glibc/sysdeps/ieee754/ldbl-128ibm/e_asinl.c
Alan Modra 4ebd120cd9 PowerPC floating point little-endian [2 of 15]
http://sourceware.org/ml/libc-alpha/2013-08/msg00082.html

This patch replaces occurrences of GET_LDOUBLE_* and SET_LDOUBLE_*
macros, and union ieee854_long_double_shape_type in ldbl-128ibm/,
and a stray one in the 32-bit fpu support.  These files have no
significant changes apart from rewriting the long double bit access.

	* sysdeps/ieee754/ldbl-128ibm/math_ldbl.h (ldbl_high): Define.
	* sysdeps/ieee754/ldbl-128ibm/e_acoshl.c (__ieee754_acoshl): Rewrite
	all uses of ieee854 long double macros and unions.
	* sysdeps/ieee754/ldbl-128ibm/e_acosl.c (__ieee754_acosl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_asinl.c (__ieee754_asinl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_atanhl.c (__ieee754_atanhl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_coshl.c (__ieee754_coshl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_log2l.c (__ieee754_log2l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_rem_pio2l.c (__ieee754_rem_pio2l):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_sinhl.c (__ieee754_sinhl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/k_cosl.c (__kernel_cosl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/k_sincosl.c (__kernel_sincosl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/k_sinl.c (__kernel_sinl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_asinhl.c (__asinhl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_atanl.c (__atanl): Likewise.
	Simplify sign and nan test too.
	* sysdeps/ieee754/ldbl-128ibm/s_cosl.c (__cosl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_fabsl.c (__fabsl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_finitel.c (___finitel): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_fpclassifyl.c (___fpclassifyl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_isnanl.c (___isnanl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_issignalingl.c (__issignalingl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_logbl.c (__logbl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_signbitl.c (___signbitl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_sincosl.c (__sincosl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_sinl.c (__sinl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_tanl.c (__tanl): Likewise.
	* sysdeps/powerpc/powerpc32/power7/fpu/s_logbl.c (__logbl): Likewise.
2013-10-04 10:32:19 +09:30

