glibc/math/tgmath.h
Joseph Myers 423c2b9d08 Add fromfp functions.
TS 18661-1 defines fromfp functions (fromfp, fromfpx, ufromfp,
ufromfpx, and float and long double variants) to convert from
floating-point to an integer type with any signedness and any given
width up to that of intmax_t, in any of the five IEEE rounding modes
(the usual four for binary floating point, plus rounding to nearest
with ties rounding away from zero), with control of whether in-range
non-integer values should result in the "inexact" exception being
raised.  This patch implements these functions for glibc.

These implementations are (apart from raising exceptions) pure integer
implementations; it's entirely possible optimized versions could be
devised for some architectures.  A common math/fromfp.h header
provides various common helper code that can readily be shared between
the implementations for different types.  For each type, the bulk of
the implementation is also shared between the four functions, with
wrappers that define UNSIGNED and INEXACT macros appropriately before
including the main implementation.

As the functions return intmax_t and uintmax_t without math.h being
allowed to expose those typedef names, they are declared using
__intmax_t and __uintmax_t as obtained from <bits/types.h>.

The FP_INT_* rounding direction macros are defined as ascending
integers in the order the names are listed in the TS; I see no
significant value in allowing architectures to vary the values of
them.

The libm-test machinery is duly adapted to handle unsigned int
arguments, and intmax_t and uintmax_t results.  Because each test
input is generally tested for four functions, five rounding modes and
several different widths, the libm-test.inc additions are very large.
Thus, the diffs in the body of this message exclude the libm-test.inc
changes, with the full patch being attached gzipped.  The bulk of the
new tests were generated (expanded from a test input plus rounding
results and information about where it lies in the relevant interval
between integers, to libm-test tests for all relevant combinations of
function, rounding direction and width) by a script that's included in
the patch as math/gen-fromfp-tests.py (input data
math/gen-fromfp-tests-inputs); as an ad hoc script that's not really
expected to be rerun, it's not very polished, but it's at least
plausibly useful for adding any further tests for these functions in
future.  I may split the libm-test tests up by function in future (so
both libm-test.inc and auto-libm-test-out are split into separate
files, and the tests for each function are also built and run
separately), but not for 2.25.

For no obvious reason, adding tgmath tests for the new functions
resulted in -Wuninitialized errors from test-tgmath.c about the
variable i being used uninitialized.  Those errors were correct - the
variable is read by the frexp version in test-tgmath.c (where real
frexp would write through that pointer instead of reading it) - but I
don't know why this patch would result in the pre-existing issue being
newly detected.  The patch initializes the variable to avoid those
errors.

With these changes, glibc 2.25 should have all the library features
from TS 18661-1 other than the functions that round result to narrower
type (and constant rounding directions, but I'm considering those
mainly a compiler feature not a library one).

Tested for x86_64, x86, mips64 and powerpc.

	* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
	(fromfp): New declaration.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (fromfpx): Likewise.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (ufromfp): Likewise.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (ufromfpx): Likewise.
	* math/tgmath.h (__TGMATH_TERNARY_FIRST_REAL_RET_ONLY): New macro.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (fromfp): Likewise.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (ufromfp): Likewise.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (fromfpx): Likewise.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (ufromfpx): Likewise.
	* math/math.h: Include <bits/types.h>.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (FP_INT_UPWARD): New enum
	constant and macro.
	(FP_INT_DOWNWARD): Likewise.
	(FP_INT_TOWARDZERO): Likewise.
	(FP_INT_TONEARESTFROMZERO): Likewise.
	(FP_INT_TONEAREST): Likewise.
	* math/Versions (fromfp): New libm symbol at version GLIBC_2.25.
	(fromfpf): Likewise.
	(fromfpl): Likewise.
	(ufromfp): Likewise.
	(ufromfpf): Likewise.
	(ufromfpl): Likewise.
	(fromfpx): Likewise.
	(fromfpxf): Likewise.
	(fromfpxl): Likewise.
	(ufromfpx): Likewise.
	(ufromfpxf): Likewise.
	(ufromfpxl): Likewise.
	* math/Makefile (libm-calls): Add s_fromfpF, s_ufromfpF,
	s_fromfpxF and s_ufromfpxF.
	* math/gen-fromfp-tests.py: New file.
	* math/gen-fromfp-tests-inputs: Likewise.
	* math/libm-test.inc: Include <stdint.h>
	(check_intmax_t): New function.
	(check_uintmax_t): Likewise.
	(struct test_fiu_M_data): New type.
	(struct test_fiu_U_data): Likewise.
	(RUN_TEST_fiu_M): New macro.
	(RUN_TEST_LOOP_fiu_M): Likewise.
	(RUN_TEST_fiu_U): Likewise.
	(RUN_TEST_LOOP_fiu_U): Likewise.
	(fromfp_test_data): New array.
	(fromfp_test): New function.
	(fromfpx_test_data): New array.
	(fromfpx_test): New function.
	(ufromfp_test_data): New array.
	(ufromfp_test): New function.
	(ufromfpx_test_data): New array.
	(ufromfpx_test): New function.
	(main): Call fromfp_test, fromfpx_test, ufromfp_test and
	ufromfpx_test.
	* math/gen-libm-test.pl (parse_args): Handle u, M and U descriptor
	characters.
	* math/test-tgmath-ret.c: Include <stdint.h>.
	(rm): New variable.
	(width): Likewise.
	(CHECK_RET_CONST_TYPE): Take extra arguments and pass them to
	called function.
	(CHECK_RET_CONST_FLOAT): Take extra arguments and pass them to
	CHECK_RET_CONST_TYPE.
	(CHECK_RET_CONST_DOUBLE): Likewise.
	(CHECK_RET_CONST_LDOUBLE): Likewise.
	(CHECK_RET_CONST): Take extra arguments and pass them to calls
	macros.
	(fromfp): New CHECK_RET_CONST call.
	(ufromfp): Likewise.
	(fromfpx): Likewise.
	(ufromfpx): Likewise.
	(do_test): Call check_return_fromfp, check_return_ufromfp,
	check_return_fromfpx and check_return_ufromfpx.
	* math/test-tgmath.c: Include <stdint.h>
	(NCALLS): Increase to 138.
	(F(compile_test)): Initialize i.  Call fromfp functions.
	(F(fromfp)): New function.
	(F(fromfpx)): Likewise.
	(F(ufromfp)): Likewise.
	(F(ufromfpx)): Likewise.
	* manual/arith.texi (Rounding Functions): Document FP_INT_UPWARD,
	FP_INT_DOWNWARD, FP_INT_TOWARDZERO, FP_INT_TONEARESTFROMZERO,
	FP_INT_TONEAREST, fromfp, fromfpf, fromfpl, ufromfp, ufromfpf,
	ufromfpl, fromfpx, fromfpxf, fromfpxl, ufromfpx, ufromfpxf and
	ufromfpxl.
	* manual/libm-err-tab.pl (@all_functions): Add fromfp, fromfpx,
	ufromfp and ufromfpx.
	* math/fromfp.h: New file.
	* sysdeps/ieee754/dbl-64/s_fromfp.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_fromfp_main.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_fromfpx.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_ufromfp.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_ufromfpx.c: Likewise.
	* sysdeps/ieee754/flt-32/s_fromfpf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_fromfpf_main.c: Likewise.
	* sysdeps/ieee754/flt-32/s_fromfpxf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_ufromfpf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_ufromfpxf.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_fromfpl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_fromfpl_main.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_fromfpxl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_ufromfpl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_ufromfpxl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_fromfpl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_fromfpl_main.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_fromfpxl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_ufromfpl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_ufromfpxl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fromfpl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fromfpl_main.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fromfpxl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_ufromfpl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_ufromfpxl.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fromfp,
	ufromfp, fromfpx and ufromfpx.
	(CFLAGS-nldbl-fromfp.c): New variable.
	(CFLAGS-nldbl-fromfpx.c): Likewise.
	(CFLAGS-nldbl-ufromfp.c): Likewise.
	(CFLAGS-nldbl-ufromfpx.c): Likewise.
	* sysdeps/ieee754/ldbl-opt/nldbl-compat.h: Include <stdint.h>.
	* sysdeps/ieee754/ldbl-opt/nldbl-fromfp.c: New file.
	* sysdeps/ieee754/ldbl-opt/nldbl-fromfpx.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/nldbl-ufromfp.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/nldbl-ufromfpx.c: Likewise.
	* sysdeps/nacl/libm.abilist: Update.
	* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2016-12-31 00:40:59 +00:00

