glibc/elf/dso-sort-tests-all.py
Joseph Myers d7f587398c Add further DSO dependency sorting tests
The current DSO dependency sorting tests are for a limited number of
specific cases, including some from particular bug reports.

Add tests that systematically cover all possible DAGs for an
executable and the shared libraries it depends on, directly or
indirectly, up to four objects (an executable and three shared
libraries).  (For this kind of DAG - ones with a single source vertex
from which all others are reachable, and an ordering on the edges from
each vertex - there are 57 DAGs on four vertices, 3399 on five
vertices and 1026944 on six vertices; see
https://arxiv.org/pdf/2303.14710 for more details on this enumeration.
I've tested that the 3399 cases with five vertices do all pass if
enabled.)

These tests are replicating the sorting logic from the dynamic linker
(thereby, for example, asserting that it doesn't accidentally change);
I'm not claiming that the logic in the dynamic linker is in some
abstract sense optimal.  Note that these tests do illustrate how in
some cases the two sorting algorithms produce different results for a
DAG (I think all the existing tests for such differences are ones
involving cycles, and the motivation for the new algorithm was also to
improve the handling of cycles):

  tst-dso-ordering-all4-44: a->[bc];{}->[cba]
  output(glibc.rtld.dynamic_sort=1): c>b>a>{}<a<b<c
  output(glibc.rtld.dynamic_sort=2): b>c>a>{}<a<c<b

They also illustrate that sometimes the sorting algorithms do not
follow the order in which dependencies are listed in DT_NEEDED even
though there is a valid topological sort that does follow that, which
might be counterintuitive considering that the DT_NEEDED ordering is
followed in the simplest cases:

  tst-dso-ordering-all4-56: {}->[abc]
  output: c>b>a>{}<a<b<c

shows such a simple case following DT_NEEDED order for destructor
execution (the reverse of it for constructor execution), but

  tst-dso-ordering-all4-41: a->[cb];{}->[cba]
  output: c>b>a>{}<a<b<c

shows that c and b are in the opposite order to what might be expected
from the simplest case, though there is no dependency requiring such
an opposite order to be used.

(I'm not asserting that either of those things is a problem, simply
observing them as less obvious properties of the sorting algorithms
shown up by these tests.)

