sbcset,
|
||
#ifdef RE_ENABLE_I18N
|
||
mbcset, &coll_sym_alloc,
|
||
#endif /* RE_ENABLE_I18N */
|
||
start_elem.opr.name);
|
||
if (__glibc_unlikely (*err != REG_NOERROR))
|
||
goto parse_bracket_exp_free_return;
|
||
break;
|
||
case CHAR_CLASS:
|
||
*err = build_charclass (regexp->trans, sbcset,
|
||
#ifdef RE_ENABLE_I18N
|
||
mbcset, &char_class_alloc,
|
||
#endif /* RE_ENABLE_I18N */
|
||
(const char *) start_elem.opr.name,
|
||
syntax);
|
||
if (__glibc_unlikely (*err != REG_NOERROR))
|
||
goto parse_bracket_exp_free_return;
|
||
break;
|
||
default:
|
||
DEBUG_ASSERT (false);
|
||
break;
|
||
}
|
||
}
|
||
if (__glibc_unlikely (token->type == END_OF_RE))
|
||
{
|
||
*err = REG_EBRACK;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
if (token->type == OP_CLOSE_BRACKET)
|
||
break;
|
||
}
|
||
|
||
re_string_skip_bytes (regexp, token_len); /* Skip a token. */
|
||
|
||
/* If it is non-matching list. */
|
||
if (non_match)
|
||
bitset_not (sbcset);
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
/* Ensure only single byte characters are set. */
|
||
if (dfa->mb_cur_max > 1)
|
||
bitset_mask (sbcset, dfa->sb_char);
|
||
|
||
if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes
|
||
|| mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes
|
||
|| mbcset->non_match)))
|
||
{
|
||
bin_tree_t *mbc_tree;
|
||
int sbc_idx;
|
||
/* Build a tree for complex bracket. */
|
||
dfa->has_mb_node = 1;
|
||
br_token.type = COMPLEX_BRACKET;
|
||
br_token.opr.mbcset = mbcset;
|
||
mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token);
|
||
if (__glibc_unlikely (mbc_tree == NULL))
|
||
goto parse_bracket_exp_espace;
|
||
for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx)
|
||
if (sbcset[sbc_idx])
|
||
break;
|
||
/* If there are no bits set in sbcset, there is no point
|
||
of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */
|
||
if (sbc_idx < BITSET_WORDS)
|
||
{
|
||
/* Build a tree for simple bracket. */
|
||
br_token.type = SIMPLE_BRACKET;
|
||
br_token.opr.sbcset = sbcset;
|
||
work_tree = create_token_tree (dfa, NULL, NULL, &br_token);
|
||
if (__glibc_unlikely (work_tree == NULL))
|
||
goto parse_bracket_exp_espace;
|
||
|
||
/* Then join them by ALT node. */
|
||
work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT);
|
||
if (__glibc_unlikely (work_tree == NULL))
|
||
goto parse_bracket_exp_espace;
|
||
}
|
||
else
|
||
{
|
||
re_free (sbcset);
|
||
work_tree = mbc_tree;
|
||
}
|
||
}
|
||
else
|
||
#endif /* not RE_ENABLE_I18N */
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
free_charset (mbcset);
|
||
#endif
|
||
/* Build a tree for simple bracket. */
|
||
br_token.type = SIMPLE_BRACKET;
|
||
br_token.opr.sbcset = sbcset;
|
||
work_tree = create_token_tree (dfa, NULL, NULL, &br_token);
|
||
if (__glibc_unlikely (work_tree == NULL))
|
||
goto parse_bracket_exp_espace;
|
||
}
|
||
return work_tree;
|
||
|
||
parse_bracket_exp_espace:
|
||
*err = REG_ESPACE;
|
||
