mirror of
git://sourceware.org/git/glibc.git
synced 2024-12-15 04:20:28 +08:00
79c52daf47
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the log2p1 functions (log2(1+x): like log1p, but for base-2 logarithms). This illustrates the intended structure of implementations of all these function families: define them initially with a type-generic template implementation. If someone wishes to add type-specific implementations, it is likely such implementations can be both faster and more accurate than the type-generic one and can then override it for types for which they are implemented (adding benchmarks would be desirable in such cases to demonstrate that a new implementation is indeed faster). The test inputs are copied from those for log1p. Note that these changes make gen-auto-libm-tests depend on MPFR 4.2 (or later). The bulk of the changes are fairly generic for any such new function. (sysdeps/powerpc/nofpu/Makefile only needs changing for those type-generic templates that use fabs.) Tested for x86_64 and x86, and with build-many-glibcs.py.
1236 lines
18 KiB
C
1236 lines
18 KiB
C
/* Test compilation of tgmath macros.
|
|
Copyright (C) 2001-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef HAVE_MAIN
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <tgmath.h>
|
|
|
|
//#define DEBUG
|
|
|
|
static void compile_test (void);
|
|
static void compile_testf (void);
|
|
#if LDBL_MANT_DIG > DBL_MANT_DIG
|
|
static void compile_testl (void);
|
|
#endif
|
|
|
|
float fx;
|
|
double dx;
|
|
long double lx;
|
|
const float fy = 1.25;
|
|
const double dy = 1.25;
|
|
const long double ly = 1.25;
|
|
complex float fz;
|
|
complex double dz;
|
|
complex long double lz;
|
|
|
|
volatile int count_double;
|
|
volatile int count_float;
|
|
volatile int count_ldouble;
|
|
volatile int count_cdouble;
|
|
volatile int count_cfloat;
|
|
volatile int count_cldouble;
|
|
|
|
#define NCALLS 160
|
|
#define NCALLS_INT 4
|
|
#define NCCALLS 47
|
|
|
|
static int
|
|
do_test (void)
|
|
{
|
|
int result = 0;
|
|
|
|
count_float = count_double = count_ldouble = 0;
|
|
count_cfloat = count_cdouble = count_cldouble = 0;
|
|
compile_test ();
|
|
if (count_float != 0 || count_cfloat != 0)
|
|
{
|
|
puts ("float function called for double test");
|
|
result = 1;
|
|
}
|
|
if (count_ldouble != 0 || count_cldouble != 0)
|
|
{
|
|
puts ("long double function called for double test");
|
|
result = 1;
|
|
}
|
|
if (count_double < NCALLS + NCALLS_INT)
|
|
{
|
|
printf ("double functions not called often enough (%d)\n",
|
|
count_double);
|
|
result = 1;
|
|
}
|
|
else if (count_double > NCALLS + NCALLS_INT)
|
|
{
|
|
printf ("double functions called too often (%d)\n",
|
|
count_double);
|
|
result = 1;
|
|
}
|
|
if (count_cdouble < NCCALLS)
|
|
{
|
|
printf ("double complex functions not called often enough (%d)\n",
|
|
count_cdouble);
|
|
result = 1;
|
|
}
|
|
else if (count_cdouble > NCCALLS)
|
|
{
|
|
printf ("double complex functions called too often (%d)\n",
|
|
count_cdouble);
|
|
result = 1;
|
|
}
|
|
|
|
count_float = count_double = count_ldouble = 0;
|
|
count_cfloat = count_cdouble = count_cldouble = 0;
|
|
compile_testf ();
|
|
if (count_double != 0 || count_cdouble != 0)
|
|
{
|
|
puts ("double function called for float test");
|
|
result = 1;
|
|
}
|
|
if (count_ldouble != 0 || count_cldouble != 0)
|
|
{
|
|
puts ("long double function called for float test");
|
|
result = 1;
|
|
}
|
|
if (count_float < NCALLS)
|
|
{
|
|
printf ("float functions not called often enough (%d)\n", count_float);
|
|
result = 1;
|
|
}
|
|
else if (count_float > NCALLS)
|
|
{
|
|
printf ("float functions called too often (%d)\n",
|
|
count_double);
|
|
result = 1;
|
|
}
|
|
if (count_cfloat < NCCALLS)
|
|
{
|
|
printf ("float complex functions not called often enough (%d)\n",
|
|
count_cfloat);
