mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-06 12:00:24 +08:00
1201 lines
31 KiB
ArmAsm
1201 lines
31 KiB
ArmAsm
.file "log1pl.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2003, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// History:
|
|
// 02/02/00 Initial version
|
|
// 04/04/00 Unwind support added
|
|
// 08/15/00 Bundle added after call to __libm_error_support to properly
|
|
// set [the previously overwritten] GR_Parameter_RESULT.
|
|
// 05/21/01 Removed logl and log10l, putting them in a separate file
|
|
// 06/29/01 Improved speed of all paths
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align;
|
|
// used data8 for long double table values
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Function: log1pl(x) = ln(x+1), for double-extended precision x values
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f34-f82
|
|
//
|
|
// General Purpose Registers:
|
|
// r32-r56
|
|
// r53-r56 (Used to pass arguments to error handling routine)
|
|
//
|
|
// Predicate Registers: p6-p13
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Overflow exceptions cannot occur
|
|
// Underflow exceptions raised when appropriate for log1p
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// log1pl(inf) = inf
|
|
// log1pl(-inf) = QNaN
|
|
// log1pl(+/-0) = +/-0
|
|
// log1pl(-1) = -inf
|
|
// log1pl(SNaN) = QNaN
|
|
// log1pl(QNaN) = QNaN
|
|
// log1pl(EM_special Values) = QNaN
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Overview
|
|
//
|
|
// The method consists of three cases.
|
|
//
|
|
// If |X| < 2^(-80) use case log1p_small;
|
|
// else |X| < 2^(-7) use case log_near1;
|
|
// else use case log_regular;
|
|
//
|
|
// Case log1p_small:
|
|
//
|
|
// log1pl( X ) = logl( X+1 ) can be approximated by X
|
|
//
|
|
// Case log_near1:
|
|
//
|
|
// log1pl( X ) = log( X+1 ) can be approximated by a simple polynomial
|
|
// in W = X. This polynomial resembles the truncated Taylor
|
|
// series W - W^/2 + W^3/3 - ...
|
|
//
|
|
// Case log_regular:
|
|
//
|
|
// Here we use a table lookup method. The basic idea is that in
|
|
// order to compute logl(Arg) = log1pl (Arg-1) for an argument Arg in [1,2),
|
|
// we construct a value G such that G*Arg is close to 1 and that
|
|
// logl(1/G) is obtainable easily from a table of values calculated
|
|
// beforehand. Thus
|
|
//
|
|
// logl(Arg) = logl(1/G) + logl(G*Arg)
|
|
// = logl(1/G) + logl(1 + (G*Arg - 1))
|
|
//
|
|
// Because |G*Arg - 1| is small, the second term on the right hand
|
|
// side can be approximated by a short polynomial. We elaborate
|
|
// this method in four steps.
|
|
//
|
|
// Step 0: Initialization
|
|
//
|
|
// We need to calculate logl( X+1 ). Obtain N, S_hi such that
|
|
//
|
|
// X+1 = 2^N * ( S_hi + S_lo ) exactly
|
|
//
|
|
// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
|
|
// that |S_lo| <= ulp(S_hi).
|
|
//
|
|
// Step 1: Argument Reduction
|
|
//
|
|
// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
|
|
//
|
|
// G := G_1 * G_2 * G_3
|
|
// r := (G * S_hi - 1) + G * S_lo
|
|
//
|
|
// These G_j's have the property that the product is exactly
|
|
// representable and that |r| < 2^(-12) as a result.
|
|
//
|
|
// Step 2: Approximation
|
|
//
|
|
//
|
|
// logl(1 + r) is approximated by a short polynomial poly(r).
|
|
//
|
|
// Step 3: Reconstruction
|
|
//
|
|
//
|
|
// Finally, log1pl( X ) = logl( X+1 ) is given by
|
|
//
|
|
// logl( X+1 ) = logl( 2^N * (S_hi + S_lo) )
|
|
// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
|
|
// ~=~ N*logl(2) + logl(1/G) + poly(r).