246 lines
7.0 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
Long double expansions are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under the
following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* Between .5 and .625 the approximation is
* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
* For x in [0.625,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#include <math.h>
#include <math_private.h>
long double sqrtl (long double);
static const long double
one = 1.0L,
huge = 1.0e+300L,
pio2_hi = 1.5707963267948966192313216916397514420986L,
pio2_lo = 4.3359050650618905123985220130216759843812E-35L,
pio4_hi = 7.8539816339744830961566084581987569936977E-1L,
/* coefficient for R(x^2) */
/* asin(x) = x + x^3 pS(x^2) / qS(x^2)
0 <= x <= 0.5
peak relative error 1.9e-35 */
pS0 = -8.358099012470680544198472400254596543711E2L,
pS1 = 3.674973957689619490312782828051860366493E3L,
pS2 = -6.730729094812979665807581609853656623219E3L,
pS3 = 6.643843795209060298375552684423454077633E3L,
pS4 = -3.817341990928606692235481812252049415993E3L,
pS5 = 1.284635388402653715636722822195716476156E3L,
pS6 = -2.410736125231549204856567737329112037867E2L,
pS7 = 2.219191969382402856557594215833622156220E1L,
pS8 = -7.249056260830627156600112195061001036533E-1L,
pS9 = 1.055923570937755300061509030361395604448E-3L,
qS0 = -5.014859407482408326519083440151745519205E3L,
qS1 = 2.430653047950480068881028451580393430537E4L,
qS2 = -4.997904737193653607449250593976069726962E4L,
qS3 = 5.675712336110456923807959930107347511086E4L,
qS4 = -3.881523118339661268482937768522572588022E4L,
qS5 = 1.634202194895541569749717032234510811216E4L,
qS6 = -4.151452662440709301601820849901296953752E3L,
qS7 = 5.956050864057192019085175976175695342168E2L,
qS8 = -4.175375777334867025769346564600396877176E1L,
/* 1.000000000000000000000000000000000000000E0 */
/* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 3.3e-35 */
rS0 = -5.619049346208901520945464704848780243887E0L,
rS1 = 4.460504162777731472539175700169871920352E1L,
rS2 = -1.317669505315409261479577040530751477488E2L,
rS3 = 1.626532582423661989632442410808596009227E2L,
rS4 = -3.144806644195158614904369445440583873264E1L,
rS5 = -9.806674443470740708765165604769099559553E1L,
rS6 = 5.708468492052010816555762842394927806920E1L,
rS7 = 1.396540499232262112248553357962639431922E1L,
rS8 = -1.126243289311910363001762058295832610344E1L,
rS9 = -4.956179821329901954211277873774472383512E-1L,
rS10 = 3.313227657082367169241333738391762525780E-1L,
sS0 = -4.645814742084009935700221277307007679325E0L,
sS1 = 3.879074822457694323970438316317961918430E1L,
sS2 = -1.221986588013474694623973554726201001066E2L,
sS3 = 1.658821150347718105012079876756201905822E2L,
sS4 = -4.804379630977558197953176474426239748977E1L,
sS5 = -1.004296417397316948114344573811562952793E2L,
sS6 = 7.530281592861320234941101403870010111138E1L,
sS7 = 1.270735595411673647119592092304357226607E1L,
sS8 = -1.815144839646376500705105967064792930282E1L,
sS9 = -7.821597334910963922204235247786840828217E-2L,
/* 1.000000000000000000000000000000000000000E0 */
asinr5625 = 5.9740641664535021430381036628424864397707E-1L;
long double
__ieee754_asinl (long double x)
{
long double a, t, w, p, q, c, r, s;
int flag;
flag = 0;
a = __builtin_fabsl (x);
if (a == 1.0L) /* |x|>= 1 */
return x * pio2_hi + x * pio2_lo; /* asin(1)=+-pi/2 with inexact */
else if (a >= 1.0L)
return (x - x) / (x - x); /* asin(|x|>1) is NaN */
else if (a < 0.5L)
{
if (a < 6.938893903907228e-18L) /* |x| < 2**-57 */
{
if (huge + x > one)
return x; /* return x with inexact if x!=0 */
}
else
{
t = x * x;
/* Mark to use pS, qS later on. */
flag = 1;
}
}
else if (a < 0.625L)
{
t = a - 0.5625;
p = ((((((((((rS10 * t
+ rS9) * t
+ rS8) * t
+ rS7) * t
+ rS6) * t
+ rS5) * t
+ rS4) * t
+ rS3) * t
+ rS2) * t
+ rS1) * t
+ rS0) * t;
q = ((((((((( t
+ sS9) * t
+ sS8) * t
+ sS7) * t
+ sS6) * t
+ sS5) * t
+ sS4) * t
+ sS3) * t
+ sS2) * t
+ sS1) * t
+ sS0;
t = asinr5625 + p / q;
if (x > 0.0L)
return t;
else
return -t;
}
else
{
/* 1 > |x| >= 0.625 */
w = one - a;
t = w * 0.5;
}
p = (((((((((pS9 * t
+ pS8) * t
+ pS7) * t
+ pS6) * t
+ pS5) * t
+ pS4) * t
+ pS3) * t
+ pS2) * t
+ pS1) * t
+ pS0) * t;
q = (((((((( t
+ qS8) * t
+ qS7) * t
+ qS6) * t
+ qS5) * t
+ qS4) * t
+ qS3) * t
+ qS2) * t
+ qS1) * t
+ qS0;
if (flag) /* 2^-57 < |x| < 0.5 */
{
w = p / q;
return x + x * w;
}
s = __ieee754_sqrtl (t);
if (a > 0.975L)
{
w = p / q;
t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
}
else
{
w = ldbl_high (s);
c = (t - w * w) / (s + w);
r = p / q;
p = 2.0 * s * r - (pio2_lo - 2.0 * c);
q = pio4_hi - 2.0 * w;
t = pio4_hi - (p - q);
}
if (x > 0.0L)
return t;
else
return -t;
}
strong_alias (__ieee754_asinl, __asinl_finite)