parse_bracket_exp_free_return:
|
||
re_free (sbcset);
|
||
#ifdef RE_ENABLE_I18N
|
||
free_charset (mbcset);
|
||
#endif /* RE_ENABLE_I18N */
|
||
return NULL;
|
||
}
|
||
|
||
/* Parse an element in the bracket expression. */
|
||
|
||
static reg_errcode_t
|
||
parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp,
|
||
re_token_t *token, int token_len, re_dfa_t *dfa,
|
||
reg_syntax_t syntax, bool accept_hyphen)
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
int cur_char_size;
|
||
cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp));
|
||
if (cur_char_size > 1)
|
||
{
|
||
elem->type = MB_CHAR;
|
||
elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp));
|
||
re_string_skip_bytes (regexp, cur_char_size);
|
||
return REG_NOERROR;
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
re_string_skip_bytes (regexp, token_len); /* Skip a token. */
|
||
if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS
|
||
|| token->type == OP_OPEN_EQUIV_CLASS)
|
||
return parse_bracket_symbol (elem, regexp, token);
|
||
if (__glibc_unlikely (token->type == OP_CHARSET_RANGE) && !accept_hyphen)
|
||
{
|
||
/* A '-' must only appear as anything but a range indicator before
|
||
the closing bracket. Everything else is an error. */
|
||
re_token_t token2;
|
||
(void) peek_token_bracket (&token2, regexp, syntax);
|
||
if (token2.type != OP_CLOSE_BRACKET)
|
||
/* The actual error value is not standardized since this whole
|
||
case is undefined. But ERANGE makes good sense. */
|
||
return REG_ERANGE;
|
||
}
|
||
elem->type = SB_CHAR;
|
||
elem->opr.ch = token->opr.c;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Parse a bracket symbol in the bracket expression. Bracket symbols are
|
||
such as [:<character_class>:], [.<collating_element>.], and
|
||
[=<equivalent_class>=]. */
|
||
|
||
static reg_errcode_t
|
||
parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp,
|
||
re_token_t *token)
|
||
{
|
||
unsigned char ch, delim = token->opr.c;
|
||
int i = 0;
|
||
if (re_string_eoi(regexp))
|
||
return REG_EBRACK;
|
||
for (;; ++i)
|
||
{
|
||
if (i >= BRACKET_NAME_BUF_SIZE)
|
||
return REG_EBRACK;
|
||
if (token->type == OP_OPEN_CHAR_CLASS)
|
||
ch = re_string_fetch_byte_case (regexp);
|
||
else
|
||
ch = re_string_fetch_byte (regexp);
|
||
if (re_string_eoi(regexp))
|
||
return REG_EBRACK;
|
||
if (ch == delim && re_string_peek_byte (regexp, 0) == ']')
|
||
break;
|
||
elem->opr.name[i] = ch;
|
||
}
|
||
re_string_skip_bytes (regexp, 1);
|
||
elem->opr.name[i] = '\0';
|
||
switch (token->type)
|
||
{
|
||
case OP_OPEN_COLL_ELEM:
|
||
elem->type = COLL_SYM;
|
||
break;
|
||
case OP_OPEN_EQUIV_CLASS:
|
||
elem->type = EQUIV_CLASS;
|
||
break;
|
||
case OP_OPEN_CHAR_CLASS:
|
||
elem->type = CHAR_CLASS;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Helper function for parse_bracket_exp.
|
||
Build the equivalence class which is represented by NAME.
|
||
The result are written to MBCSET and SBCSET.
