mirror of
git://sourceware.org/git/glibc.git
synced 2024-12-15 04:20:28 +08:00
6807f47b81
Reviewed-by: Florian Weimer <fweimer@redhat.com>
646 lines
29 KiB
Plaintext
646 lines
29 KiB
Plaintext
@node Searching and Sorting, Pattern Matching, Message Translation, Top
|
|
@c %MENU% General searching and sorting functions
|
|
@chapter Searching and Sorting
|
|
|
|
This chapter describes functions for searching and sorting arrays of
|
|
arbitrary objects. You pass the appropriate comparison function to be
|
|
applied as an argument, along with the size of the objects in the array
|
|
and the total number of elements.
|
|
|
|
@menu
|
|
* Comparison Functions:: Defining how to compare two objects.
|
|
Since the sort and search facilities
|
|
are general, you have to specify the
|
|
ordering.
|
|
* Array Search Function:: The @code{bsearch} function.
|
|
* Array Sort Function:: The @code{qsort} function.
|
|
* Search/Sort Example:: An example program.
|
|
* Hash Search Function:: The @code{hsearch} function.
|
|
* Tree Search Function:: The @code{tsearch} function.
|
|
@end menu
|
|
|
|
@node Comparison Functions
|
|
@section Defining the Comparison Function
|
|
@cindex Comparison Function
|
|
|
|
In order to use the sorted array library functions, you have to describe
|
|
how to compare the elements of the array.
|
|
|
|
To do this, you supply a comparison function to compare two elements of
|
|
the array. The library will call this function, passing as arguments
|
|
pointers to two array elements to be compared. Your comparison function
|
|
should return a value the way @code{strcmp} (@pxref{String/Array
|
|
Comparison}) does: negative if the first argument is ``less'' than the
|
|
second, zero if they are ``equal'', and positive if the first argument
|
|
is ``greater''.
|
|
|
|
Here is an example of a comparison function which works with an array of
|
|
numbers of type @code{double}:
|
|
|
|
@smallexample
|
|
int
|
|
compare_doubles (const void *a, const void *b)
|
|
@{
|
|
const double *da = (const double *) a;
|
|
const double *db = (const double *) b;
|
|
|
|
return (*da > *db) - (*da < *db);
|
|
@}
|
|
@end smallexample
|
|
|
|
The header file @file{stdlib.h} defines a name for the data type of
|
|
comparison functions. This type is a GNU extension.
|
|
|
|
@comment stdlib.h
|
|
@comment GNU
|
|
@tindex comparison_fn_t
|
|
@smallexample
|
|
int comparison_fn_t (const void *, const void *);
|
|
@end smallexample
|
|
|
|
@node Array Search Function
|
|
@section Array Search Function
|
|
@cindex search function (for arrays)
|
|
@cindex binary search function (for arrays)
|
|
@cindex array search function
|
|
|
|
Generally searching for a specific element in an array means that
|
|
potentially all elements must be checked. @Theglibc{} contains
|
|
functions to perform linear search. The prototypes for the following
|
|
two functions can be found in @file{search.h}.
|
|
|
|
@deftypefun {void *} lfind (const void *@var{key}, const void *@var{base}, size_t *@var{nmemb}, size_t @var{size}, comparison_fn_t @var{compar})
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
|
The @code{lfind} function searches in the array with @code{*@var{nmemb}}
|
|
elements of @var{size} bytes pointed to by @var{base} for an element
|
|
which matches the one pointed to by @var{key}. The function pointed to
|
|
by @var{compar} is used to decide whether two elements match.
|
|
|
|
The return value is a pointer to the matching element in the array
|
|
starting at @var{base} if it is found. If no matching element is
|
|
available @code{NULL} is returned.
|
|
|
|
The mean runtime of this function is @code{*@var{nmemb}}/2. This
|
|
function should only be used if elements often get added to or deleted from
|
|
the array in which case it might not be useful to sort the array before
|
|
searching.
