glibc/sysdeps/powerpc/powerpc64/power7/strrchr.S
Rajalakshmi Srinivasaraghavan c7debbdfac PowerPC: strrchr optimization for POWER7/PPC64
This patch optimizes strrchr() for ppc64. It uses aligned memory
access along with cmpb instruction and CPU prefetch to avoid
cache misses for speed improvement.
2014-03-03 08:06:41 -06:00

256 lines
6.9 KiB
ArmAsm

/* Optimized strrchr implementation for PowerPC64/POWER7 using cmpb insn.
Copyright (C) 2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
/* int [r3] strrchr (char *s [r3], int c [r4]) */
.machine power7
ENTRY (strrchr)
CALL_MCOUNT 2
dcbt 0,r3
clrrdi r8,r3,3 /* Align the address to doubleword boundary. */
cmpdi cr7,r4,0
ld r12,0(r8) /* Load doubleword from memory. */
li r9,0 /* used to store last occurence */
li r0,0 /* Doubleword with null chars to use
with cmpb. */
rlwinm r6,r3,3,26,28 /* Calculate padding. */
beq cr7,L(null_match)
/* Replicate byte to doubleword. */
insrdi r4,r4,8,48
insrdi r4,r4,16,32
insrdi r4,r4,32,0
/* r4 is changed now ,if its passed as more chars
check for null again */
cmpdi cr7,r4,0
beq cr7,L(null_match)
/* Now r4 has a doubleword of c bytes and r0 has
a doubleword of null bytes. */
cmpb r10,r12,r4 /* Compare each byte against c byte. */
cmpb r11,r12,r0 /* Compare each byte against null byte. */
/* Move the doublewords left and right to discard the bits that are
not part of the string and bring them back as zeros. */
#ifdef __LITTLE_ENDIAN__
srd r10,r10,r6
srd r11,r11,r6
sld r10,r10,r6
sld r11,r11,r6
#else
sld r10,r10,r6
sld r11,r11,r6
srd r10,r10,r6
srd r11,r11,r6
#endif
or r5,r10,r11 /* OR the results to speed things up. */
cmpdi cr7,r5,0 /* If r5 == 0, no c or null bytes
have been found. */
bne cr7,L(done)
L(align):
mtcrf 0x01,r8
/* Are we now aligned to a doubleword boundary? If so, skip to
the main loop. Otherwise, go through the alignment code. */
bt 28,L(loop)
/* Handle WORD2 of pair. */
ldu r12,8(r8)
cmpb r10,r12,r4
cmpb r11,r12,r0
or r5,r10,r11
cmpdi cr7,r5,0
bne cr7,L(done)
b L(loop) /* We branch here (rather than falling through)
to skip the nops due to heavy alignment
of the loop below. */
.p2align 5
L(loop):
/* Load two doublewords, compare and merge in a
single register for speed. This is an attempt
to speed up the null-checking process for bigger strings. */
ld r12,8(r8)
ldu r7,16(r8)
cmpb r10,r12,r4
cmpb r11,r12,r0
cmpb r6,r7,r4
cmpb r7,r7,r0
or r12,r10,r11
or r5,r6,r7
or r5,r12,r5
cmpdi cr7,r5,0
beq cr7,L(loop)
/* OK, one (or both) of the doublewords contains a c/null byte. Check
the first doubleword and decrement the address in case the first
doubleword really contains a c/null byte. */
cmpdi cr6,r12,0
addi r8,r8,-8
bne cr6,L(done)
/* The c/null byte must be in the second doubleword. Adjust the
address again and move the result of cmpb to r10 so we can calculate
the pointer. */
mr r10,r6
mr r11,r7
addi r8,r8,8
/* r10/r11 have the output of the cmpb instructions, that is,
0xff in the same position as the c/null byte in the original
doubleword from the string. Use that to calculate the pointer. */
L(done):
/* if there are more than one 0xff in r11, find the first pos of ff