|
||
EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes,
|
||
is a pointer argument since we may update it. */
|
||
|
||
static reg_errcode_t
|
||
#ifdef RE_ENABLE_I18N
|
||
build_equiv_class (bitset_t sbcset, re_charset_t *mbcset,
|
||
Idx *equiv_class_alloc, const unsigned char *name)
|
||
#else /* not RE_ENABLE_I18N */
|
||
build_equiv_class (bitset_t sbcset, const unsigned char *name)
|
||
#endif /* not RE_ENABLE_I18N */
|
||
{
|
||
#ifdef _LIBC
|
||
uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
||
if (nrules != 0)
|
||
{
|
||
const int32_t *table, *indirect;
|
||
const unsigned char *weights, *extra, *cp;
|
||
unsigned char char_buf[2];
|
||
int32_t idx1, idx2;
|
||
unsigned int ch;
|
||
size_t len;
|
||
/* Calculate the index for equivalence class. */
|
||
cp = name;
|
||
table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
|
||
weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_WEIGHTMB);
|
||
extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_EXTRAMB);
|
||
indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_INDIRECTMB);
|
||
idx1 = findidx (table, indirect, extra, &cp, -1);
|
||
if (__glibc_unlikely (idx1 == 0 || *cp != '\0'))
|
||
/* This isn't a valid character. */
|
||
return REG_ECOLLATE;
|
||
|
||
/* Build single byte matching table for this equivalence class. */
|
||
len = weights[idx1 & 0xffffff];
|
||
for (ch = 0; ch < SBC_MAX; ++ch)
|
||
{
|
||
char_buf[0] = ch;
|
||
cp = char_buf;
|
||
idx2 = findidx (table, indirect, extra, &cp, 1);
|
||
/*
|
||
idx2 = table[ch];
|
||
*/
|
||
if (idx2 == 0)
|
||
/* This isn't a valid character. */
|
||
continue;
|
||
/* Compare only if the length matches and the collation rule
|
||
index is the same. */
|
||
if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24)
|
||
&& memcmp (weights + (idx1 & 0xffffff) + 1,
|
||
weights + (idx2 & 0xffffff) + 1, len) == 0)
|
||
bitset_set (sbcset, ch);
|
||
}
|
||
/* Check whether the array has enough space. */
|
||
if (__glibc_unlikely (*equiv_class_alloc == mbcset->nequiv_classes))
|
||
{
|
||
/* Not enough, realloc it. */
|
||
/* +1 in case of mbcset->nequiv_classes is 0. */
|
||
Idx new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1;
|
||
/* Use realloc since the array is NULL if *alloc == 0. */
|
||
int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes,
|
||
int32_t,
|
||
new_equiv_class_alloc);
|
||
if (__glibc_unlikely (new_equiv_classes == NULL))
|
||
return REG_ESPACE;
|
||
mbcset->equiv_classes = new_equiv_classes;
|
||
*equiv_class_alloc = new_equiv_class_alloc;
|
||
}
|
||
mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1;
|
||
}
|
||
else
|
||
#endif /* _LIBC */
|
||
{
|
||
if (__glibc_unlikely (strlen ((const char *) name) != 1))
|
||
return REG_ECOLLATE;
|
||
bitset_set (sbcset, *name);
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Helper function for parse_bracket_exp.
|
||
Build the character class which is represented by NAME.
|
||
The result are written to MBCSET and SBCSET.