|
|
@end deftypefun
|
|
|
|
@deftypefun {void *} lsearch (const void *@var{key}, void *@var{base}, size_t *@var{nmemb}, size_t @var{size}, comparison_fn_t @var{compar})
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
|
@c A signal handler that interrupted an insertion and performed an
|
|
@c insertion itself would leave the array in a corrupt state (e.g. one
|
|
@c new element initialized twice, with parts of both initializations
|
|
@c prevailing, and another uninitialized element), but this is just a
|
|
@c special case of races on user-controlled objects, that have to be
|
|
@c avoided by users.
|
|
|
|
@c In case of cancellation, we know the array won't be left in a corrupt
|
|
@c state; the new element is initialized before the element count is
|
|
@c incremented, and the compiler can't reorder these operations because
|
|
@c it can't know that they don't alias. So, we'll either cancel after
|
|
@c the increment and the initialization are both complete, or the
|
|
@c increment won't have taken place, and so how far the initialization
|
|
@c got doesn't matter.
|
|
The @code{lsearch} function is similar to the @code{lfind} function. It
|
|
searches the given array for an element and returns it if found. The
|
|
difference is that if no matching element is found the @code{lsearch}
|
|
function adds the object pointed to by @var{key} (with a size of
|
|
@var{size} bytes) at the end of the array and it increments the value of
|
|
@code{*@var{nmemb}} to reflect this addition.
|
|
|
|
This means for the caller that if it is not sure that the array contains
|
|
the element one is searching for the memory allocated for the array
|
|
starting at @var{base} must have room for at least @var{size} more
|
|
bytes. If one is sure the element is in the array it is better to use
|
|
@code{lfind} so having more room in the array is always necessary when
|
|
calling @code{lsearch}.
|
|
@end deftypefun
|
|
|
|
To search a sorted array for an element matching the key, use the
|
|
@code{bsearch} function. The prototype for this function is in
|
|
the header file @file{stdlib.h}.
|
|
@pindex stdlib.h
|
|
|
|
@deftypefun {void *} bsearch (const void *@var{key}, const void *@var{array}, size_t @var{count}, size_t @var{size}, comparison_fn_t @var{compare})
|
|
@standards{ISO, stdlib.h}
|
|
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
|
The @code{bsearch} function searches the sorted array @var{array} for an object
|
|
that is equivalent to @var{key}. The array contains @var{count} elements,
|
|
each of which is of size @var{size} bytes.
|
|
|
|
The @var{compare} function is used to perform the comparison. This
|
|
function is called with two pointer arguments and should return an
|
|
integer less than, equal to, or greater than zero corresponding to
|
|
whether its first argument is considered less than, equal to, or greater
|
|
than its second argument. The elements of the @var{array} must already
|
|
be sorted in ascending order according to this comparison function.
|
|
|
|
The return value is a pointer to the matching array element, or a null
|
|
pointer if no match is found. If the array contains more than one element
|
|
that matches, the one that is returned is unspecified.
|
|
|
|
This function derives its name from the fact that it is implemented
|
|
using the binary search algorithm.
|
|
@end deftypefun
|
|
|
|
@node Array Sort Function
|
|
@section Array Sort Function
|
|
@cindex sort function (for arrays)
|
|
@cindex quick sort function (for arrays)
|
|
@cindex array sort function
|
|
|
|
To sort an array using an arbitrary comparison function, use the
|
|
@code{qsort} function. The prototype for this function is in
|
|
@file{stdlib.h}.
|
|
@pindex stdlib.h
|
|
|
|
@deftypefun void qsort (void *@var{array}, size_t @var{count}, size_t @var{size}, comparison_fn_t @var{compare})
|
|
@standards{ISO, stdlib.h}
|
|
@safety{@prelim{}@mtsafe{}@assafe{}@acunsafe{@acucorrupt{}}}
|
|
The @code{qsort} function sorts the array @var{array}. The array
|
|
contains @var{count} elements, each of which is of size @var{size}.
|
|
|
|
The @var{compare} function is used to perform the comparison on the
|
|
array elements. This function is called with two pointer arguments and
|
|
should return an integer less than, equal to, or greater than zero
|
|
corresponding to whether its first argument is considered less than,
|
|
equal to, or greater than its second argument.