|
|
result = 1;
|
|
}
|
|
else if (count_cfloat > NCCALLS)
|
|
{
|
|
printf ("float complex functions called too often (%d)\n",
|
|
count_cfloat);
|
|
result = 1;
|
|
}
|
|
|
|
#if LDBL_MANT_DIG > DBL_MANT_DIG
|
|
count_float = count_double = count_ldouble = 0;
|
|
count_cfloat = count_cdouble = count_cldouble = 0;
|
|
compile_testl ();
|
|
if (count_float != 0 || count_cfloat != 0)
|
|
{
|
|
puts ("float function called for long double test");
|
|
result = 1;
|
|
}
|
|
if (count_double != 0 || count_cdouble != 0)
|
|
{
|
|
puts ("double function called for long double test");
|
|
result = 1;
|
|
}
|
|
if (count_ldouble < NCALLS)
|
|
{
|
|
printf ("long double functions not called often enough (%d)\n",
|
|
count_ldouble);
|
|
result = 1;
|
|
}
|
|
else if (count_ldouble > NCALLS)
|
|
{
|
|
printf ("long double functions called too often (%d)\n",
|
|
count_double);
|
|
result = 1;
|
|
}
|
|
if (count_cldouble < NCCALLS)
|
|
{
|
|
printf ("long double complex functions not called often enough (%d)\n",
|
|
count_cldouble);
|
|
result = 1;
|
|
}
|
|
else if (count_cldouble > NCCALLS)
|
|
{
|
|
printf ("long double complex functions called too often (%d)\n",
|
|
count_cldouble);
|
|
result = 1;
|
|
}
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Now generate the three functions. */
|
|
#define HAVE_MAIN
|
|
|
|
#define F(name) name
|
|
#define TYPE double
|
|
#define TEST_INT 1
|
|
#define x dx
|
|
#define y dy
|
|
#define z dz
|
|
#define count count_double
|
|
#define ccount count_cdouble
|
|
#include "test-tgmath.c"
|
|
|
|
#define F(name) name##f
|
|
#define TYPE float
|
|
#define x fx
|
|
#define y fy
|
|
#define z fz
|
|
#define count count_float
|
|
#define ccount count_cfloat
|
|
#include "test-tgmath.c"
|
|
|
|
#if LDBL_MANT_DIG > DBL_MANT_DIG
|
|
#define F(name) name##l
|
|
#define TYPE long double
|
|
#define x lx
|
|
#define y ly
|
|
#define z lz
|
|
#define count count_ldouble
|
|
#define ccount count_cldouble
|
|
#include "test-tgmath.c"
|
|
#endif
|
|
|
|
#define TEST_FUNCTION do_test ()
|
|
#include "../test-skeleton.c"
|
|
|
|
#else
|
|
|
|
#ifdef DEBUG
|
|
#define P() puts (__FUNCTION__)
|
|
#else
|
|
#define P()
|
|
#endif
|
|
|
|
static void
|
|
F(compile_test) (void)
|
|
{
|
|
TYPE a, b, c = 1.0;
|
|
complex TYPE d;
|
|
int i = 2;
|
|
int saved_count;
|
|
long int j;
|
|
long long int k;
|
|
intmax_t m;
|
|
uintmax_t um;
|
|
|
|
a = cos (cos (x));
|
|
b = acos (acos (a));
|
|
a = sin (sin (x));
|
|
b = asin (asin (a));
|
|
a = tan (tan (x));
|
|
b = atan (atan (a));
|
|
c = atan2 (atan2 (a, c), atan2 (b, x));
|
|
a = cosh (cosh (x));
|
|
b = acosh (acosh (a));
|
|
a = sinh (sinh (x));
|
|
b = asinh (asinh (a));
|
|
a = tanh (tanh (x));
|
|
b = atanh (atanh (a));
|
|
a = exp (exp (x));
|
|
b = log (log (a));
|
|
a = log10 (log10 (x));
|
|
b = ldexp (ldexp (a, 1), 5);
|
|
a = frexp (frexp (x, &i), &i);
|
|
b = expm1 (expm1 (a));
|
|
a = log1p (log1p (x));
|
|
b = logb (logb (a));
|
|
a = exp2 (exp2 (x));
|
|
a = exp10 (exp10 (x));
|
|
b = log2 (log2 (a));
|
|
a = log2p1 (log2p1 (x));
|
|
a = pow (pow (x, a), pow (c, b));
|
|
b = sqrt (sqrt (a));
|
|
a = hypot (hypot (x, b), hypot (c, a));
|
|
b = cbrt (cbrt (a));
|
|
a = ceil (ceil (x));
|
|
b = fabs (fabs (a));
|
|
a = floor (floor (x));
|
|
b = fmod (fmod (a, b), fmod (c, x));
|
|
a = nearbyint (nearbyint (x));
|
|
b = round (round (a));
|
|
c = roundeven (roundeven (a));
|
|
a = trunc (trunc (x));
|
|
b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
|
|
j = lrint (x) + lround (a);
|
|
k = llrint (b) + llround (c);
|
|
m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
|
|
um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
|
|
a = erf (erf (x));
|
|
b = erfc (erfc (a));
|
|
a = tgamma (tgamma (x));
|
|
b = lgamma (lgamma (a));
|
|
a = rint (rint (x));
|
|