|
||
CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes,
|
||
is a pointer argument since we may update it. */
|
||
|
||
static reg_errcode_t
|
||
#ifdef RE_ENABLE_I18N
|
||
build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset,
|
||
re_charset_t *mbcset, Idx *char_class_alloc,
|
||
const char *class_name, reg_syntax_t syntax)
|
||
#else /* not RE_ENABLE_I18N */
|
||
build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset,
|
||
const char *class_name, reg_syntax_t syntax)
|
||
#endif /* not RE_ENABLE_I18N */
|
||
{
|
||
int i;
|
||
const char *name = class_name;
|
||
|
||
/* In case of REG_ICASE "upper" and "lower" match the both of
|
||
upper and lower cases. */
|
||
if ((syntax & RE_ICASE)
|
||
&& (strcmp (name, "upper") == 0 || strcmp (name, "lower") == 0))
|
||
name = "alpha";
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
/* Check the space of the arrays. */
|
||
if (__glibc_unlikely (*char_class_alloc == mbcset->nchar_classes))
|
||
{
|
||
/* Not enough, realloc it. */
|
||
/* +1 in case of mbcset->nchar_classes is 0. */
|
||
Idx new_char_class_alloc = 2 * mbcset->nchar_classes + 1;
|
||
/* Use realloc since array is NULL if *alloc == 0. */
|
||
wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t,
|
||
new_char_class_alloc);
|
||
if (__glibc_unlikely (new_char_classes == NULL))
|
||
return REG_ESPACE;
|
||
mbcset->char_classes = new_char_classes;
|
||
*char_class_alloc = new_char_class_alloc;
|
||
}
|
||
mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name);
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
#define BUILD_CHARCLASS_LOOP(ctype_func) \
|
||
do { \
|
||
if (__glibc_unlikely (trans != NULL)) \
|
||
{ \
|
||
for (i = 0; i < SBC_MAX; ++i) \
|
||
if (ctype_func (i)) \
|
||
bitset_set (sbcset, trans[i]); \
|
||
} \
|
||
else \
|
||
{ \
|
||
for (i = 0; i < SBC_MAX; ++i) \
|
||
if (ctype_func (i)) \
|
||
bitset_set (sbcset, i); \
|
||
} \
|
||
} while (0)
|
||
|
||
if (strcmp (name, "alnum") == 0)
|
||
BUILD_CHARCLASS_LOOP (isalnum);
|
||
else if (strcmp (name, "cntrl") == 0)
|
||
BUILD_CHARCLASS_LOOP (iscntrl);
|
||
else if (strcmp (name, "lower") == 0)
|
||
BUILD_CHARCLASS_LOOP (islower);
|
||
else if (strcmp (name, "space") == 0)
|
||
BUILD_CHARCLASS_LOOP (isspace);
|
||
else if (strcmp (name, "alpha") == 0)
|
||
BUILD_CHARCLASS_LOOP (isalpha);
|
||
else if (strcmp (name, "digit") == 0)
|
||
BUILD_CHARCLASS_LOOP (isdigit);
|
||
else if (strcmp (name, "print") == 0)
|
||
BUILD_CHARCLASS_LOOP (isprint);
|
||
else if (strcmp (name, "upper") == 0)
|
||
BUILD_CHARCLASS_LOOP (isupper);
|
||
else if (strcmp (name, "blank") == 0)
|
||
BUILD_CHARCLASS_LOOP (isblank);
|
||
else if (strcmp (name, "graph") == 0)
|
||
BUILD_CHARCLASS_LOOP (isgraph);
|
||
else if (strcmp (name, "punct") == 0)
|
||
BUILD_CHARCLASS_LOOP (ispunct);
|
||
else if (strcmp (name, "xdigit") == 0)
|
||
BUILD_CHARCLASS_LOOP (isxdigit);
|
||
else
|
||
return REG_ECTYPE;
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static bin_tree_t *
|
||
build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans,
|
||
const char *class_name,
|
||
const char *extra, bool non_match,
|
||
reg_errcode_t *err)
|
||
{
|
||
re_bitset_ptr_t sbcset;
|
||
#ifdef RE_ENABLE_I18N
|
||
re_charset_t *mbcset;
|
||
Idx alloc = 0;
|
||
#endif /* not RE_ENABLE_I18N */
|
||
reg_errcode_t ret;
|
||
bin_tree_t *tree;
|
||
|
||
sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
|
||
if (__glibc_unlikely (sbcset == NULL))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