|
|
//
|
|
// **** Algorithm ****
|
|
//
|
|
// Case log1p_small:
|
|
//
|
|
// Although log1pl(X) is basically X, we would like to preserve the inexactness
|
|
// nature as well as consistent behavior under different rounding modes.
|
|
// We can do this by computing the result as
|
|
//
|
|
// log1pl(X) = X - X*X
|
|
//
|
|
//
|
|
// Case log_near1:
|
|
//
|
|
// Here we compute a simple polynomial. To exploit parallelism, we split
|
|
// the polynomial into two portions.
|
|
//
|
|
// W := X
|
|
// Wsq := W * W
|
|
// W4 := Wsq*Wsq
|
|
// W6 := W4*Wsq
|
|
// Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
|
|
// Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
|
|
//
|
|
// Case log_regular:
|
|
//
|
|
// We present the algorithm in four steps.
|
|
//
|
|
// Step 0. Initialization
|
|
// ----------------------
|
|
//
|
|
// Z := X + 1
|
|
// N := unbaised exponent of Z
|
|
// S_hi := 2^(-N) * Z
|
|
// S_lo := 2^(-N) * { (max(X,1)-Z) + min(X,1) }
|
|
//
|
|
// Step 1. Argument Reduction
|
|
// --------------------------
|
|
//
|
|
// Let
|
|
//
|
|
// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
|
|
//
|
|
// We obtain G_1, G_2, G_3 by the following steps.
|
|
//
|
|
//
|
|
// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
|
|
// from S_hi.
|
|
//
|
|
// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
|
|
// to lsb = 2^(-4).
|
|
//
|
|
// Define index_1 := [ d_1 d_2 d_3 d_4 ].
|
|
//
|
|
// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
|
|
// fixed point lsb = 2^(-15).
|
|
// Z_1 looks like z_0.z_1 z_2 ... z_15
|
|
// Note that the fetching is done using index_1.
|
|
// A_1 is actually not needed in the implementation
|
|
// and is used here only to explain how is the value
|
|
// Z_1 defined.
|
|
//
|
|
// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
|
|
// floating pt. Again, fetching is done using index_1. A_1
|
|
// explains how G_1 is defined.
|
|
//
|
|
// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
|
|
// = 1.0 0 0 0 d_5 ... d_14
|
|
// This is accomplised by integer multiplication.
|
|
// It is proved that X_1 indeed always begin
|
|
// with 1.0000 in fixed point.
|
|
//
|
|
//
|
|
// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
|
|
// truncated to lsb = 2^(-8). Similar to A_1,
|
|
// A_2 is not needed in actual implementation. It
|
|
// helps explain how some of the values are defined.
|
|
//
|
|
// Define index_2 := [ d_5 d_6 d_7 d_8 ].
|
|
//
|
|
// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
|
|
// fixed point lsb = 2^(-15). Fetch done using index_2.
|
|
// Z_2 looks like z_0.z_1 z_2 ... z_15
|
|
//
|
|
// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
|
|
// floating pt.
|
|
//
|
|
// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
|
|
// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
|
|
// This is accomplised by integer multiplication.
|
|
// It is proved that X_2 indeed always begin
|
|
// with 1.00000000 in fixed point.
|
|
//
|
|
//
|
|
// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
|
|
// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
|
|
//
|
|
// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
|
|
//
|
|
// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
|
|
// floating pt. Fetch is done using index_3.
|
|
//
|
|
// Compute G := G_1 * G_2 * G_3.
|
|
//
|
|
// This is done exactly since each of G_j only has 21 sig. bits.
|
|
//
|
|
// Compute
|
|
//
|
|
// r := (G*S_hi - 1) + G*S_lo using 2 FMA operations.
|
|
//
|
|
// Thus r approximates G*(S_hi + S_lo) - 1 to within a couple of
|
|
// rounding errors.