Tested for x86_64.
2024-12-19 18:56:04 +00:00

219 lines
8.6 KiB
Python
Executable File

#!/usr/bin/env python3
# Generate all DAGs for dependency ordering of a given number of objects.
# Copyright (C) 2024 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
#
# The GNU C Library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# The GNU C Library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with the GNU C Library; if not, see
# <https://www.gnu.org/licenses/>.
import argparse
import sys
def print_dag(state, dag, postorder, postorder_new):
"""Print a DAG in the form used by dso-ordering-test.py."""
out = []
for i in range(len(dag)):
if dag[i]:
if i == len(dag) - 1:
name = '{}'
else:
name = chr(ord('a') + len(dag) - 2 - i)
this_deps = [chr(ord('a') + len(dag) - 2 - j) for j in dag[i]]
this_out = ('[%s]' % (''.join(this_deps))
if len(this_deps) > 1
else this_deps[0])
out.append('%s->%s' % (name, this_out))
output_old = (
'%s>{}<%s' %
('>'.join(chr(ord('a') + i) for i in range(len(dag) - 2, -1, -1)),
'<'.join(chr(ord('a') + i) for i in range(0, len(dag) - 1))))
if postorder == postorder_new:
print('tst-dso-ordering-all%d-%d: %s\n'
'output: %s\n'
% (len(dag), state['num_dags'], ';'.join(out), output_old))
else:
names_new = [chr(ord('a') + len(dag) - 2 - x)
for x in postorder_new[:-1]]
output_new = '%s>{}<%s' % ('>'.join(names_new),
'<'.join(reversed(names_new)))
print('tst-dso-ordering-all%d-%d: %s\n'
'output(glibc.rtld.dynamic_sort=1): %s\n'
'output(glibc.rtld.dynamic_sort=2): %s\n'
% (len(dag), state['num_dags'], ';'.join(out), output_old,
output_new))
state['num_dags'] += 1
def gen_postorder_old(dag, postorder):
"""Generate a postorder traversal of the vertices of the given
DAG, in the particular choice of ordering that corresponds to how
the dynamic linker sorts constructor executions (old algorithm)."""
# First list all the vertices, breadth-first.
postorder.append(len(dag) - 1)
for i in range(len(dag)):
for v in dag[postorder[i]]:
if v not in postorder:
postorder.append(v)
# Now move any vertex with an edge from a later one to just after
# the last vertex with an edge to it (emulating the older dynamic
# linker algorithm).
changed = True
while changed:
changed = False
i = 0
while i < len(dag):
move_past = None
for k in range(len(dag) - 1, i, -1):
if postorder[i] in dag[postorder[k]]:
move_past = k
break
if move_past is None:
i += 1
else:
changed = True
postorder[i:k+1] = postorder[i+1:k+1] + [postorder[i]]
# Finally, reverse the list.
postorder.reverse()
def gen_postorder_dfs(dag, postorder, v):
"""Traverse the dependencies of a vertex as part of generating a
postorder traversal of the given DAG (new algorithm)."""
if v in postorder:
return
for d in dag[v]:
gen_postorder_dfs(dag, postorder, d)
postorder.append(v)
def gen_postorder_new(dag, postorder):
"""Generate a postorder traversal of the vertices of the given
DAG, in the particular choice of ordering that corresponds to how
the dynamic linker sorts constructor executions (new algorithm)."""
# First list all the vertices, breadth-first.
tmp = []
tmp.append(len(dag) - 1)
for i in range(len(dag)):
for v in dag[tmp[i]]:
if v not in tmp:
tmp.append(v)
# Starting at the end of the breadth-first list, do depth-first
# traversal of dependencies to add to the final ordering.
for v in reversed(tmp):
gen_postorder_dfs(dag, postorder, v)
def gen_orderings_rec_sub(state, dag, num_done, num_swaps_done):
"""Generate possible orderings for the edges out from each vertex
of a DAG and test whether a postorder traversal yields the
vertices in order, where orderings have already been generated for
some number of vertices and some number of initial edges have been
chosen in the ordering for the next vertex."""
if num_swaps_done >= len(dag[num_done]) - 1:
gen_orderings_rec(state, dag, num_done + 1)
else:
for i in range(num_swaps_done, len(dag[num_done])):
ndag = dag
if i != num_swaps_done:
ndag = ndag.copy()
ndag[num_done] = ndag[num_done].copy()
first = ndag[num_done][num_swaps_done]
second = ndag[num_done][i]
ndag[num_done][i] = first
ndag[num_done][num_swaps_done] = second
gen_orderings_rec_sub(state, ndag, num_done, num_swaps_done + 1)
def gen_orderings_rec(state, dag, num_done):
"""Generate possible orderings for the edges out from each vertex
of a DAG and test whether a postorder traversal yields the
vertices in order, where orderings have already been generated for
some number of vertices."""
if num_done == len(dag):
postorder = []
gen_postorder_old(dag, postorder)
if postorder == sorted(postorder):
postorder_new = []
gen_postorder_new(dag, postorder_new)
print_dag(state, dag, postorder, postorder_new)
else:
gen_orderings_rec_sub(state, dag, num_done, 0)
def gen_orderings(state, dag):
"""Generate possible orderings for the edges out from each vertex
of a DAG and test whether a postorder traversal yields the
vertices in order."""
gen_orderings_rec(state, dag, 0)
def gen_dags_rec_sub(state, partial_dag, num_vertices, num_done_last):
"""Generate DAGs, where a partial DAG for an initial subsequence
of the vertices, and partial information about edges from the last
vertex, are passed in."""
if num_done_last == len(partial_dag) - 1:
gen_dags_rec(state, partial_dag, num_vertices)
else:
# Recurse with an edge to vertex num_done_last.
new_dag = partial_dag.copy()
new_dag[-1] = new_dag[-1].copy()
new_dag[-1].append(num_done_last)
gen_dags_rec_sub(state, new_dag, num_vertices, num_done_last + 1)
# Recurse without an edge to vertex num_done_last, unless this is
# the last vertex and num_done_last is not otherwise reachable.
can_recurse_without = len(partial_dag) < num_vertices
if not can_recurse_without:
for i in range(num_done_last + 1, len(partial_dag) - 1):
if num_done_last in partial_dag[i]:
can_recurse_without = True
break
if can_recurse_without:
gen_dags_rec_sub(state, partial_dag, num_vertices,
num_done_last + 1)
def gen_dags_rec(state, partial_dag, num_vertices):
"""Generate DAGs, where a partial DAG for an initial subsequence
of the vertices is passed in."""
if len(partial_dag) == num_vertices:
gen_orderings(state, partial_dag)
else:
partial_dag = partial_dag.copy()
partial_dag.append([])
gen_dags_rec_sub(state, partial_dag, num_vertices, 0)
def gen_dags(state, num_vertices):
"""Generate DAGs with the given number of vertices, last vertex a
distinguished root vertex from which all the others can be
reached, order of edges from each vertex considered significant,
such that a postorder traversal (corresponding to the order in
which DSO dependency constructors are executed) yields the
vertices in order."""
gen_dags_rec(state, [[]], num_vertices)
def main(argv):
"""The main entry point."""
parser = argparse.ArgumentParser(
description='Generate DAGs to test DSO dependency ordering.')
parser.add_argument('num_objects', help='number of objects in DAG')
print('tunable_option: glibc.rtld.dynamic_sort=1\n'
'tunable_option: glibc.rtld.dynamic_sort=2\n')
gen_dags({'num_dags': 0}, int(parser.parse_args(argv).num_objects))
if __name__ == '__main__':
main(sys.argv[1:])