mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-06 12:00:24 +08:00
9b7cfab180
No bug. This commit adds new optimized __memcmpeq implementation for evex. The primary optimizations are: 1) skipping the logic to find the difference of the first mismatched byte. 2) not updating src/dst addresses as the non-equals logic does not need to be reused by different areas.
324 lines
8.6 KiB
ArmAsm
324 lines
8.6 KiB
ArmAsm
/* __memcmpeq optimized with EVEX.
|
|
Copyright (C) 2017-2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#if IS_IN (libc)
|
|
|
|
/* __memcmpeq is implemented as:
|
|
1. Use ymm vector compares when possible. The only case where
|
|
vector compares is not possible for when size < VEC_SIZE
|
|
and loading from either s1 or s2 would cause a page cross.
|
|
2. Use xmm vector compare when size >= 8 bytes.
|
|
3. Optimistically compare up to first 4 * VEC_SIZE one at a
|
|
to check for early mismatches. Only do this if its guranteed the
|
|
work is not wasted.
|
|
4. If size is 8 * VEC_SIZE or less, unroll the loop.
|
|
5. Compare 4 * VEC_SIZE at a time with the aligned first memory
|
|
area.
|
|
6. Use 2 vector compares when size is 2 * VEC_SIZE or less.
|
|
7. Use 4 vector compares when size is 4 * VEC_SIZE or less.
|
|
8. Use 8 vector compares when size is 8 * VEC_SIZE or less. */
|
|
|
|
# include <sysdep.h>
|
|
|
|
# ifndef MEMCMPEQ
|
|
# define MEMCMPEQ __memcmpeq_evex
|
|
# endif
|
|
|
|
# define VMOVU vmovdqu64
|
|
# define VPCMP vpcmpub
|
|
# define VPTEST vptestmb
|
|
|
|
# define VEC_SIZE 32
|
|
# define PAGE_SIZE 4096
|
|
|
|
# define YMM0 ymm16
|
|
# define YMM1 ymm17
|
|
# define YMM2 ymm18
|
|
# define YMM3 ymm19
|
|
# define YMM4 ymm20
|
|
# define YMM5 ymm21
|
|
# define YMM6 ymm22
|
|
|
|
|
|
.section .text.evex, "ax", @progbits
|
|
ENTRY_P2ALIGN (MEMCMPEQ, 6)
|
|
# ifdef __ILP32__
|
|
/* Clear the upper 32 bits. */
|
|
movl %edx, %edx
|
|
# endif
|
|
cmp $VEC_SIZE, %RDX_LP
|
|
jb L(less_vec)
|
|
|
|
/* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */
|
|
VMOVU (%rsi), %YMM1
|
|
/* Use compare not equals to directly check for mismatch. */
|
|
VPCMP $4, (%rdi), %YMM1, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_neq0)
|
|
|
|
cmpq $(VEC_SIZE * 2), %rdx
|
|
jbe L(last_1x_vec)
|
|
|
|
/* Check second VEC no matter what. */
|
|
VMOVU VEC_SIZE(%rsi), %YMM2
|
|
VPCMP $4, VEC_SIZE(%rdi), %YMM2, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_neq0)
|
|
|
|
/* Less than 4 * VEC. */
|
|
cmpq $(VEC_SIZE * 4), %rdx
|
|
jbe L(last_2x_vec)
|
|
|
|
/* Check third and fourth VEC no matter what. */
|
|
VMOVU (VEC_SIZE * 2)(%rsi), %YMM3
|
|
VPCMP $4, (VEC_SIZE * 2)(%rdi), %YMM3, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_neq0)
|
|
|
|
VMOVU (VEC_SIZE * 3)(%rsi), %YMM4
|
|
VPCMP $4, (VEC_SIZE * 3)(%rdi), %YMM4, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_neq0)
|
|
|
|
/* Go to 4x VEC loop. */
|
|
cmpq $(VEC_SIZE * 8), %rdx
|
|
ja L(more_8x_vec)
|
|
|
|
/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
|
|
branches. */
|
|
|
|
VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %YMM1
|
|
VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %YMM2
|
|
addq %rdx, %rdi
|
|
|
|