|
|
//
|
|
//
|
|
// Step 2. Approximation
|
|
// ---------------------
|
|
//
|
|
// This step computes an approximation to logl( 1 + r ) where r is the
|
|
// reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
|
|
// thus logl(1+r) can be approximated by a short polynomial:
|
|
//
|
|
// logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
|
|
//
|
|
//
|
|
// Step 3. Reconstruction
|
|
// ----------------------
|
|
//
|
|
// This step computes the desired result of logl(X+1):
|
|
//
|
|
// logl(X+1) = logl( 2^N * (S_hi + S_lo) )
|
|
// = N*logl(2) + logl( S_hi + S_lo) )
|
|
// = N*logl(2) + logl(1/G) +
|
|
// logl(1 + G * ( S_hi + S_lo ) - 1 )
|
|
//
|
|
// logl(2), logl(1/G_j) are stored as pairs of (single,double) numbers:
|
|
// log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
|
|
// single-precision numbers and the low parts are double precision
|
|
// numbers. These have the property that
|
|
//
|
|
// N*log2_hi + SUM ( log1byGj_hi )
|
|
//
|
|
// is computable exactly in double-extended precision (64 sig. bits).
|
|
// Finally
|
|
//
|
|
// Y_hi := N*log2_hi + SUM ( log1byGj_hi )
|
|
// Y_lo := poly_hi + [ poly_lo +
|
|
// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
|
|
//
|
|
|
|
RODATA
|
|
.align 64
|
|
|
|
// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
|
|
|
|
// P_8, P_7, P_6, P_5, P_4, P_3, P_2, and P_1
|
|
|
|
LOCAL_OBJECT_START(Constants_P)
|
|
//data4 0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
|
|
//data4 0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
|
|
//data4 0x73282DB0,0x9249248C,0x00003FFC,0x00000000
|
|
//data4 0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
|
|
//data4 0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
|
|
//data4 0x00067ED5,0x80000000,0x0000BFFD,0x00000000
|
|
//data4 0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
|
|
//data4 0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
|
|
data8 0xE3936754EFD62B15,0x00003FFB
|
|
data8 0x8003B271A5E56381,0x0000BFFC
|
|
data8 0x9249248C73282DB0,0x00003FFC
|
|
data8 0xAAAAAA9F47305052,0x0000BFFC
|
|
data8 0xCCCCCCCCCCD17FC9,0x00003FFC
|
|
data8 0x8000000000067ED5,0x0000BFFD
|
|
data8 0xAAAAAAAAAAAAAAAA,0x00003FFD
|
|
data8 0xFFFFFFFFFFFFFFFE,0x0000BFFD
|
|
LOCAL_OBJECT_END(Constants_P)
|
|
|
|
// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1
|
|
|
|
LOCAL_OBJECT_START(Constants_Q)
|
|
//data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
|
|
//data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