|
|
|
|
@cindex stable sorting
|
|
@strong{Warning:} If two objects compare as equal, their order after
|
|
sorting is unpredictable. That is to say, the sorting is not stable.
|
|
This can make a difference when the comparison considers only part of
|
|
the elements. Two elements with the same sort key may differ in other
|
|
respects.
|
|
|
|
Although the object addresses passed to the comparison function lie
|
|
within the array, they need not correspond with the original locations
|
|
of those objects because the sorting algorithm may swap around objects
|
|
in the array before making some comparisons. The only way to perform
|
|
a stable sort with @code{qsort} is to first augment the objects with a
|
|
monotonic counter of some kind.
|
|
|
|
Here is a simple example of sorting an array of doubles in numerical
|
|
order, using the comparison function defined above (@pxref{Comparison
|
|
Functions}):
|
|
|
|
@smallexample
|
|
@{
|
|
double *array;
|
|
int size;
|
|
@dots{}
|
|
qsort (array, size, sizeof (double), compare_doubles);
|
|
@}
|
|
@end smallexample
|
|
|
|
The @code{qsort} function derives its name from the fact that it was
|
|
originally implemented using the ``quick sort'' algorithm.
|
|
|
|
The implementation of @code{qsort} in this library might not be an
|
|
in-place sort and might thereby use an extra amount of memory to store
|
|
the array.
|
|
@end deftypefun
|
|
|
|
@node Search/Sort Example
|
|
@section Searching and Sorting Example
|
|
|
|
Here is an example showing the use of @code{qsort} and @code{bsearch}
|
|
with an array of structures. The objects in the array are sorted
|
|
by comparing their @code{name} fields with the @code{strcmp} function.
|
|
Then, we can look up individual objects based on their names.
|
|
|
|
@comment This example is dedicated to the memory of Jim Henson. RIP.
|
|
@smallexample
|
|
@include search.c.texi
|
|
@end smallexample
|
|
|
|
@cindex Kermit the frog
|
|
The output from this program looks like:
|
|
|
|
@smallexample
|
|
Kermit, the frog
|
|
Piggy, the pig
|
|
Gonzo, the whatever
|
|
Fozzie, the bear
|
|
Sam, the eagle
|
|
Robin, the frog
|
|
Animal, the animal
|
|
Camilla, the chicken
|
|
Sweetums, the monster
|
|
Dr. Strangepork, the pig
|
|
Link Hogthrob, the pig
|
|
Zoot, the human
|
|
Dr. Bunsen Honeydew, the human
|
|
Beaker, the human
|
|
Swedish Chef, the human
|
|
|
|
Animal, the animal
|
|
Beaker, the human
|
|
Camilla, the chicken
|
|
Dr. Bunsen Honeydew, the human
|
|
Dr. Strangepork, the pig
|
|
Fozzie, the bear
|
|
Gonzo, the whatever
|
|
Kermit, the frog
|
|
Link Hogthrob, the pig
|
|
Piggy, the pig
|
|
Robin, the frog
|
|
Sam, the eagle
|
|
Swedish Chef, the human
|
|
Sweetums, the monster
|
|
Zoot, the human
|
|
|
|
Kermit, the frog
|
|
Gonzo, the whatever
|
|
Couldn't find Janice.
|
|
@end smallexample
|
|
|
|
|
|
@node Hash Search Function
|
|
@section The @code{hsearch} function.
|
|
|
|
The functions mentioned so far in this chapter are for searching in a sorted
|
|
or unsorted array. There are other methods to organize information
|
|
which later should be searched. The costs of insert, delete and search
|
|
differ. One possible implementation is using hashing tables.
|
|
The following functions are declared in the header file @file{search.h}.