b = nextafter (nextafter (a, b), nextafter (c, x));
|
|
a = nextdown (nextdown (a));
|
|
b = nexttoward (nexttoward (x, a), c);
|
|
a = nextup (nextup (a));
|
|
b = remainder (remainder (a, b), remainder (c, x));
|
|
a = scalb (scalb (x, a), (TYPE) (6));
|
|
k = scalbn (a, 7) + scalbln (c, 10l);
|
|
i = ilogb (x);
|
|
j = llogb (x);
|
|
a = fdim (fdim (x, a), fdim (c, b));
|
|
b = fmax (fmax (a, x), fmax (c, b));
|
|
a = fmin (fmin (x, a), fmin (c, b));
|
|
b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
|
|
a = fminmag (fminmag (x, a), fminmag (c, b));
|
|
b = fmaximum (fmaximum (a, x), fmaximum (c, b));
|
|
a = fminimum (fminimum (x, a), fminimum (c, b));
|
|
b = fmaximum_num (fmaximum_num (a, x), fmaximum_num (c, b));
|
|
a = fminimum_num (fminimum_num (x, a), fminimum_num (c, b));
|
|
b = fmaximum_mag (fmaximum_mag (a, x), fmaximum_mag (c, b));
|
|
a = fminimum_mag (fminimum_mag (x, a), fminimum_mag (c, b));
|
|
b = fmaximum_mag_num (fmaximum_mag_num (a, x), fmaximum_mag_num (c, b));
|
|
a = fminimum_mag_num (fminimum_mag_num (x, a), fminimum_mag_num (c, b));
|
|
b = fma (sin (a), sin (x), sin (c));
|
|
|
|
#ifdef TEST_INT
|
|
a = atan2 (i, b);
|
|
b = remquo (i, a, &i);
|
|
c = fma (i, b, i);
|
|
a = pow (i, c);
|
|
#endif
|
|
x = a + b + c + i + j + k + m + um;
|
|
|
|
saved_count = count;
|
|
if (ccount != 0)
|
|
ccount = -10000;
|
|
|
|
d = cos (cos (z));
|
|
z = acos (acos (d));
|
|
d = sin (sin (z));
|
|
z = asin (asin (d));
|
|
d = tan (tan (z));
|
|
z = atan (atan (d));
|
|
d = cosh (cosh (z));
|
|
z = acosh (acosh (d));
|
|
d = sinh (sinh (z));
|
|
z = asinh (asinh (d));
|
|
d = tanh (tanh (z));
|
|
z = atanh (atanh (d));
|
|
d = exp (exp (z));
|
|
z = log (log (d));
|
|
d = sqrt (sqrt (z));
|
|
z = conj (conj (d));
|
|
d = fabs (conj (a));
|
|
z = pow (pow (a, d), pow (b, z));
|
|
d = cproj (cproj (z));
|
|
z += fabs (cproj (a));
|
|
a = carg (carg (z));
|
|
b = creal (creal (d));
|
|
c = cimag (cimag (z));
|
|
x += a + b + c + i + j + k;
|
|
z += d;
|
|
|
|
if (saved_count != count)
|
|
count = -10000;
|
|
|
|
if (0)
|
|
{
|
|
a = cos (y);
|
|
a = acos (y);
|
|
a = sin (y);
|
|
a = asin (y);
|
|
a = tan (y);
|
|
a = atan (y);
|
|
a = atan2 (y, y);
|
|
a = cosh (y);
|
|
a = acosh (y);
|
|
a = sinh (y);
|
|
a = asinh (y);
|
|
a = tanh (y);
|
|
a = atanh (y);
|
|
a = exp (y);
|
|
a = log (y);
|
|
a = log10 (y);
|
|
a = ldexp (y, 5);
|
|
a = frexp (y, &i);
|
|
a = expm1 (y);
|
|
a = log1p (y);
|
|
a = logb (y);
|
|
a = exp2 (y);
|
|
a = exp10 (y);
|
|
a = log2 (y);
|
|
a = log2p1 (y);
|
|
a = pow (y, y);
|
|
a = sqrt (y);
|
|
a = hypot (y, y);
|
|
a = cbrt (y);
|
|
a = ceil (y);
|
|
a = fabs (y);
|
|
a = floor (y);
|
|
a = fmod (y, y);
|
|
a = nearbyint (y);
|
|
a = round (y);
|
|
a = roundeven (y);
|
|
a = trunc (y);
|
|
a = remquo (y, y, &i);
|
|
j = lrint (y) + lround (y);
|
|
k = llrint (y) + llround (y);
|
|
m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
|
|
um = (ufromfp (y, FP_INT_TONEAREST, 8)
|
|
+ ufromfpx (y, FP_INT_TOWARDZERO, 9));
|
|
a = erf (y);
|
|
a = erfc (y);
|
|
a = tgamma (y);
|
|
a = lgamma (y);
|
|
a = rint (y);
|
|
a = nextafter (y, y);
|
|
a = nexttoward (y, y);
|
|
a = remainder (y, y);
|
|
a = scalb (y, (const TYPE) (6));
|
|
k = scalbn (y, 7) + scalbln (y, 10l);
|
|
i = ilogb (y);
|
|
j = llogb (y);
|
|
a = fdim (y, y);
|
|
a = fmax (y, y);
|
|
a = fmin (y, y);
|
|
a = fmaxmag (y, y);
|
|
a = fminmag (y, y);
|
|
a = fmaximum (y, y);
|
|
a = fminimum (y, y);
|
|
a = fmaximum_num (y, y);
|
|
a = fminimum_num (y, y);
|
|
a = fmaximum_mag (y, y);
|
|
a = fminimum_mag (y, y);
|
|
a = fmaximum_mag_num (y, y);
|
|
a = fminimum_mag_num (y, y);
|
|
a = fma (y, y, y);
|
|
|
|
#ifdef TEST_INT
|
|
a = atan2 (i, y);
|
|
a = remquo (i, y, &i);
|
|
a = fma (i, y, i);
|
|
a = pow (i, y);
|
|
#endif
|
|
|
|
d = cos ((const complex TYPE) z);