/* Wait to load from s1 until addressed adjust due to
|
|
unlamination. */
|
|
|
|
/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
|
|
will have some 1s. */
|
|
vpxorq -(VEC_SIZE * 4)(%rdi), %YMM1, %YMM1
|
|
/* Ternary logic to xor -(VEC_SIZE * 3)(%rdi) with YMM2 while
|
|
oring with YMM1. Result is stored in YMM1. */
|
|
vpternlogd $0xde, -(VEC_SIZE * 3)(%rdi), %YMM1, %YMM2
|
|
|
|
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %YMM3
|
|
vpxorq -(VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
|
|
/* Or together YMM1, YMM2, and YMM3 into YMM3. */
|
|
VMOVU -(VEC_SIZE)(%rsi, %rdx), %YMM4
|
|
vpxorq -(VEC_SIZE)(%rdi), %YMM4, %YMM4
|
|
|
|
/* Or together YMM2, YMM3, and YMM4 into YMM4. */
|
|
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
|
|
|
|
/* Compare YMM4 with 0. If any 1s s1 and s2 don't match. */
|
|
VPTEST %YMM4, %YMM4, %k1
|
|
kmovd %k1, %eax
|
|
L(return_neq0):
|
|
ret
|
|
|
|
/* Fits in padding needed to .p2align 5 L(less_vec). */
|
|
L(last_1x_vec):
|
|
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %YMM1
|
|
VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx), %YMM1, %k1
|
|
kmovd %k1, %eax
|
|
ret
|
|
|
|
/* NB: p2align 5 here will ensure the L(loop_4x_vec) is also 32
|
|
byte aligned. */
|
|
.p2align 5
|
|
L(less_vec):
|
|
/* Check if one or less char. This is necessary for size = 0 but
|
|
is also faster for size = 1. */
|
|
cmpl $1, %edx
|
|
jbe L(one_or_less)
|
|
|
|
/* Check if loading one VEC from either s1 or s2 could cause a
|
|
page cross. This can have false positives but is by far the
|
|
fastest method. */
|
|
movl %edi, %eax
|
|
orl %esi, %eax
|
|
andl $(PAGE_SIZE - 1), %eax
|
|
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
|
|
jg L(page_cross_less_vec)
|
|
|
|
/* No page cross possible. */
|
|
VMOVU (%rsi), %YMM2
|
|
VPCMP $4, (%rdi), %YMM2, %k1
|
|
kmovd %k1, %eax
|
|
/* Result will be zero if s1 and s2 match. Otherwise first set
|
|
bit will be first mismatch. */
|
|
bzhil %edx, %eax, %eax
|
|
ret
|
|
|
|
/* Relatively cold but placing close to L(less_vec) for 2 byte
|
|
jump encoding. */
|
|
.p2align 4
|
|
L(one_or_less):
|
|
jb L(zero)
|
|
movzbl (%rsi), %ecx
|
|
movzbl (%rdi), %eax
|
|
subl %ecx, %eax
|
|
/* No ymm register was touched. */
|
|
ret
|
|
/* Within the same 16 byte block is L(one_or_less). */
|
|
L(zero):
|
|
xorl %eax, %eax
|
|
ret
|
|
|
|
.p2align 4
|
|
L(last_2x_vec):
|
|
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %YMM1
|
|
vpxorq -(VEC_SIZE * 2)(%rdi, %rdx), %YMM1, %YMM1
|
|
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %YMM2
|
|
vpternlogd $0xde, -(VEC_SIZE * 1)(%rdi, %rdx), %YMM1, %YMM2
|
|
VPTEST %YMM2, %YMM2, %k1
|
|
kmovd %k1, %eax
|
|
ret
|
|
|
|
.p2align 4
|
|
L(more_8x_vec):
|
|
/* Set end of s1 in rdx. */
|
|
leaq -(VEC_SIZE * 4)(%rdi, %rdx), %rdx
|
|
/* rsi stores s2 - s1. This allows loop to only update one
|
|
pointer. */
|
|
subq %rdi, %rsi
|
|
/* Align s1 pointer. */
|
|
andq $-VEC_SIZE, %rdi
|
|
/* Adjust because first 4x vec where check already. */
|
|
subq $-(VEC_SIZE * 4), %rdi
|
|
.p2align 4
|
|
L(loop_4x_vec):
|
|
VMOVU (%rsi, %rdi), %YMM1
|
|
vpxorq (%rdi), %YMM1, %YMM1
|
|
|
|
VMOVU VEC_SIZE(%rsi, %rdi), %YMM2