|
|
|
|
@deftypefun int hcreate (size_t @var{nel})
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtunsafe{@mtasurace{:hsearch}}@asunsafe{@ascuheap{}}@acunsafe{@acucorrupt{} @acsmem{}}}
|
|
@c hcreate @mtasurace:hsearch @ascuheap @acucorrupt @acsmem
|
|
@c hcreate_r dup @mtsrace:htab @ascuheap @acucorrupt @acsmem
|
|
The @code{hcreate} function creates a hashing table which can contain at
|
|
least @var{nel} elements. There is no possibility to grow this table so
|
|
it is necessary to choose the value for @var{nel} wisely. The method
|
|
used to implement this function might make it necessary to make the
|
|
number of elements in the hashing table larger than the expected maximal
|
|
number of elements. Hashing tables usually work inefficiently if they are
|
|
filled 80% or more. The constant access time guaranteed by hashing can
|
|
only be achieved if few collisions exist. See Knuth's ``The Art of
|
|
Computer Programming, Part 3: Searching and Sorting'' for more
|
|
information.
|
|
|
|
The weakest aspect of this function is that there can be at most one
|
|
hashing table used through the whole program. The table is allocated
|
|
in local memory out of control of the programmer. As an extension @theglibc{}
|
|
provides an additional set of functions with a reentrant
|
|
interface which provides a similar interface but which allows keeping
|
|
arbitrarily many hashing tables.
|
|
|
|
It is possible to use more than one hashing table in the program run if
|
|
the former table is first destroyed by a call to @code{hdestroy}.
|
|
|
|
The function returns a non-zero value if successful. If it returns zero,
|
|
something went wrong. This could either mean there is already a hashing
|
|
table in use or the program ran out of memory.
|
|
@end deftypefun
|
|
|
|
@deftypefun void hdestroy (void)
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtunsafe{@mtasurace{:hsearch}}@asunsafe{@ascuheap{}}@acunsafe{@acucorrupt{} @acsmem{}}}
|
|
@c hdestroy @mtasurace:hsearch @ascuheap @acucorrupt @acsmem
|
|
@c hdestroy_r dup @mtsrace:htab @ascuheap @acucorrupt @acsmem
|
|
The @code{hdestroy} function can be used to free all the resources
|
|
allocated in a previous call of @code{hcreate}. After a call to this
|
|
function it is again possible to call @code{hcreate} and allocate a new
|
|
table with possibly different size.
|
|
|
|
It is important to remember that the elements contained in the hashing
|
|
table at the time @code{hdestroy} is called are @emph{not} freed by this
|
|
function. It is the responsibility of the program code to free those
|
|
strings (if necessary at all). Freeing all the element memory is not
|
|
possible without extra, separately kept information since there is no
|
|
function to iterate through all available elements in the hashing table.
|
|
If it is really necessary to free a table and all elements the
|
|
programmer has to keep a list of all table elements and before calling
|
|
@code{hdestroy} s/he has to free all element's data using this list.
|
|
This is a very unpleasant mechanism and it also shows that this kind of
|
|
hashing table is mainly meant for tables which are created once and
|
|
used until the end of the program run.
|
|
@end deftypefun
|
|
|
|
Entries of the hashing table and keys for the search are defined using
|
|
this type:
|
|
|
|
@deftp {Data type} {struct ENTRY}
|
|
Both elements of this structure are pointers to zero-terminated strings.
|
|
This is a limiting restriction of the functionality of the
|
|
@code{hsearch} functions. They can only be used for data sets which use
|
|
the NUL character always and solely to terminate the records. It is not
|
|
possible to handle general binary data.
|
|
|
|
@table @code
|
|
@item char *key
|
|
Pointer to a zero-terminated string of characters describing the key for
|
|
the search or the element in the hashing table.
|
|
@item char *data
|
|
Pointer to a zero-terminated string of characters describing the data.
|
|
If the functions will be called only for searching an existing entry
|
|
this element might stay undefined since it is not used.
