mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-06 12:00:24 +08:00
1833769e19
The ldbl-128ibm implementation of floorl is only correct in round-to-nearest mode (in other modes, there are incorrect results and overflow exceptions in some cases going beyond the incorrect signs of zero results noted in bug 17899). It is also unnecessarily complicated, rounding both high and low parts to the nearest integer and then adjusting for the semantics of floor, when it seems more natural to take the floor of the high part (__floor optimized inline versions can be used), and that of the low part if the high part is an integer. This patch makes it use that simpler approach, with a canonicalization that works in all rounding modes (given that the only way the result can be noncanonical is if taking the floor of a negative noninteger low part increased its exponent). Tested for powerpc, where over a thousand failures are removed from test-ldouble.out (floorl problems affect many powl tests). [BZ #17899] * sysdeps/ieee754/ldbl-128ibm/math_ldbl.h (ldbl_canonicalize_int): New function. * sysdeps/ieee754/ldbl-128ibm/s_floorl.c (__floorl): Use __floor on high and low parts then use ldbl_canonicalize_int if needed.
266 lines
6.9 KiB
C
266 lines
6.9 KiB
C
#ifndef _MATH_PRIVATE_H_
|
|
#error "Never use <math_ldbl.h> directly; include <math_private.h> instead."
|
|
#endif
|
|
|
|
#include <ieee754.h>
|
|
#include <stdint.h>
|
|
|
|
/* To suit our callers we return *hi64 and *lo64 as if they came from
|
|
an ieee854 112 bit mantissa, that is, 48 bits in *hi64 (plus one
|
|
implicit bit) and 64 bits in *lo64. */
|
|
|
|
static inline void
|
|
ldbl_extract_mantissa (int64_t *hi64, uint64_t *lo64, int *exp, long double x)
|
|
{
|
|
/* We have 105 bits of mantissa plus one implicit digit. Since
|
|
106 bits are representable we use the first implicit digit for
|
|
the number before the decimal point and the second implicit bit
|
|
as bit 53 of the mantissa. */
|
|
uint64_t hi, lo;
|
|
union ibm_extended_long_double u;
|
|
|
|
u.ld = x;
|
|
*exp = u.d[0].ieee.exponent - IEEE754_DOUBLE_BIAS;
|
|
|
|
lo = ((uint64_t) u.d[1].ieee.mantissa0 << 32) | u.d[1].ieee.mantissa1;
|
|
hi = ((uint64_t) u.d[0].ieee.mantissa0 << 32) | u.d[0].ieee.mantissa1;
|
|
|
|
if (u.d[0].ieee.exponent != 0)
|
|
{
|
|
int ediff;
|
|
|
|
/* If not a denormal or zero then we have an implicit 53rd bit. */
|
|
hi |= (uint64_t) 1 << 52;
|
|
|
|
if (u.d[1].ieee.exponent != 0)
|
|
lo |= (uint64_t) 1 << 52;
|
|
else
|
|
/* A denormal is to be interpreted as having a biased exponent
|
|
of 1. */
|
|
lo = lo << 1;
|
|
|
|
/* We are going to shift 4 bits out of hi later, because we only
|
|
want 48 bits in *hi64. That means we want 60 bits in lo, but
|
|
we currently only have 53. Shift the value up. */
|
|
lo = lo << 7;
|
|
|
|
/* The lower double is normalized separately from the upper.
|
|
We may need to adjust the lower mantissa to reflect this.