|
|
vpternlogd $0xde, (VEC_SIZE)(%rdi), %YMM1, %YMM2
|
|
|
|
VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %YMM3
|
|
vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
|
|
|
|
VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %YMM4
|
|
vpxorq (VEC_SIZE * 3)(%rdi), %YMM4, %YMM4
|
|
|
|
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
|
|
VPTEST %YMM4, %YMM4, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_neq2)
|
|
subq $-(VEC_SIZE * 4), %rdi
|
|
cmpq %rdx, %rdi
|
|
jb L(loop_4x_vec)
|
|
|
|
subq %rdx, %rdi
|
|
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM4
|
|
vpxorq (VEC_SIZE * 3)(%rdx), %YMM4, %YMM4
|
|
/* rdi has 4 * VEC_SIZE - remaining length. */
|
|
cmpl $(VEC_SIZE * 3), %edi
|
|
jae L(8x_last_1x_vec)
|
|
/* Load regardless of branch. */
|
|
VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %YMM3
|
|
/* Ternary logic to xor (VEC_SIZE * 2)(%rdx) with YMM3 while
|
|
oring with YMM4. Result is stored in YMM4. */
|
|
vpternlogd $0xf6, (VEC_SIZE * 2)(%rdx), %YMM3, %YMM4
|
|
cmpl $(VEC_SIZE * 2), %edi
|
|
jae L(8x_last_2x_vec)
|
|
|
|
VMOVU VEC_SIZE(%rsi, %rdx), %YMM2
|
|
vpxorq VEC_SIZE(%rdx), %YMM2, %YMM2
|
|
|
|
VMOVU (%rsi, %rdx), %YMM1
|
|
vpxorq (%rdx), %YMM1, %YMM1
|
|
|
|
vpternlogd $0xfe, %YMM1, %YMM2, %YMM4
|
|
L(8x_last_1x_vec):
|
|
L(8x_last_2x_vec):
|
|
VPTEST %YMM4, %YMM4, %k1
|
|
kmovd %k1, %eax
|
|
L(return_neq2):
|
|
ret
|
|
|
|
/* Relatively cold case as page cross are unexpected. */
|
|
.p2align 4
|
|
L(page_cross_less_vec):
|
|
cmpl $16, %edx
|
|
jae L(between_16_31)
|
|
cmpl $8, %edx
|
|
ja L(between_9_15)
|
|
cmpl $4, %edx
|
|
jb L(between_2_3)
|
|
/* From 4 to 8 bytes. No branch when size == 4. */
|
|
movl (%rdi), %eax
|
|
subl (%rsi), %eax
|
|
movl -4(%rdi, %rdx), %ecx
|
|
movl -4(%rsi, %rdx), %edi
|
|
subl %edi, %ecx
|
|
orl %ecx, %eax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(between_16_31):
|
|
/* From 16 to 31 bytes. No branch when size == 16. */
|
|
|
|
/* Safe to use xmm[0, 15] as no vzeroupper is needed so RTM safe.
|
|
*/
|
|
vmovdqu (%rsi), %xmm1
|
|
vpcmpeqb (%rdi), %xmm1, %xmm1
|
|
vmovdqu -16(%rsi, %rdx), %xmm2
|
|
vpcmpeqb -16(%rdi, %rdx), %xmm2, %xmm2
|
|
vpand %xmm1, %xmm2, %xmm2
|
|
vpmovmskb %xmm2, %eax
|
|
notw %ax
|
|
/* No ymm register was touched. */
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(between_9_15):
|
|
/* From 9 to 15 bytes. */
|
|
movq (%rdi), %rax
|
|
subq (%rsi), %rax
|
|
movq -8(%rdi, %rdx), %rcx
|
|
movq -8(%rsi, %rdx), %rdi
|
|
subq %rdi, %rcx
|
|
orq %rcx, %rax
|
|
/* edx is guranteed to be a non-zero int. */
|
|
cmovnz %edx, %eax
|
|
ret
|
|
|
|
/* Don't align. This is cold and aligning here will cause code
|
|
to spill into next cache line. */
|
|
L(between_2_3):
|
|
/* From 2 to 3 bytes. No branch when size == 2. */
|
|
movzwl (%rdi), %eax
|
|
movzwl (%rsi), %ecx
|
|
subl %ecx, %eax
|
|
movzbl -1(%rdi, %rdx), %ecx
|
|
/* All machines that support evex will insert a "merging uop"
|
|
avoiding any serious partial register stalls. */
|
|
subb -1(%rsi, %rdx), %cl
|
|
orl %ecx, %eax
|
|
/* No ymm register was touched. */
|
|
ret
|
|
|
|
/* 4 Bytes from next cache line. */
|
|
END (MEMCMPEQ)
|
|
#endif
|