|
|
//data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
|
|
//data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
|
|
//data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
|
|
//data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
|
|
data8 0xB172180000000000,0x00003FFE
|
|
data8 0x82E308654361C4C6,0x0000BFE2
|
|
data8 0xCCCCCAF2328833CB,0x00003FFC
|
|
data8 0x80000077A9D4BAFB,0x0000BFFD
|
|
data8 0xAAAAAAAAAAABE3D2,0x00003FFD
|
|
data8 0xFFFFFFFFFFFFDAB7,0x0000BFFD
|
|
LOCAL_OBJECT_END(Constants_Q)
|
|
|
|
// 1/ln10_hi, 1/ln10_lo
|
|
|
|
LOCAL_OBJECT_START(Constants_1_by_LN10)
|
|
//data4 0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
|
|
//data4 0xACCF70C8,0xD56EAABE,0x00003FBB,0x00000000
|
|
data8 0xDE5BD8A937287195,0x00003FFD
|
|
data8 0xD56EAABEACCF70C8,0x00003FBB
|
|
LOCAL_OBJECT_END(Constants_1_by_LN10)
|
|
|
|
|
|
// Z1 - 16 bit fixed
|
|
|
|
LOCAL_OBJECT_START(Constants_Z_1)
|
|
data4 0x00008000
|
|
data4 0x00007879
|
|
data4 0x000071C8
|
|
data4 0x00006BCB
|
|
data4 0x00006667
|
|
data4 0x00006187
|
|
data4 0x00005D18
|
|
data4 0x0000590C
|
|
data4 0x00005556
|
|
data4 0x000051EC
|
|
data4 0x00004EC5
|
|
data4 0x00004BDB
|
|
data4 0x00004925
|
|
data4 0x0000469F
|
|
data4 0x00004445
|
|
data4 0x00004211
|
|
LOCAL_OBJECT_END(Constants_Z_1)
|
|
|
|
// G1 and H1 - IEEE single and h1 - IEEE double
|
|
|
|
LOCAL_OBJECT_START(Constants_G_H_h1)
|
|
data4 0x3F800000,0x00000000
|
|
data8 0x0000000000000000
|
|
data4 0x3F70F0F0,0x3D785196
|
|
data8 0x3DA163A6617D741C
|
|
data4 0x3F638E38,0x3DF13843
|
|
data8 0x3E2C55E6CBD3D5BB
|
|
data4 0x3F579430,0x3E2FF9A0
|
|
data8 0xBE3EB0BFD86EA5E7
|
|
data4 0x3F4CCCC8,0x3E647FD6
|
|
data8 0x3E2E6A8C86B12760
|
|
data4 0x3F430C30,0x3E8B3AE7
|
|
data8 0x3E47574C5C0739BA
|
|
data4 0x3F3A2E88,0x3EA30C68
|
|
data8 0x3E20E30F13E8AF2F
|
|
data4 0x3F321640,0x3EB9CEC8
|
|
data8 0xBE42885BF2C630BD
|
|
data4 0x3F2AAAA8,0x3ECF9927
|
|
data8 0x3E497F3497E577C6
|
|
data4 0x3F23D708,0x3EE47FC5
|
|
data8 0x3E3E6A6EA6B0A5AB
|
|
data4 0x3F1D89D8,0x3EF8947D
|
|
data8 0xBDF43E3CD328D9BE
|
|
data4 0x3F17B420,0x3F05F3A1
|
|
data8 0x3E4094C30ADB090A
|
|
data4 0x3F124920,0x3F0F4303
|
|
data8 0xBE28FBB2FC1FE510
|
|
data4 0x3F0D3DC8,0x3F183EBF
|
|
data8 0x3E3A789510FDE3FA
|
|
data4 0x3F088888,0x3F20EC80
|
|
data8 0x3E508CE57CC8C98F
|
|
data4 0x3F042108,0x3F29516A
|
|
data8 0xBE534874A223106C
|
|
LOCAL_OBJECT_END(Constants_G_H_h1)
|
|
|
|
// Z2 - 16 bit fixed
|
|
|
|