|
|
@end table
|
|
@end deftp
|
|
|
|
@deftypefun {ENTRY *} hsearch (ENTRY @var{item}, ACTION @var{action})
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtunsafe{@mtasurace{:hsearch}}@asunsafe{}@acunsafe{@acucorrupt{/action==ENTER}}}
|
|
@c hsearch @mtasurace:hsearch @acucorrupt/action==ENTER
|
|
@c hsearch_r dup @mtsrace:htab @acucorrupt/action==ENTER
|
|
To search in a hashing table created using @code{hcreate} the
|
|
@code{hsearch} function must be used. This function can perform a simple
|
|
search for an element (if @var{action} has the value @code{FIND}) or it can
|
|
alternatively insert the key element into the hashing table. Entries
|
|
are never replaced.
|
|
|
|
The key is denoted by a pointer to an object of type @code{ENTRY}. For
|
|
locating the corresponding position in the hashing table only the
|
|
@code{key} element of the structure is used.
|
|
|
|
If an entry with a matching key is found the @var{action} parameter is
|
|
irrelevant. The found entry is returned. If no matching entry is found
|
|
and the @var{action} parameter has the value @code{FIND} the function
|
|
returns a @code{NULL} pointer. If no entry is found and the
|
|
@var{action} parameter has the value @code{ENTER} a new entry is added
|
|
to the hashing table which is initialized with the parameter @var{item}.
|
|
A pointer to the newly added entry is returned.
|
|
@end deftypefun
|
|
|
|
As mentioned before, the hashing table used by the functions described so
|
|
far is global and there can be at any time at most one hashing table in
|
|
the program. A solution is to use the following functions which are a
|
|
GNU extension. All have in common that they operate on a hashing table
|
|
which is described by the content of an object of the type @code{struct
|
|
hsearch_data}. This type should be treated as opaque, none of its
|
|
members should be changed directly.
|
|
|
|
@deftypefun int hcreate_r (size_t @var{nel}, struct hsearch_data *@var{htab})
|
|
@standards{GNU, search.h}
|
|
@safety{@prelim{}@mtsafe{@mtsrace{:htab}}@asunsafe{@ascuheap{}}@acunsafe{@acucorrupt{} @acsmem{}}}
|
|
@c Unlike the lsearch array, the htab is (at least in part) opaque, so
|
|
@c let's make it absolutely clear that ensuring exclusive access is a
|
|
@c caller responsibility.
|
|
|
|
@c Cancellation is unlikely to leave the htab in a corrupt state: the
|
|
@c last field to be initialized is the one that tells whether the entire
|
|
@c data structure was initialized, and there's a function call (calloc)
|
|
@c in between that will often ensure all other fields are written before
|
|
@c the table. However, should this call be inlined (say with LTO), this
|
|
@c assumption may not hold. The calloc call doesn't cross our library
|
|
@c interface barrier, so let's consider this could happen and mark this
|
|
@c with @acucorrupt. It's no safety loss, since we already have
|
|
@c @ascuheap anyway...
|
|
|
|
@c hcreate_r @mtsrace:htab @ascuheap @acucorrupt @acsmem
|
|
@c isprime ok
|
|
@c calloc dup @ascuheap @acsmem
|
|
The @code{hcreate_r} function initializes the object pointed to by
|
|
@var{htab} to contain a hashing table with at least @var{nel} elements.
|
|
So this function is equivalent to the @code{hcreate} function except
|
|
that the initialized data structure is controlled by the user.
|
|
|
|
This allows having more than one hashing table at one time. The memory
|
|
necessary for the @code{struct hsearch_data} object can be allocated
|
|
dynamically. It must be initialized with zero before calling this
|
|
function.
|
|
|
|
The return value is non-zero if the operation was successful. If the
|
|
return value is zero, something went wrong, which probably means the
|
|
program ran out of memory.
|
|
@end deftypefun
|
|
|
|
@deftypefun void hdestroy_r (struct hsearch_data *@var{htab})
|
|
@standards{GNU, search.h}
|
|
@safety{@prelim{}@mtsafe{@mtsrace{:htab}}@asunsafe{@ascuheap{}}@acunsafe{@acucorrupt{} @acsmem{}}}
|
|
@c The table is released while the table pointer still points to it.