|
|
The difference between the exponents can be larger than 53
|
|
when the low double is much less than 1ULP of the upper
|
|
(in which case there are significant bits, all 0's or all
|
|
1's, between the two significands). The difference between
|
|
the exponents can be less than 53 when the upper double
|
|
exponent is nearing its minimum value (in which case the low
|
|
double is denormal ie. has an exponent of zero). */
|
|
ediff = u.d[0].ieee.exponent - u.d[1].ieee.exponent - 53;
|
|
if (ediff > 0)
|
|
{
|
|
if (ediff < 64)
|
|
lo = lo >> ediff;
|
|
else
|
|
lo = 0;
|
|
}
|
|
else if (ediff < 0)
|
|
lo = lo << -ediff;
|
|
|
|
if (u.d[0].ieee.negative != u.d[1].ieee.negative
|
|
&& lo != 0)
|
|
{
|
|
hi--;
|
|
lo = ((uint64_t) 1 << 60) - lo;
|
|
if (hi < (uint64_t) 1 << 52)
|
|
{
|
|
/* We have a borrow from the hidden bit, so shift left 1. */
|
|
hi = (hi << 1) | (lo >> 59);
|
|
lo = (((uint64_t) 1 << 60) - 1) & (lo << 1);
|
|
*exp = *exp - 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
/* If the larger magnitude double is denormal then the smaller
|
|
one must be zero. */
|
|
hi = hi << 1;
|
|
|
|
*lo64 = (hi << 60) | lo;
|
|
*hi64 = hi >> 4;
|
|
}
|
|
|
|
static inline long double
|
|
ldbl_insert_mantissa (int sign, int exp, int64_t hi64, uint64_t lo64)
|
|
{
|
|
union ibm_extended_long_double u;
|
|
int expnt2;
|
|
uint64_t hi, lo;
|
|
|
|
u.d[0].ieee.negative = sign;
|
|
u.d[1].ieee.negative = sign;
|
|
u.d[0].ieee.exponent = exp + IEEE754_DOUBLE_BIAS;
|
|
u.d[1].ieee.exponent = 0;
|
|
expnt2 = exp - 53 + IEEE754_DOUBLE_BIAS;
|
|
|
|
/* Expect 113 bits (112 bits + hidden) right justified in two longs.
|
|
The low order 53 bits (52 + hidden) go into the lower double */
|
|
lo = (lo64 >> 7) & (((uint64_t) 1 << 53) - 1);
|
|
/* The high order 53 bits (52 + hidden) go into the upper double */
|
|
hi = lo64 >> 60;
|
|
hi |= hi64 << 4;
|
|
|
|
if (lo != 0)
|
|
{
|
|
int lzcount;
|
|
|
|
/* hidden bit of low double controls rounding of the high double.
|
|
If hidden is '1' and either the explicit mantissa is non-zero
|
|
or hi is odd, then round up hi and adjust lo (2nd mantissa)
|
|
plus change the sign of the low double to compensate. */
|
|
if ((lo & ((uint64_t) 1 << 52)) != 0
|
|
&& ((hi & 1) != 0 || (lo & (((uint64_t) 1 << 52) - 1)) != 0))
|
|
{
|
|
hi++;
|
|
if ((hi & ((uint64_t) 1 << 53)) != 0)
|
|
{
|
|
hi = hi >> 1;
|
|
u.d[0].ieee.exponent++;
|
|
}
|
|
u.d[1].ieee.negative = !sign;
|
|
lo = ((uint64_t) 1 << 53) - lo;
|
|
}
|
|
|
|
/* Normalize the low double. Shift the mantissa left until
|
|
the hidden bit is '1' and adjust the exponent accordingly. */
|
|
|
|
if (sizeof (lo) == sizeof (long))
|
|
lzcount = __builtin_clzl (lo);
|
|
else if ((lo >> 32) != 0)
|
|
lzcount = __builtin_clzl ((long) (lo >> 32));
|
|
else
|
|
lzcount = __builtin_clzl ((long) lo) + 32;
|
|
lzcount = lzcount - (64 - 53);
|
|
lo <<= lzcount;
|
|
expnt2 -= lzcount;