LOCAL_OBJECT_START(Constants_Z_2)
|
|
data4 0x00008000
|
|
data4 0x00007F81
|
|
data4 0x00007F02
|
|
data4 0x00007E85
|
|
data4 0x00007E08
|
|
data4 0x00007D8D
|
|
data4 0x00007D12
|
|
data4 0x00007C98
|
|
data4 0x00007C20
|
|
data4 0x00007BA8
|
|
data4 0x00007B31
|
|
data4 0x00007ABB
|
|
data4 0x00007A45
|
|
data4 0x000079D1
|
|
data4 0x0000795D
|
|
data4 0x000078EB
|
|
LOCAL_OBJECT_END(Constants_Z_2)
|
|
|
|
// G2 and H2 - IEEE single and h2 - IEEE double
|
|
|
|
LOCAL_OBJECT_START(Constants_G_H_h2)
|
|
data4 0x3F800000,0x00000000
|
|
data8 0x0000000000000000
|
|
data4 0x3F7F00F8,0x3B7F875D
|
|
data8 0x3DB5A11622C42273
|
|
data4 0x3F7E03F8,0x3BFF015B
|
|
data8 0x3DE620CF21F86ED3
|
|
data4 0x3F7D08E0,0x3C3EE393
|
|
data8 0xBDAFA07E484F34ED
|
|
data4 0x3F7C0FC0,0x3C7E0586
|
|
data8 0xBDFE07F03860BCF6
|
|
data4 0x3F7B1880,0x3C9E75D2
|
|
data8 0x3DEA370FA78093D6
|
|
data4 0x3F7A2328,0x3CBDC97A
|
|
data8 0x3DFF579172A753D0
|
|
data4 0x3F792FB0,0x3CDCFE47
|
|
data8 0x3DFEBE6CA7EF896B
|
|
data4 0x3F783E08,0x3CFC15D0
|
|
data8 0x3E0CF156409ECB43
|
|
data4 0x3F774E38,0x3D0D874D
|
|
data8 0xBE0B6F97FFEF71DF
|
|
data4 0x3F766038,0x3D1CF49B
|
|
data8 0xBE0804835D59EEE8
|
|
data4 0x3F757400,0x3D2C531D
|
|
data8 0x3E1F91E9A9192A74
|
|
data4 0x3F748988,0x3D3BA322
|
|
data8 0xBE139A06BF72A8CD
|
|
data4 0x3F73A0D0,0x3D4AE46F
|
|
data8 0x3E1D9202F8FBA6CF
|
|
data4 0x3F72B9D0,0x3D5A1756
|
|
data8 0xBE1DCCC4BA796223
|
|
data4 0x3F71D488,0x3D693B9D
|
|
data8 0xBE049391B6B7C239
|
|
LOCAL_OBJECT_END(Constants_G_H_h2)
|
|
|
|
// G3 and H3 - IEEE single and h3 - IEEE double
|
|
|
|
LOCAL_OBJECT_START(Constants_G_H_h3)
|
|
data4 0x3F7FFC00,0x38800100
|
|
data8 0x3D355595562224CD
|
|
data4 0x3F7FF400,0x39400480
|
|
data8 0x3D8200A206136FF6
|
|
data4 0x3F7FEC00,0x39A00640
|
|
data8 0x3DA4D68DE8DE9AF0
|
|
data4 0x3F7FE400,0x39E00C41
|
|
data8 0xBD8B4291B10238DC
|
|
data4 0x3F7FDC00,0x3A100A21
|
|
data8 0xBD89CCB83B1952CA
|
|
data4 0x3F7FD400,0x3A300F22
|
|
data8 0xBDB107071DC46826
|
|
data4 0x3F7FCC08,0x3A4FF51C
|
|
data8 0x3DB6FCB9F43307DB
|
|
data4 0x3F7FC408,0x3A6FFC1D
|
|
data8 0xBD9B7C4762DC7872
|
|
data4 0x3F7FBC10,0x3A87F20B
|
|
data8 0xBDC3725E3F89154A
|
|
data4 0x3F7FB410,0x3A97F68B
|
|
data8 0xBD93519D62B9D392
|
|
data4 0x3F7FAC18,0x3AA7EB86
|
|
data8 0x3DC184410F21BD9D
|
|
data4 0x3F7FA420,0x3AB7E101
|
|
data8 0xBDA64B952245E0A6
|
|
data4 0x3F7F9C20,0x3AC7E701
|
|
data8 0x3DB4B0ECAABB34B8
|
|
data4 0x3F7F9428,0x3AD7DD7B
|
|
data8 0x3D9923376DC40A7E
|
|
data4 0x3F7F8C30,0x3AE7D474