|
|
@c Async cancellation is thus unsafe, but it already was because we call
|
|
@c free(). Using the table in a handler while it's being released would
|
|
@c also be dangerous, but calling free() already makes it unsafe, and
|
|
@c the requirement on the caller to ensure exclusive access already
|
|
@c guarantees this doesn't happen, so we don't get @asucorrupt.
|
|
|
|
@c hdestroy_r @mtsrace:htab @ascuheap @acucorrupt @acsmem
|
|
@c free dup @ascuheap @acsmem
|
|
The @code{hdestroy_r} function frees all resources allocated by the
|
|
@code{hcreate_r} function for this very same object @var{htab}. As for
|
|
@code{hdestroy} it is the program's responsibility to free the strings
|
|
for the elements of the table.
|
|
@end deftypefun
|
|
|
|
@deftypefun int hsearch_r (ENTRY @var{item}, ACTION @var{action}, ENTRY **@var{retval}, struct hsearch_data *@var{htab})
|
|
@standards{GNU, search.h}
|
|
@safety{@prelim{}@mtsafe{@mtsrace{:htab}}@assafe{}@acunsafe{@acucorrupt{/action==ENTER}}}
|
|
@c Callers have to ensure mutual exclusion; insertion, if cancelled,
|
|
@c leaves the table in a corrupt state.
|
|
|
|
@c hsearch_r @mtsrace:htab @acucorrupt/action==ENTER
|
|
@c strlen dup ok
|
|
@c strcmp dup ok
|
|
The @code{hsearch_r} function is equivalent to @code{hsearch}. The
|
|
meaning of the first two arguments is identical. But instead of
|
|
operating on a single global hashing table the function works on the
|
|
table described by the object pointed to by @var{htab} (which is
|
|
initialized by a call to @code{hcreate_r}).
|
|
|
|
Another difference to @code{hcreate} is that the pointer to the found
|
|
entry in the table is not the return value of the function. It is
|
|
returned by storing it in a pointer variable pointed to by the
|
|
@var{retval} parameter. The return value of the function is an integer
|
|
value indicating success if it is non-zero and failure if it is zero.
|
|
In the latter case the global variable @code{errno} signals the reason for
|
|
the failure.
|
|
|
|
@table @code
|
|
@item ENOMEM
|
|
The table is filled and @code{hsearch_r} was called with a so far
|
|
unknown key and @var{action} set to @code{ENTER}.
|
|
@item ESRCH
|
|
The @var{action} parameter is @code{FIND} and no corresponding element
|
|
is found in the table.
|
|
@end table
|
|
@end deftypefun
|
|
|
|
|
|
@node Tree Search Function
|
|
@section The @code{tsearch} function.
|
|
|
|
Another common form to organize data for efficient search is to use
|
|
trees. The @code{tsearch} function family provides a nice interface to
|
|
functions to organize possibly large amounts of data by providing a mean
|
|
access time proportional to the logarithm of the number of elements.
|
|
@Theglibc{} implementation even guarantees that this bound is
|
|
never exceeded even for input data which cause problems for simple
|
|
binary tree implementations.
|
|
|
|
The functions described in the chapter are all described in the @w{System
|
|
V} and X/Open specifications and are therefore quite portable.
|
|
|
|
In contrast to the @code{hsearch} functions the @code{tsearch} functions
|
|
can be used with arbitrary data and not only zero-terminated strings.
|
|
|
|
The @code{tsearch} functions have the advantage that no function to
|
|
initialize data structures is necessary. A simple pointer of type
|
|
@code{void *} initialized to @code{NULL} is a valid tree and can be
|
|
extended or searched. The prototypes for these functions can be found
|
|
in the header file @file{search.h}.
|
|
|
|
@deftypefun {void *} tsearch (const void *@var{key}, void **@var{rootp}, comparison_fn_t @var{compar})
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtsafe{@mtsrace{:rootp}}@asunsafe{@ascuheap{}}@acunsafe{@acucorrupt{} @acsmem{}}}
|
|
@c The tree is not modified in a thread-safe manner, and rotations may
|
|
@c leave the tree in an inconsistent state that could be observed in an
|
|
@c asynchronous signal handler (except for the caller-synchronization
|
|
@c requirement) or after asynchronous cancellation of the thread
|
|
@c performing the rotation or the insertion.