|
|
|
|
if (expnt2 >= 1)
|
|
/* Not denormal. */
|
|
u.d[1].ieee.exponent = expnt2;
|
|
else
|
|
{
|
|
/* Is denormal. Note that biased exponent of 0 is treated
|
|
as if it was 1, hence the extra shift. */
|
|
if (expnt2 > -53)
|
|
lo >>= 1 - expnt2;
|
|
else
|
|
lo = 0;
|
|
}
|
|
}
|
|
else
|
|
u.d[1].ieee.negative = 0;
|
|
|
|
u.d[1].ieee.mantissa1 = lo;
|
|
u.d[1].ieee.mantissa0 = lo >> 32;
|
|
u.d[0].ieee.mantissa1 = hi;
|
|
u.d[0].ieee.mantissa0 = hi >> 32;
|
|
return u.ld;
|
|
}
|
|
|
|
/* Handy utility functions to pack/unpack/cononicalize and find the nearbyint
|
|
of long double implemented as double double. */
|
|
static inline long double
|
|
default_ldbl_pack (double a, double aa)
|
|
{
|
|
union ibm_extended_long_double u;
|
|
u.d[0].d = a;
|
|
u.d[1].d = aa;
|
|
return u.ld;
|
|
}
|
|
|
|
static inline void
|
|
default_ldbl_unpack (long double l, double *a, double *aa)
|
|
{
|
|
union ibm_extended_long_double u;
|
|
u.ld = l;
|
|
*a = u.d[0].d;
|
|
*aa = u.d[1].d;
|
|
}
|
|
|
|
#ifndef ldbl_pack
|
|
# define ldbl_pack default_ldbl_pack
|
|
#endif
|
|
#ifndef ldbl_unpack
|
|
# define ldbl_unpack default_ldbl_unpack
|
|
#endif
|
|
|
|
/* Extract high double. */
|
|
#define ldbl_high(x) ((double) x)
|
|
|
|
/* Convert a finite long double to canonical form.
|
|
Does not handle +/-Inf properly. */
|
|
static inline void
|
|
ldbl_canonicalize (double *a, double *aa)
|
|
{
|
|
double xh, xl;
|
|
|
|
xh = *a + *aa;
|
|
xl = (*a - xh) + *aa;
|
|
*a = xh;
|
|
*aa = xl;
|
|
}
|
|
|
|
/* Simple inline nearbyint (double) function.
|
|
Only works in the default rounding mode
|
|
but is useful in long double rounding functions. */
|
|
static inline double
|
|
ldbl_nearbyint (double a)
|
|
{
|
|
double two52 = 0x1p52;
|
|
|
|
if (__glibc_likely ((__builtin_fabs (a) < two52)))
|
|
{
|
|
if (__glibc_likely ((a > 0.0)))
|
|
{
|
|
a += two52;
|
|
a -= two52;
|
|
}
|
|
else if (__glibc_likely ((a < 0.0)))
|
|
{
|
|
a = two52 - a;
|
|
a = -(a - two52);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/* Canonicalize a result from an integer rounding function, in any
|
|
rounding mode. *A and *AA are finite and integers, with *A being
|
|
nonzero; if the result is not already canonical, *AA is plus or
|
|
minus a power of 2 that does not exceed the least set bit in
|
|
*A. */
|
|
static inline void
|
|
ldbl_canonicalize_int (double *a, double *aa)
|
|
{
|
|
int64_t ax, aax;
|
|
EXTRACT_WORDS64 (ax, *a);
|
|
EXTRACT_WORDS64 (aax, *aa);
|
|
int expdiff = ((ax >> 52) & 0x7ff) - ((aax >> 52) & 0x7ff);
|
|
if (expdiff <= 53)
|
|
{
|
|
if (expdiff == 53)
|
|
{
|
|
/* Half way between two double values; noncanonical iff the
|
|
low bit of A's mantissa is 1. */
|
|
if ((ax & 1) != 0)
|
|
{
|
|
*a += 2 * *aa;
|
|
*aa = -*aa;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* The sum can be represented in a single double. */
|
|
*a += *aa;
|
|
*aa = 0;
|
|
}
|
|
}
|
|
}
|