|
|
data8 0x3DC6E17B4F2083D3
|
|
data4 0x3F7F8438,0x3AF7CBED
|
|
data8 0x3DAE314B811D4394
|
|
data4 0x3F7F7C40,0x3B03E1F3
|
|
data8 0xBDD46F21B08F2DB1
|
|
data4 0x3F7F7448,0x3B0BDE2F
|
|
data8 0xBDDC30A46D34522B
|
|
data4 0x3F7F6C50,0x3B13DAAA
|
|
data8 0x3DCB0070B1F473DB
|
|
data4 0x3F7F6458,0x3B1BD766
|
|
data8 0xBDD65DDC6AD282FD
|
|
data4 0x3F7F5C68,0x3B23CC5C
|
|
data8 0xBDCDAB83F153761A
|
|
data4 0x3F7F5470,0x3B2BC997
|
|
data8 0xBDDADA40341D0F8F
|
|
data4 0x3F7F4C78,0x3B33C711
|
|
data8 0x3DCD1BD7EBC394E8
|
|
data4 0x3F7F4488,0x3B3BBCC6
|
|
data8 0xBDC3532B52E3E695
|
|
data4 0x3F7F3C90,0x3B43BAC0
|
|
data8 0xBDA3961EE846B3DE
|
|
data4 0x3F7F34A0,0x3B4BB0F4
|
|
data8 0xBDDADF06785778D4
|
|
data4 0x3F7F2CA8,0x3B53AF6D
|
|
data8 0x3DCC3ED1E55CE212
|
|
data4 0x3F7F24B8,0x3B5BA620
|
|
data8 0xBDBA31039E382C15
|
|
data4 0x3F7F1CC8,0x3B639D12
|
|
data8 0x3D635A0B5C5AF197
|
|
data4 0x3F7F14D8,0x3B6B9444
|
|
data8 0xBDDCCB1971D34EFC
|
|
data4 0x3F7F0CE0,0x3B7393BC
|
|
data8 0x3DC7450252CD7ADA
|
|
data4 0x3F7F04F0,0x3B7B8B6D
|
|
data8 0xBDB68F177D7F2A42
|
|
LOCAL_OBJECT_END(Constants_G_H_h3)
|
|
|
|
|
|
// Floating Point Registers
|
|
|
|
FR_Input_X = f8
|
|
|
|
FR_Y_hi = f34
|
|
FR_Y_lo = f35
|
|
|
|
FR_Scale = f36
|
|
FR_X_Prime = f37
|
|
FR_S_hi = f38
|
|
FR_W = f39
|
|
FR_G = f40
|
|
|
|
FR_H = f41
|
|
FR_wsq = f42
|
|
FR_w4 = f43
|
|
FR_h = f44
|
|
FR_w6 = f45
|
|
|
|
FR_G2 = f46
|
|
FR_H2 = f47
|
|
FR_poly_lo = f48
|
|
FR_P8 = f49
|
|
FR_poly_hi = f50
|
|
|
|
FR_P7 = f51
|
|
FR_h2 = f52
|
|
FR_rsq = f53
|
|
FR_P6 = f54
|
|
FR_r = f55
|
|
|
|
FR_log2_hi = f56
|
|
FR_log2_lo = f57
|
|
FR_p87 = f58
|
|
FR_p876 = f58
|
|
FR_p8765 = f58
|
|
FR_float_N = f59
|
|
FR_Q4 = f60
|
|
|
|
FR_p43 = f61
|
|
FR_p432 = f61
|
|
FR_p4321 = f61
|
|
FR_P4 = f62
|
|
FR_G3 = f63
|
|
FR_H3 = f64
|
|
FR_h3 = f65
|
|
|
|
FR_Q3 = f66
|
|
FR_P3 = f67
|
|
FR_Q2 = f68
|
|
FR_P2 = f69
|
|
FR_1LN10_hi = f70
|
|
|
|
FR_Q1 = f71
|
|
FR_P1 = f72
|
|
FR_1LN10_lo = f73
|
|
FR_P5 = f74
|
|
FR_rcub = f75
|
|
|
|
FR_Output_X_tmp = f76
|
|
FR_Neg_One = f77
|
|
FR_Z = f78
|
|
FR_AA = f79
|
|
FR_BB = f80
|
|
FR_S_lo = f81
|
|
FR_2_to_minus_N = f82
|
|
|
|
FR_X = f8
|
|
FR_Y = f0
|
|
FR_RESULT = f76
|
|
|
|
|
|
// General Purpose Registers
|
|
|
|
GR_ad_p = r33
|
|
GR_Index1 = r34
|
|
GR_Index2 = r35
|
|
GR_signif = r36
|
|
GR_X_0 = r37
|
|
GR_X_1 = r38
|
|
GR_X_2 = r39
|
|
GR_minus_N = r39
|
|
GR_Z_1 = r40
|
|
GR_Z_2 = r41
|
|
GR_N = r42
|
|
GR_Bias = r43
|
|
GR_M = r44
|
|
GR_Index3 = r45
