mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-18 12:16:13 +08:00
2b778ceb40
I used these shell commands: ../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright (cd ../glibc && git commit -am"[this commit message]") and then ignored the output, which consisted lines saying "FOO: warning: copyright statement not found" for each of 6694 files FOO. I then removed trailing white space from benchtests/bench-pthread-locks.c and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this diagnostic from Savannah: remote: *** pre-commit check failed ... remote: *** error: lines with trailing whitespace found remote: error: hook declined to update refs/heads/master
202 lines
4.8 KiB
ArmAsm
202 lines
4.8 KiB
ArmAsm
/* Optimized memrchr implementation for PowerPC64/POWER7 using cmpb insn.
|
|
Copyright (C) 2010-2021 Free Software Foundation, Inc.
|
|
Contributed by Luis Machado <luisgpm@br.ibm.com>.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <sysdep.h>
|
|
|
|
/* int [r3] memrchr (char *s [r3], int byte [r4], int size [r5]) */
|
|
|
|
#ifndef MEMRCHR
|
|
# define MEMRCHR __memrchr
|
|
#endif
|
|
.machine power7
|
|
ENTRY_TOCLESS (MEMRCHR)
|
|
CALL_MCOUNT 3
|
|
add r7,r3,r5 /* Calculate the last acceptable address. */
|
|
neg r0,r7
|
|
addi r7,r7,-1
|
|
mr r10,r3
|
|
clrrdi r6,r7,7
|
|
li r9,3<<5
|
|
dcbt r9,r6,8 /* Stream hint, decreasing addresses. */
|
|
|
|
/* Replicate BYTE to doubleword. */
|
|
insrdi r4,r4,8,48
|
|
insrdi r4,r4,16,32
|
|
insrdi r4,r4,32,0
|
|
li r6,-8
|
|
li r9,-1
|
|
rlwinm r0,r0,3,26,28 /* Calculate padding. */
|
|
clrrdi r8,r7,3
|
|
srd r9,r9,r0
|
|
cmpldi r5,32
|
|
clrrdi r0,r10,3
|
|
ble L(small_range)
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldx r12,0,r8
|
|
#else
|
|
ldbrx r12,0,r8 /* Load reversed doubleword from memory. */
|
|
#endif
|
|
cmpb r3,r12,r4 /* Check for BYTE in DWORD1. */
|
|
and r3,r3,r9
|
|
cmpldi cr7,r3,0 /* If r3 == 0, no BYTEs have been found. */
|
|
bne cr7,L(done)
|
|
|
|
mtcrf 0x01,r8
|
|
/* Are we now aligned to a quadword boundary? If so, skip to
|
|
the main loop. Otherwise, go through the alignment code. */
|
|
bf 28,L(loop_setup)
|
|
|
|
/* Handle DWORD2 of pair. */
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldx r12,r8,r6
|
|
#else
|
|
ldbrx r12,r8,r6
|
|
#endif
|
|
addi r8,r8,-8
|
|
cmpb r3,r12,r4
|
|
cmpldi cr7,r3,0
|
|
bne cr7,L(done)
|
|
|
|
L(loop_setup):
|
|
/* The last dword we want to read in the loop below is the one
|
|
containing the first byte of the string, ie. the dword at
|
|
s & ~7, or r0. The first dword read is at r8 - 8, we
|
|
read 2 * cnt dwords, so the last dword read will be at
|
|
r8 - 8 - 16 * cnt + 8. Solving for cnt gives
|
|
cnt = (r8 - r0) / 16 */
|
|
sub r5,r8,r0
|
|
addi r8,r8,-8
|
|
srdi r9,r5,4 /* Number of loop iterations. */
|
|
mtctr r9 /* Setup the counter. */
|
|
|
|
/* Main loop to look for BYTE backwards in the string.
|
|
FIXME: Investigate whether 32 byte align helps with this
|
|
9 instruction loop. */
|
|
.align 5
|
|
L(loop):
|
|
/* Load two doublewords, compare and merge in a
|
|
single register for speed. This is an attempt
|
|
to speed up the byte-checking process for bigger strings. */
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldx r12,0,r8
|
|
ldx r11,r8,r6
|
|
#else
|
|
ldbrx r12,0,r8
|
|
ldbrx r11,r8,r6
|
|
#endif
|
|
cmpb r3,r12,r4
|
|
cmpb r9,r11,r4
|
|
or r5,r9,r3 /* Merge everything in one doubleword. */
|
|
cmpldi cr7,r5,0
|
|
bne cr7,L(found)
|
|
addi r8,r8,-16
|
|
bdnz L(loop)
|
|
|
|
/* We may have one more word to read. */
|
|
cmpld r8,r0
|
|
bnelr
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldx r12,0,r8
|
|
#else
|
|
ldbrx r12,0,r8
|
|
#endif
|
|
cmpb r3,r12,r4
|
|
cmpldi cr7,r3,0
|
|
bne cr7,L(done)
|
|
blr
|
|
|
|
.align 4
|
|
L(found):
|
|
/* OK, one (or both) of the dwords contains BYTE. Check
|
|
the first dword. */
|
|
cmpldi cr6,r3,0
|
|
bne cr6,L(done)
|
|
|
|
/* BYTE must be in the second word. Adjust the address
|
|
again and move the result of cmpb to r3 so we can calculate the
|
|
pointer. */
|
|
|
|
mr r3,r9
|
|
addi r8,r8,-8
|
|
|
|
/* r3 has the output of the cmpb instruction, that is, it contains
|
|
0xff in the same position as BYTE in the original
|
|
word from the string. Use that to calculate the pointer.
|
|
We need to make sure BYTE is *before* the end of the
|
|
range. */
|
|
L(done):
|
|
cntlzd r9,r3 /* Count leading zeros before the match. */
|
|
cmpld r8,r0 /* Are we on the last word? */
|
|
srdi r6,r9,3 /* Convert leading zeros to bytes. */
|
|
addi r0,r6,-7
|
|
sub r3,r8,r0
|
|
cmpld cr7,r3,r10
|
|
bnelr
|
|
bgelr cr7
|
|
li r3,0
|
|
blr
|
|
|
|
.align 4
|
|
L(null):
|
|
li r3,0
|
|
blr
|
|
|
|
/* Deals with size <= 32. */
|
|
.align 4
|
|
L(small_range):
|
|
cmpldi r5,0
|
|
beq L(null)
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldx r12,0,r8
|
|
#else
|
|
ldbrx r12,0,r8 /* Load reversed doubleword from memory. */
|
|
#endif
|
|
cmpb r3,r12,r4 /* Check for BYTE in DWORD1. */
|
|
and r3,r3,r9
|
|
cmpldi cr7,r3,0
|
|
bne cr7,L(done)
|
|
|
|
/* Are we done already? */
|
|
cmpld r8,r0
|
|
addi r8,r8,-8
|
|
beqlr
|
|
|
|
.align 5
|
|
L(loop_small):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldx r12,0,r8
|
|
#else
|
|
ldbrx r12,0,r8
|
|
#endif
|
|
cmpb r3,r12,r4
|
|
cmpld r8,r0
|
|
cmpldi cr7,r3,0
|
|
bne cr7,L(done)
|
|
addi r8,r8,-8
|
|
bne L(loop_small)
|
|
blr
|
|
|
|
END (MEMRCHR)
|
|
weak_alias (__memrchr, memrchr)
|
|
libc_hidden_builtin_def (memrchr)
|