in r11 and fill r10 with 0 from that position */
cmpdi cr7,r11,0
beq cr7,L(no_null)
#ifdef __LITTLE_ENDIAN__
addi r3,r11,-1
andc r3,r3,r11
popcntd r0,r3
#else
cntlzd r0,r11
#endif
subfic r0,r0,63
li r6,-1
#ifdef __LITTLE_ENDIAN__
srd r0,r6,r0
#else
sld r0,r6,r0
#endif
and r10,r0,r10
L(no_null):
#ifdef __LITTLE_ENDIAN__
cntlzd r0,r10 /* Count leading zeros before c matches. */
addi r3,r10,-1
andc r3,r3,r10
addi r10,r11,-1
andc r10,r10,r11
cmpld cr7,r3,r10
bgt cr7,L(no_match)
#else
addi r3,r10,-1 /* Count trailing zeros before c matches. */
andc r3,r3,r10
popcntd r0,r3
cmpld cr7,r11,r10
bgt cr7,L(no_match)
#endif
srdi r0,r0,3 /* Convert trailing zeros to bytes. */
subfic r0,r0,7
add r9,r8,r0 /* Return address of the matching c byte
or null in case c was not found. */
li r0,0
cmpdi cr7,r11,0 /* If r11 == 0, no null's have been found. */
beq cr7,L(align)
.align 4
L(no_match):
mr r3,r9
blr
/* We are here because strrchr was called with a null byte. */
.align 4
L(null_match):
/* r0 has a doubleword of null bytes. */
cmpb r5,r12,r0 /* Compare each byte against null bytes. */
/* Move the doublewords left and right to discard the bits that are
not part of the string and bring them back as zeros. */
#ifdef __LITTLE_ENDIAN__
srd r5,r5,r6
sld r5,r5,r6
#else
sld r5,r5,r6
srd r5,r5,r6
#endif
cmpdi cr7,r5,0 /* If r10 == 0, no c or null bytes
have been found. */
bne cr7,L(done_null)
mtcrf 0x01,r8
/* Are we now aligned to a quadword boundary? If so, skip to
the main loop. Otherwise, go through the alignment code. */
bt 28,L(loop_null)
/* Handle WORD2 of pair. */
ldu r12,8(r8)
cmpb r5,r12,r0
cmpdi cr7,r5,0
bne cr7,L(done_null)
b L(loop_null) /* We branch here (rather than falling through)
to skip the nops due to heavy alignment
of the loop below. */
/* Main loop to look for the end of the string. Since it's a
small loop (< 8 instructions), align it to 32-bytes. */
.p2align 5
L(loop_null):
/* Load two doublewords, compare and merge in a
single register for speed. This is an attempt
to speed up the null-checking process for bigger strings. */
ld r12,8(r8)
ldu r11,16(r8)
cmpb r5,r12,r0
cmpb r10,r11,r0
or r6,r5,r10
cmpdi cr7,r6,0
beq cr7,L(loop_null)
/* OK, one (or both) of the doublewords contains a null byte. Check
the first doubleword and decrement the address in case the first
doubleword really contains a null byte. */
cmpdi cr6,r5,0
addi r8,r8,-8
bne cr6,L(done_null)
/* The null byte must be in the second doubleword. Adjust the address
again and move the result of cmpb to r10 so we can calculate the
pointer. */
mr r5,r10
addi r8,r8,8
/* r5 has the output of the cmpb instruction, that is, it contains
0xff in the same position as the null byte in the original
doubleword from the string. Use that to calculate the pointer. */
L(done_null):
#ifdef __LITTLE_ENDIAN__
addi r0,r5,-1
andc r0,r0,r5
popcntd r0,r0
#else
cntlzd r0,r5 /* Count leading zeros before the match. */
#endif
srdi r0,r0,3 /* Convert trailing zeros to bytes. */
add r3,r8,r0 /* Return address of the matching null byte. */
blr
END (strrchr)
weak_alias (strrchr, rindex)
libc_hidden_builtin_def (strrchr)