mirror of
git://sourceware.org/git/glibc.git
synced 2024-12-21 04:31:04 +08:00
765714cafc
http://sourceware.org/ml/libc-alpha/2013-08/msg00083.html Further replacement of ieee854 macros and unions. These files also have some optimisations for comparison against 0.0L, infinity and nan. Since the ABI specifies that the high double of an IBM long double pair is the value rounded to double, a high double of 0.0 means the low double must also be 0.0. The ABI also says that infinity and nan are encoded in the high double, with the low double unspecified. This means that tests for 0.0L, +/-Infinity and +/-NaN need only check the high double. * sysdeps/ieee754/ldbl-128ibm/e_atan2l.c (__ieee754_atan2l): Rewrite all uses of ieee854 long double macros and unions. Simplify tests for long doubles that are fully specified by the high double. * sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_ilogbl.c (__ieee754_ilogbl): Likewise. Remove dead code too. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise. (__ieee754_ynl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_log10l.c (__ieee754_log10l): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise. Remove dead code too. * sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_isinf_nsl.c (__isinf_nsl): Likewise. Simplify. * sysdeps/ieee754/ldbl-128ibm/s_isinfl.c (___isinfl): Likewise. Simplify. * sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_modfl.c (__modfl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Likewise. Comment on variable precision. * sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_scalblnl.c (__scalblnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (__scalbnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Adjust tan_towardzero ulps.
251 lines
6.4 KiB
C
251 lines
6.4 KiB
C
/* log1pl.c
|
|
*
|
|
* Relative error logarithm
|
|
* Natural logarithm of 1+x, 128-bit long double precision
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, log1pl();
|
|
*
|
|
* y = log1pl( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns the base e (2.718...) logarithm of 1+x.
|
|
*
|
|
* The argument 1+x is separated into its exponent and fractional
|
|
* parts. If the exponent is between -1 and +1, the logarithm
|
|
* of the fraction is approximated by
|
|
*
|
|
* log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
|
|
*
|
|
* Otherwise, setting z = 2(w-1)/(w+1),
|
|
*
|
|
* log(w) = z + z^3 P(z)/Q(z).
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE -1, 8 100000 1.9e-34 4.3e-35
|
|
*/
|
|
|
|
/* Copyright 2001 by Stephen L. Moshier
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <math_ldbl_opt.h>
|
|
|
|
/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
|
|
* 1/sqrt(2) <= 1+x < sqrt(2)
|
|
* Theoretical peak relative error = 5.3e-37,
|
|
* relative peak error spread = 2.3e-14
|
|
*/
|
|
static const long double
|
|
P12 = 1.538612243596254322971797716843006400388E-6L,
|
|
P11 = 4.998469661968096229986658302195402690910E-1L,
|
|
P10 = 2.321125933898420063925789532045674660756E1L,
|
|
P9 = 4.114517881637811823002128927449878962058E2L,
|
|
P8 = 3.824952356185897735160588078446136783779E3L,
|
|
P7 = 2.128857716871515081352991964243375186031E4L,
|
|
P6 = 7.594356839258970405033155585486712125861E4L,
|
|
P5 = 1.797628303815655343403735250238293741397E5L,
|
|
P4 = 2.854829159639697837788887080758954924001E5L,
|
|
P3 = 3.007007295140399532324943111654767187848E5L,
|
|
P2 = 2.014652742082537582487669938141683759923E5L,
|
|
P1 = 7.771154681358524243729929227226708890930E4L,
|
|
P0 = 1.313572404063446165910279910527789794488E4L,
|
|
/* Q12 = 1.000000000000000000000000000000000000000E0L, */
|
|
Q11 = 4.839208193348159620282142911143429644326E1L,
|
|
Q10 = 9.104928120962988414618126155557301584078E2L,
|
|
Q9 = 9.147150349299596453976674231612674085381E3L,
|
|
Q8 = 5.605842085972455027590989944010492125825E4L,
|
|
Q7 = 2.248234257620569139969141618556349415120E5L,
|
|
Q6 = 6.132189329546557743179177159925690841200E5L,