|
|
d = acos ((const complex TYPE) z);
|
|
d = sin ((const complex TYPE) z);
|
|
d = asin ((const complex TYPE) z);
|
|
d = tan ((const complex TYPE) z);
|
|
d = atan ((const complex TYPE) z);
|
|
d = cosh ((const complex TYPE) z);
|
|
d = acosh ((const complex TYPE) z);
|
|
d = sinh ((const complex TYPE) z);
|
|
d = asinh ((const complex TYPE) z);
|
|
d = tanh ((const complex TYPE) z);
|
|
d = atanh ((const complex TYPE) z);
|
|
d = exp ((const complex TYPE) z);
|
|
d = log ((const complex TYPE) z);
|
|
d = sqrt ((const complex TYPE) z);
|
|
d = pow ((const complex TYPE) z, (const complex TYPE) z);
|
|
d = fabs ((const complex TYPE) z);
|
|
d = carg ((const complex TYPE) z);
|
|
d = creal ((const complex TYPE) z);
|
|
d = cimag ((const complex TYPE) z);
|
|
d = conj ((const complex TYPE) z);
|
|
d = cproj ((const complex TYPE) z);
|
|
}
|
|
}
|
|
#undef x
|
|
#undef y
|
|
#undef z
|
|
|
|
|
|
TYPE
|
|
(F(cos)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(acos)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(sin)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(asin)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(tan)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(atan)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(atan2)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(cosh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(acosh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(sinh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(asinh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(tanh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(atanh)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(exp)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log10)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(ldexp)) (TYPE x, int y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(frexp)) (TYPE x, int *y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + *y;
|
|
}
|
|
|
|
TYPE
|
|
(F(expm1)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log1p)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(logb)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(exp10)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(exp2)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log2)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(log2p1)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(pow)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(sqrt)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(hypot)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(cbrt)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(ceil)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(fabs)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(floor)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmod)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(nearbyint)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(round)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(roundeven)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(trunc)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(remquo)) (TYPE x, TYPE y, int *i)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y + *i;
|
|
}
|
|
|
|
long int
|
|
(F(lrint)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
long int
|
|
(F(lround)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
long long int
|
|
(F(llrint)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
long long int
|
|
(F(llround)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
intmax_t
|
|
(F(fromfp)) (TYPE x, int round, unsigned int width)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
intmax_t
|
|
(F(fromfpx)) (TYPE x, int round, unsigned int width)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
uintmax_t
|
|