504 lines
20 KiB
C

/* Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/*
* ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
*/
#ifndef _TGMATH_H
#define _TGMATH_H 1
/* Include the needed headers. */
#include <math.h>
#include <complex.h>
/* Since `complex' is currently not really implemented in most C compilers
and if it is implemented, the implementations differ. This makes it
quite difficult to write a generic implementation of this header. We
do not try this for now and instead concentrate only on GNU CC. Once
we have more information support for other compilers might follow. */
#if __GNUC_PREREQ (2, 7)
# ifdef __NO_LONG_DOUBLE_MATH
# define __tgml(fct) fct
# else
# define __tgml(fct) fct ## l
# endif
/* This is ugly but unless gcc gets appropriate builtins we have to do
something like this. Don't ask how it works. */
/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
Allows for _Bool. Expands to an integer constant expression. */
# if __GNUC_PREREQ (3, 1)
# define __floating_type(type) \
(__builtin_classify_type ((type) 0) == 8 \
|| (__builtin_classify_type ((type) 0) == 9 \
&& __builtin_classify_type (__real__ ((type) 0)) == 8))
# else
# define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
# endif
/* The tgmath real type for T, where E is 0 if T is an integer type and
1 for a floating type. */
# define __tgmath_real_type_sub(T, E) \
__typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
: (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
/* The tgmath real type of EXPR. */
# define __tgmath_real_type(expr) \
__tgmath_real_type_sub (__typeof__ ((__typeof__ (expr)) 0), \
__floating_type (__typeof__ (expr)))
/* We have two kinds of generic macros: to support functions which are
only defined on real valued parameters and those which are defined
for complex functions as well. */
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
(__extension__ ((sizeof (Val) == sizeof (double) \
|| __builtin_classify_type (Val) != 8) \
? (__tgmath_real_type (Val)) Fct (Val) \
: (sizeof (Val) == sizeof (float)) \
? (__tgmath_real_type (Val)) Fct##f (Val) \
: (__tgmath_real_type (Val)) __tgml(Fct) (Val)))
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \
(__extension__ ((sizeof (Val) == sizeof (double) \
|| __builtin_classify_type (Val) != 8) \
? (RetType) Fct (Val) \
: (sizeof (Val) == sizeof (float)) \
? (RetType) Fct##f (Val) \
: (RetType) __tgml(Fct) (Val)))
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ ((sizeof (Val1) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8) \
? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
: (sizeof (Val1) == sizeof (float)) \
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
: (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ (((sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double)) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2) \
: (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2)))
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ (((sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double)) \
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2, Val3) \
: (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2, Val3) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2, Val3)))
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ (((sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double) \
|| sizeof (Val3) > sizeof (double)) \
&& __builtin_classify_type ((Val1) + (Val2) + (Val3)) \
== 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
__tgml(Fct) (Val1, Val2, Val3) \
: (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double) \
|| sizeof (Val3) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8 \
|| __builtin_classify_type (Val2) != 8 \
|| __builtin_classify_type (Val3) != 8) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
Fct (Val1, Val2, Val3) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0 \
+ (__tgmath_real_type (Val3)) 0)) \
Fct##f (Val1, Val2, Val3)))
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, RetType, Fct) \
(__extension__ ((sizeof (Val1) == sizeof (double) \
|| __builtin_classify_type (Val1) != 8) \
? (RetType) Fct (Val1, Val2, Val3) \
: (sizeof (Val1) == sizeof (float)) \
? (RetType) Fct##f (Val1, Val2, Val3) \
: (RetType) __tgml(Fct) (Val1, Val2, Val3)))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
(__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__tgmath_real_type (Val)) Fct (Val) \
: (__tgmath_real_type (Val)) Cfct (Val)) \
: (sizeof (__real__ (Val)) == sizeof (float)) \
? ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__tgmath_real_type (Val)) Fct##f (Val) \
: (__tgmath_real_type (Val)) Cfct##f (Val)) \
: ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__tgmath_real_type (Val)) __tgml(Fct) (Val) \
: (__tgmath_real_type (Val)) __tgml(Cfct) (Val))))
# define __TGMATH_UNARY_IMAG(Val, Cfct) \
(__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) Cfct (Val) \
: (sizeof (__real__ (Val)) == sizeof (float)) \
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) Cfct##f (Val) \
: (__typeof__ ((__tgmath_real_type (Val)) 0 \
+ _Complex_I)) __tgml(Cfct) (Val)))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
(__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val)) != 8) \
? ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Fct (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Cfct (Val)) \
: (sizeof (__real__ (Val)) == sizeof (float)) \
? ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Fct##f (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
Cfct##f (Val)) \
: ((sizeof (__real__ (Val)) == sizeof (Val)) \
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
__tgml(Fct) (Val) \
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
__tgml(Cfct) (Val))))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
(__extension__ (((sizeof (__real__ (Val1)) > sizeof (double) \
|| sizeof (__real__ (Val2)) > sizeof (double)) \
&& __builtin_classify_type (__real__ (Val1) \
+ __real__ (Val2)) == 8) \
? ((sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Fct) (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
__tgml(Cfct) (Val1, Val2)) \
: (sizeof (__real__ (Val1)) == sizeof (double) \
|| sizeof (__real__ (Val2)) == sizeof (double) \
|| __builtin_classify_type (__real__ (Val1)) != 8 \
|| __builtin_classify_type (__real__ (Val2)) != 8) \
? ((sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Cfct (Val1, Val2)) \
: ((sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
? (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Fct##f (Val1, Val2) \
: (__typeof ((__tgmath_real_type (Val1)) 0 \
+ (__tgmath_real_type (Val2)) 0)) \
Cfct##f (Val1, Val2))))
#else
# error "Unsupported compiler; you cannot use <tgmath.h>"
#endif
/* Unary functions defined for real and complex values. */
/* Trigonometric functions. */
/* Arc cosine of X. */
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
/* Arc sine of X. */
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