|
|
Q5 = 1.158019977462989115839826904108208787040E6L,
|
|
Q4 = 1.514882452993549494932585972882995548426E6L,
|
|
Q3 = 1.347518538384329112529391120390701166528E6L,
|
|
Q2 = 7.777690340007566932935753241556479363645E5L,
|
|
Q1 = 2.626900195321832660448791748036714883242E5L,
|
|
Q0 = 3.940717212190338497730839731583397586124E4L;
|
|
|
|
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
|
|
* where z = 2(x-1)/(x+1)
|
|
* 1/sqrt(2) <= x < sqrt(2)
|
|
* Theoretical peak relative error = 1.1e-35,
|
|
* relative peak error spread 1.1e-9
|
|
*/
|
|
static const long double
|
|
R5 = -8.828896441624934385266096344596648080902E-1L,
|
|
R4 = 8.057002716646055371965756206836056074715E1L,
|
|
R3 = -2.024301798136027039250415126250455056397E3L,
|
|
R2 = 2.048819892795278657810231591630928516206E4L,
|
|
R1 = -8.977257995689735303686582344659576526998E4L,
|
|
R0 = 1.418134209872192732479751274970992665513E5L,
|
|
/* S6 = 1.000000000000000000000000000000000000000E0L, */
|
|
S5 = -1.186359407982897997337150403816839480438E2L,
|
|
S4 = 3.998526750980007367835804959888064681098E3L,
|
|
S3 = -5.748542087379434595104154610899551484314E4L,
|
|
S2 = 4.001557694070773974936904547424676279307E5L,
|
|
S1 = -1.332535117259762928288745111081235577029E6L,
|
|
S0 = 1.701761051846631278975701529965589676574E6L;
|
|
|
|
/* C1 + C2 = ln 2 */
|
|
static const long double C1 = 6.93145751953125E-1L;
|
|
static const long double C2 = 1.428606820309417232121458176568075500134E-6L;
|
|
|
|
static const long double sqrth = 0.7071067811865475244008443621048490392848L;
|
|
/* ln (2^16384 * (1 - 2^-113)) */
|
|
static const long double maxlog = 1.1356523406294143949491931077970764891253E4L;
|
|
static const long double big = 2e300L;
|
|
static const long double zero = 0.0L;
|
|
|
|
|
|
long double
|
|
__log1pl (long double xm1)
|
|
{
|
|
long double x, y, z, r, s;
|
|
double xhi;
|
|
int32_t hx, lx;
|
|
int e;
|
|
|
|
/* Test for NaN or infinity input. */
|
|
xhi = ldbl_high (xm1);
|
|
EXTRACT_WORDS (hx, lx, xhi);
|
|
if (hx >= 0x7ff00000)
|
|
return xm1;
|
|
|
|
/* log1p(+- 0) = +- 0. */
|
|
if (((hx & 0x7fffffff) | lx) == 0)
|
|
return xm1;
|
|
|
|
x = xm1 + 1.0L;
|
|
|
|
/* log1p(-1) = -inf */
|
|
if (x <= 0.0L)
|
|
{
|
|
if (x == 0.0L)
|
|
return (-1.0L / (x - x));
|
|
else
|
|
return (zero / (x - x));
|
|
}
|
|
|
|
/* Separate mantissa from exponent. */
|
|
|
|
/* Use frexp used so that denormal numbers will be handled properly. */
|
|
x = __frexpl (x, &e);
|
|
|
|
/* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
|
|
where z = 2(x-1)/x+1). */
|
|
if ((e > 2) || (e < -2))
|
|
{
|
|
if (x < sqrth)
|
|
{ /* 2( 2x-1 )/( 2x+1 ) */
|
|
e -= 1;
|
|
z = x - 0.5L;
|
|
y = 0.5L * z + 0.5L;
|
|
}
|
|
else
|
|
{ /* 2 (x-1)/(x+1) */
|
|
z = x - 0.5L;
|
|
z -= 0.5L;
|
|
y = 0.5L * x + 0.5L;
|
|
}
|
|
x = z / y;
|
|
z = x * x;
|
|
r = ((((R5 * z
|
|
+ R4) * z
|
|
+ R3) * z
|
|
+ R2) * z
|
|
+ R1) * z
|
|
+ R0;
|
|
s = (((((z
|
|
+ S5) * z
|
|
+ S4) * z
|
|
+ S3) * z
|
|
+ S2) * z
|
|
+ S1) * z
|
|
+ S0;
|
|
z = x * (z * r / s);
|
|
z = z + e * C2;
|
|
z = z + x;
|
|
z = z + e * C1;
|
|
return (z);
|
|
}
|
|
|
|
|
|
/* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
|
|
|
|
if (x < sqrth)
|
|
{
|
|
e -= 1;
|
|
if (e != 0)
|
|
x = 2.0L * x - 1.0L; /* 2x - 1 */
|
|
else
|
|
x = xm1;
|
|
}
|
|
else
|
|
{
|
|
if (e != 0)
|
|
x = x - 1.0L;
|
|
else
|
|
x = xm1;
|
|
}
|
|
z = x * x;
|
|
r = (((((((((((P12 * x
|
|
+ P11) * x
|
|
+ P10) * x
|
|
+ P9) * x
|
|
+ P8) * x
|
|
+ P7) * x
|
|
+ P6) * x
|
|
+ P5) * x
|
|
+ P4) * x
|
|
+ P3) * x
|
|
+ P2) * x
|
|
+ P1) * x
|
|
+ P0;
|
|
s = (((((((((((x
|
|
+ Q11) * x
|
|
+ Q10) * x
|
|
+ Q9) * x
|
|
+ Q8) * x
|
|
+ Q7) * x
|
|
+ Q6) * x
|
|
+ Q5) * x
|
|
+ Q4) * x
|
|
+ Q3) * x
|
|
+ Q2) * x
|
|
+ Q1) * x
|
|
+ Q0;
|
|
y = x * (z * r / s);
|
|
y = y + e * C2;
|
|
z = y - 0.5L * z;
|
|
z = z + x;
|
|
z = z + e * C1;
|
|
return (z);
|
|
}
|
|
|
|
long_double_symbol (libm, __log1pl, log1pl);
|