#ifdef RE_ENABLE_I18N
|
||
mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
|
||
if (__glibc_unlikely (mbcset == NULL))
|
||
{
|
||
re_free (sbcset);
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
mbcset->non_match = non_match;
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
/* We don't care the syntax in this case. */
|
||
ret = build_charclass (trans, sbcset,
|
||
#ifdef RE_ENABLE_I18N
|
||
mbcset, &alloc,
|
||
#endif /* RE_ENABLE_I18N */
|
||
class_name, 0);
|
||
|
||
if (__glibc_unlikely (ret != REG_NOERROR))
|
||
{
|
||
re_free (sbcset);
|
||
#ifdef RE_ENABLE_I18N
|
||
free_charset (mbcset);
|
||
#endif /* RE_ENABLE_I18N */
|
||
*err = ret;
|
||
return NULL;
|
||
}
|
||
/* \w match '_' also. */
|
||
for (; *extra; extra++)
|
||
bitset_set (sbcset, *extra);
|
||
|
||
/* If it is non-matching list. */
|
||
if (non_match)
|
||
bitset_not (sbcset);
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
/* Ensure only single byte characters are set. */
|
||
if (dfa->mb_cur_max > 1)
|
||
bitset_mask (sbcset, dfa->sb_char);
|
||
#endif
|
||
|
||
/* Build a tree for simple bracket. */
|
||
re_token_t br_token = { .type = SIMPLE_BRACKET, .opr.sbcset = sbcset };
|
||
tree = create_token_tree (dfa, NULL, NULL, &br_token);
|
||
if (__glibc_unlikely (tree == NULL))
|
||
goto build_word_op_espace;
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
if (dfa->mb_cur_max > 1)
|
||
{
|
||
bin_tree_t *mbc_tree;
|
||
/* Build a tree for complex bracket. */
|
||
br_token.type = COMPLEX_BRACKET;
|
||
br_token.opr.mbcset = mbcset;
|
||
dfa->has_mb_node = 1;
|
||
mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token);
|
||
if (__glibc_unlikely (mbc_tree == NULL))
|
||
goto build_word_op_espace;
|
||
/* Then join them by ALT node. */
|
||
tree = create_tree (dfa, tree, mbc_tree, OP_ALT);
|
||
if (__glibc_likely (mbc_tree != NULL))
|
||
return tree;
|
||
}
|
||
else
|
||
{
|
||
free_charset (mbcset);
|
||
return tree;
|
||
}
|
||
#else /* not RE_ENABLE_I18N */
|
||
return tree;
|
||
#endif /* not RE_ENABLE_I18N */
|
||
|
||
build_word_op_espace:
|
||
re_free (sbcset);
|
||
#ifdef RE_ENABLE_I18N
|
||
free_charset (mbcset);
|
||
#endif /* RE_ENABLE_I18N */
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
|
||
/* This is intended for the expressions like "a{1,3}".
|
||
Fetch a number from 'input', and return the number.
|
||
Return -1 if the number field is empty like "{,1}".
|
||
Return RE_DUP_MAX + 1 if the number field is too large.
|
||
Return -2 if an error occurred. */
|
||
|
||
static Idx
|
||
fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax)
|
||
{
|
||
Idx num = -1;
|
||
unsigned char c;
|
||
while (1)
|
||
{
|
||
fetch_token (token, input, syntax);
|
||
c = token->opr.c;
|
||
if (__glibc_unlikely (token->type == END_OF_RE))
|
||
return -2;
|
||
if (token->type == OP_CLOSE_DUP_NUM || c == ',')
|
||
break;
|
||
num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2)
|
||
? -2
|
||
: num == -1
|
||
? c - '0'
|
||
: MIN (RE_DUP_MAX + 1, num * 10 + c - '0'));
|
||
}
|
||
return num;
|
||
}
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
static void
|
||
free_charset (re_charset_t *cset)
|
||
{
|
||
re_free (cset->mbchars);
|
||
# ifdef _LIBC
|
||
re_free (cset->coll_syms);
|
||
re_free (cset->equiv_classes);
|
||
# endif
|
||
re_free (cset->range_starts);
|
||
re_free (cset->range_ends);
|
||
re_free (cset->char_classes);
|
||
re_free (cset);
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
/* Functions for binary tree operation. */