|
|
The @code{tsearch} function searches in the tree pointed to by
|
|
@code{*@var{rootp}} for an element matching @var{key}. The function
|
|
pointed to by @var{compar} is used to determine whether two elements
|
|
match. @xref{Comparison Functions}, for a specification of the functions
|
|
which can be used for the @var{compar} parameter.
|
|
|
|
If the tree does not contain a matching entry the @var{key} value will
|
|
be added to the tree. @code{tsearch} does not make a copy of the object
|
|
pointed to by @var{key} (how could it since the size is unknown).
|
|
Instead it adds a reference to this object which means the object must
|
|
be available as long as the tree data structure is used.
|
|
|
|
The tree is represented by a pointer to a pointer since it is sometimes
|
|
necessary to change the root node of the tree. So it must not be
|
|
assumed that the variable pointed to by @var{rootp} has the same value
|
|
after the call. This also shows that it is not safe to call the
|
|
@code{tsearch} function more than once at the same time using the same
|
|
tree. It is no problem to run it more than once at a time on different
|
|
trees.
|
|
|
|
The return value is a pointer to the matching element in the tree. If a
|
|
new element was created the pointer points to the new data (which is in
|
|
fact @var{key}). If an entry had to be created and the program ran out
|
|
of space @code{NULL} is returned.
|
|
@end deftypefun
|
|
|
|
@deftypefun {void *} tfind (const void *@var{key}, void *const *@var{rootp}, comparison_fn_t @var{compar})
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtsafe{@mtsrace{:rootp}}@assafe{}@acsafe{}}
|
|
The @code{tfind} function is similar to the @code{tsearch} function. It
|
|
locates an element matching the one pointed to by @var{key} and returns
|
|
a pointer to this element. But if no matching element is available no
|
|
new element is entered (note that the @var{rootp} parameter points to a
|
|
constant pointer). Instead the function returns @code{NULL}.
|
|
@end deftypefun
|
|
|
|
Another advantage of the @code{tsearch} functions in contrast to the
|
|
@code{hsearch} functions is that there is an easy way to remove
|
|
elements.
|
|
|
|
@deftypefun {void *} tdelete (const void *@var{key}, void **@var{rootp}, comparison_fn_t @var{compar})
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtsafe{@mtsrace{:rootp}}@asunsafe{@ascuheap{}}@acunsafe{@acucorrupt{} @acsmem{}}}
|
|
To remove a specific element matching @var{key} from the tree
|
|
@code{tdelete} can be used. It locates the matching element using the
|
|
same method as @code{tfind}. The corresponding element is then removed
|
|
and a pointer to the parent of the deleted node is returned by the
|
|
function. If there is no matching entry in the tree nothing can be
|
|
deleted and the function returns @code{NULL}. If the root of the tree
|
|
is deleted @code{tdelete} returns some unspecified value not equal to
|
|
@code{NULL}.
|
|
@end deftypefun
|
|
|
|
@deftypefun void tdestroy (void *@var{vroot}, __free_fn_t @var{freefct})
|
|
@standards{GNU, search.h}
|
|
@safety{@prelim{}@mtsafe{}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
|
|
If the complete search tree has to be removed one can use
|
|
@code{tdestroy}. It frees all resources allocated by the @code{tsearch}
|
|
functions to generate the tree pointed to by @var{vroot}.
|
|
|
|
For the data in each tree node the function @var{freefct} is called.
|
|
The pointer to the data is passed as the argument to the function. If
|
|
no such work is necessary @var{freefct} must point to a function doing
|
|
nothing. It is called in any case.
|
|
|
|
This function is a GNU extension and not covered by the @w{System V} or
|
|
X/Open specifications.