/* Arc tangent of X. */
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
/* Arc tangent of Y/X. */
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
/* Cosine of X. */
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
/* Sine of X. */
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
/* Tangent of X. */
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
/* Hyperbolic functions. */
/* Hyperbolic arc cosine of X. */
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
/* Hyperbolic arc sine of X. */
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
/* Hyperbolic arc tangent of X. */
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
/* Hyperbolic cosine of X. */
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
/* Hyperbolic sine of X. */
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
/* Hyperbolic tangent of X. */
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
/* Exponential and logarithmic functions. */
/* Exponential function of X. */
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
/* Break VALUE into a normalized fraction and an integral power of 2. */
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
/* X times (two to the EXP power). */
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
/* Natural logarithm of X. */
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
/* Base-ten logarithm of X. */
#ifdef __USE_GNU
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
#else
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
#endif
/* Return exp(X) - 1. */
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
/* Return log(1 + X). */
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
/* Return the base 2 signed integral exponent of X. */
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
/* Compute base-2 exponential of X. */
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
/* Compute base-2 logarithm of X. */
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
/* Power functions. */
/* Return X to the Y power. */
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
/* Return the square root of X. */
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
/* Return `sqrt(X*X + Y*Y)'. */
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
/* Return the cube root of X. */
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
/* Nearest integer, absolute value, and remainder functions. */
/* Smallest integral value not less than X. */
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
/* Absolute value of X. */
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
/* Largest integer not greater than X. */
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
/* Floating-point modulo remainder of X/Y. */
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
/* Round X to integral valuein floating-point format using current
rounding direction, but do not raise inexact exception. */
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
/* Round X to the integral value in floating-point format nearest but
not larger in magnitude. */
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
and magnitude congruent `mod 2^n' to the magnitude of the integral
quotient x/y, with n >= 3. */
#define remquo(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
/* Round X to nearest integral value according to current rounding
direction. */
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint)
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint)
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround)
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround)
/* Return X with its signed changed to Y's. */
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
/* Error and gamma functions. */
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
/* Return the integer nearest X in the direction of the
prevailing rounding mode. */
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Return X - epsilon. */
# define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown)
/* Return X + epsilon. */
# define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup)
#endif
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
#define nexttoward(Val1, Val2) \
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
/* Return the remainder of integer divison X / Y with infinite precision. */
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
/* Return X times (2 to the Nth power). */
#ifdef __USE_MISC
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
#endif
/* Return X times (2 to the Nth power). */
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
/* Return X times (2 to the Nth power). */
#define scalbln(Val1, Val2) \
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
/* Return the binary exponent of X, which must be nonzero. */
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb)
/* Return positive difference between X and Y. */
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
/* Return maximum numeric value from X and Y. */
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
/* Return minimum numeric value from X and Y. */
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
/* Multiply-add function computed as a ternary operation. */
#define fma(Val1, Val2, Val3) \
__TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Round X to nearest integer value, rounding halfway cases to even. */
# define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven)
# define fromfp(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, __intmax_t, fromfp)
# define ufromfp(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, __uintmax_t, ufromfp)
# define fromfpx(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, __intmax_t, fromfpx)
# define ufromfpx(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, __uintmax_t, ufromfpx)
/* Like ilogb, but returning long int. */
# define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, llogb)
/* Return value with maximum magnitude. */
# define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag)
/* Return value with minimum magnitude. */
# define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag)
/* Total order operation. */
# define totalorder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, \
totalorder)
/* Total order operation on absolute values. */
# define totalordermag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, \
totalordermag)
#endif
/* Absolute value, conjugates, and projection. */
/* Argument value of Z. */
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)
/* Complex conjugate of Z. */
#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
/* Projection of Z onto the Riemann sphere. */
#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
/* Decomposing complex values. */
/* Imaginary part of Z. */
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)
/* Real part of Z. */
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)
#endif /* tgmath.h */