|
||
|
||
/* Create a tree node. */
|
||
|
||
static bin_tree_t *
|
||
create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right,
|
||
re_token_type_t type)
|
||
{
|
||
re_token_t t = { .type = type };
|
||
return create_token_tree (dfa, left, right, &t);
|
||
}
|
||
|
||
static bin_tree_t *
|
||
create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right,
|
||
const re_token_t *token)
|
||
{
|
||
bin_tree_t *tree;
|
||
if (__glibc_unlikely (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE))
|
||
{
|
||
bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1);
|
||
|
||
if (storage == NULL)
|
||
return NULL;
|
||
storage->next = dfa->str_tree_storage;
|
||
dfa->str_tree_storage = storage;
|
||
dfa->str_tree_storage_idx = 0;
|
||
}
|
||
tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++];
|
||
|
||
tree->parent = NULL;
|
||
tree->left = left;
|
||
tree->right = right;
|
||
tree->token = *token;
|
||
tree->token.duplicated = 0;
|
||
tree->token.opt_subexp = 0;
|
||
tree->first = NULL;
|
||
tree->next = NULL;
|
||
tree->node_idx = -1;
|
||
|
||
if (left != NULL)
|
||
left->parent = tree;
|
||
if (right != NULL)
|
||
right->parent = tree;
|
||
return tree;
|
||
}
|
||
|
||
/* Mark the tree SRC as an optional subexpression.
|
||
To be called from preorder or postorder. */
|
||
|
||
static reg_errcode_t
|
||
mark_opt_subexp (void *extra, bin_tree_t *node)
|
||
{
|
||
Idx idx = (uintptr_t) extra;
|
||
if (node->token.type == SUBEXP && node->token.opr.idx == idx)
|
||
node->token.opt_subexp = 1;
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Free the allocated memory inside NODE. */
|
||
|
||
static void
|
||
free_token (re_token_t *node)
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
if (node->type == COMPLEX_BRACKET && node->duplicated == 0)
|
||
free_charset (node->opr.mbcset);
|
||
else
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (node->type == SIMPLE_BRACKET && node->duplicated == 0)
|
||
re_free (node->opr.sbcset);
|
||
}
|
||
|
||
/* Worker function for tree walking. Free the allocated memory inside NODE
|
||
and its children. */
|
||
|
||
static reg_errcode_t
|
||
free_tree (void *extra, bin_tree_t *node)
|
||
{
|
||
free_token (&node->token);
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
|
||
/* Duplicate the node SRC, and return new node. This is a preorder
|
||
visit similar to the one implemented by the generic visitor, but
|
||
we need more infrastructure to maintain two parallel trees --- so,
|
||
it's easier to duplicate. */
|
||
|
||
static bin_tree_t *
|
||
duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa)
|
||
{
|
||
const bin_tree_t *node;
|
||
bin_tree_t *dup_root;
|
||
bin_tree_t **p_new = &dup_root, *dup_node = root->parent;
|
||
|
||
for (node = root; ; )
|
||
{
|
||
/* Create a new tree and link it back to the current parent. */
|
||
*p_new = create_token_tree (dfa, NULL, NULL, &node->token);
|
||
if (*p_new == NULL)
|
||
return NULL;
|
||
(*p_new)->parent = dup_node;
|
||
(*p_new)->token.duplicated = 1;
|
||
dup_node = *p_new;
|
||
|
||
/* Go to the left node, or up and to the right. */
|
||
if (node->left)
|
||
{
|
||
node = node->left;
|
||
p_new = &dup_node->left;
|
||
}
|
||
else
|
||
{
|
||
const bin_tree_t *prev = NULL;
|
||
while (node->right == prev || node->right == NULL)
|
||
{
|
||
prev = node;
|
||
node = node->parent;
|
||
dup_node = dup_node->parent;
|
||
if (!node)
|
||
return dup_root;
|
||
}
|
||
node = node->right;
|
||
p_new = &dup_node->right;
|
||
}
|
||
}
|
||
}
|