|
|
@end deftypefun
|
|
|
|
In addition to the functions to create and destroy the tree data
|
|
structure, there is another function which allows you to apply a
|
|
function to all elements of the tree. The function must have this type:
|
|
|
|
@smallexample
|
|
void __action_fn_t (const void *nodep, VISIT value, int level);
|
|
@end smallexample
|
|
|
|
The @var{nodep} is the data value of the current node (once given as the
|
|
@var{key} argument to @code{tsearch}). @var{level} is a numeric value
|
|
which corresponds to the depth of the current node in the tree. The
|
|
root node has the depth @math{0} and its children have a depth of
|
|
@math{1} and so on. The @code{VISIT} type is an enumeration type.
|
|
|
|
@deftp {Data Type} VISIT
|
|
The @code{VISIT} value indicates the status of the current node in the
|
|
tree and how the function is called. The status of a node is either
|
|
`leaf' or `internal node'. For each leaf node the function is called
|
|
exactly once, for each internal node it is called three times: before
|
|
the first child is processed, after the first child is processed and
|
|
after both children are processed. This makes it possible to handle all
|
|
three methods of tree traversal (or even a combination of them).
|
|
|
|
@vtable @code
|
|
@item preorder
|
|
The current node is an internal node and the function is called before
|
|
the first child was processed.
|
|
@item postorder
|
|
The current node is an internal node and the function is called after
|
|
the first child was processed.
|
|
@item endorder
|
|
The current node is an internal node and the function is called after
|
|
the second child was processed.
|
|
@item leaf
|
|
The current node is a leaf.
|
|
@end vtable
|
|
@end deftp
|
|
|
|
@deftypefun void twalk (const void *@var{root}, __action_fn_t @var{action})
|
|
@standards{SVID, search.h}
|
|
@safety{@prelim{}@mtsafe{@mtsrace{:root}}@assafe{}@acsafe{}}
|
|
For each node in the tree with a node pointed to by @var{root}, the
|
|
@code{twalk} function calls the function provided by the parameter
|
|
@var{action}. For leaf nodes the function is called exactly once with
|
|
@var{value} set to @code{leaf}. For internal nodes the function is
|
|
called three times, setting the @var{value} parameter or @var{action} to
|
|
the appropriate value. The @var{level} argument for the @var{action}
|
|
function is computed while descending the tree by increasing the value
|
|
by one for each descent to a child, starting with the value @math{0} for
|
|
the root node.
|
|
|
|
Since the functions used for the @var{action} parameter to @code{twalk}
|
|
must not modify the tree data, it is safe to run @code{twalk} in more
|
|
than one thread at the same time, working on the same tree. It is also
|
|
safe to call @code{tfind} in parallel. Functions which modify the tree
|
|
must not be used, otherwise the behavior is undefined. However, it is
|
|
difficult to pass data external to the tree to the callback function
|
|
without resorting to global variables (and thread safety issues), so
|
|
see the @code{twalk_r} function below.
|
|
@end deftypefun
|
|
|
|
@deftypefun void twalk_r (const void *@var{root}, void (*@var{action}) (const void *@var{key}, VISIT @var{which}, void *@var{closure}), void *@var{closure})
|
|
@standards{GNU, search.h}
|
|
@safety{@prelim{}@mtsafe{@mtsrace{:root}}@assafe{}@acsafe{}}
|
|
For each node in the tree with a node pointed to by @var{root}, the
|
|
@code{twalk_r} function calls the function provided by the parameter
|
|
@var{action}. For leaf nodes the function is called exactly once with
|
|
@var{which} set to @code{leaf}. For internal nodes the function is
|
|
called three times, setting the @var{which} parameter of @var{action} to
|
|
the appropriate value. The @var{closure} parameter is passed down to
|
|
each call of the @var{action} function, unmodified.
|
|
|
|
It is possible to implement the @code{twalk} function on top of the
|
|
@code{twalk_r} function, which is why there is no separate level
|
|
parameter.
|
|
|
|
@smallexample
|
|
@include twalk.c.texi
|
|
@end smallexample
|
|
@end deftypefun
|