(F(ufromfp)) (TYPE x, int round, unsigned int width)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
uintmax_t
|
|
(F(ufromfpx)) (TYPE x, int round, unsigned int width)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(erf)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(erfc)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(tgamma)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(lgamma)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(rint)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(nextafter)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(nextdown)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(nexttoward)) (TYPE x, long double y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(nextup)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(remainder)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(scalb)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(scalbn)) (TYPE x, int y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(scalbln)) (TYPE x, long int y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
int
|
|
(F(ilogb)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
long int
|
|
(F(llogb)) (TYPE x)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(fdim)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmin)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmax)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminmag)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaxmag)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminimum)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaximum)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminimum_num)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaximum_num)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminimum_mag)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaximum_mag)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fminimum_mag_num)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fmaximum_mag_num)) (TYPE x, TYPE y)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(fma)) (TYPE x, TYPE y, TYPE z)
|
|
{
|
|
++count;
|
|
P ();
|
|
return x + y + z;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cacos)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(casin)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(catan)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(ccos)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(csin)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(ctan)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cacosh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(casinh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(catanh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(ccosh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(csinh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(ctanh)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cexp)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(clog)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(csqrt)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cpow)) (complex TYPE x, complex TYPE y)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x + y;
|
|
}
|
|
|
|
TYPE
|
|
(F(cabs)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(carg)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
TYPE
|
|
(F(creal)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return __real__ x;
|
|
}
|
|
|
|
TYPE
|
|
(F(cimag)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return __imag__ x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(conj)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
complex TYPE
|
|
(F(cproj)) (complex TYPE x)
|
|
{
|
|
++ccount;
|
|
P ();
|
|
return x;
|
|
}
|
|
|
|
#undef F
|
|
#undef TYPE
|
|
#undef count
|
|
#undef ccount
|
|
#undef TEST_INT
|
|
#endif
|