|
|
GR_exp_2tom80 = r45
|
|
GR_ad_p2 = r46
|
|
GR_exp_mask = r47
|
|
GR_exp_2tom7 = r48
|
|
GR_ad_ln10 = r49
|
|
GR_ad_tbl_1 = r50
|
|
GR_ad_tbl_2 = r51
|
|
GR_ad_tbl_3 = r52
|
|
GR_ad_q = r53
|
|
GR_ad_z_1 = r54
|
|
GR_ad_z_2 = r55
|
|
GR_ad_z_3 = r56
|
|
GR_minus_N = r39
|
|
|
|
//
|
|
// Added for unwind support
|
|
//
|
|
|
|
GR_SAVE_PFS = r50
|
|
GR_SAVE_B0 = r51
|
|
GR_SAVE_GP = r52
|
|
GR_Parameter_X = r53
|
|
GR_Parameter_Y = r54
|
|
GR_Parameter_RESULT = r55
|
|
GR_Parameter_TAG = r56
|
|
|
|
.section .text
|
|
GLOBAL_IEEE754_ENTRY(log1pl)
|
|
{ .mfi
|
|
alloc r32 = ar.pfs,0,21,4,0
|
|
fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test for natval, nan, inf
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
|
|
fma.s1 FR_Z = FR_Input_X, f1, f1 // x+1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.ns FR_Neg_One = f1, f1 // Form -1.0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnorm.s1 FR_X_Prime = FR_Input_X // Normalize x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
|
|
nop.f 999
|
|
mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
getf.sig GR_signif = FR_Z // Get significand of x+1
|
|
fcmp.eq.s1 p9, p0 = FR_Input_X, f0 // Test for x=0
|
|
(p6) br.cond.spnt LOG1P_special // Branch for nan, inf, natval
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
|
|
fcmp.lt.s1 p13, p0 = FR_X_Prime, FR_Neg_One // Test for x<-1
|
|
add GR_ad_p = -0x100, GR_ad_z_1 // Point to Constants_P
|
|
}
|
|
{ .mfi
|
|
add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
|
|
nop.f 999
|
|
add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
add GR_ad_q = 0x080, GR_ad_p // Point to Constants_Q
|
|
fcmp.eq.s1 p8, p0 = FR_X_Prime, FR_Neg_One // Test for x=-1
|
|
extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
|
|
}
|
|
{ .mfb
|
|
add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
|
|
nop.f 999
|
|
(p9) br.ret.spnt b0 // Exit if x=0, return input
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
|
|
fclass.nm p10, p0 = FR_Input_X, 0x1FF // Test for unsupported
|
|
extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of significand
|
|
}
|
|
{ .mfi
|
|
ldfe FR_P8 = [GR_ad_p],16 // Load P_8 for near1 path
|
|
fsub.s1 FR_W = FR_X_Prime, f0 // W = x
|
|
add GR_ad_ln10 = 0x060, GR_ad_q // Point to Constants_1_by_LN10
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
|
|
fmax.s1 FR_AA = FR_X_Prime, f1 // For S_lo, form AA = max(X,1.0)
|
|
mov GR_exp_mask = 0x1FFFF // Create exponent mask
|
|
}
|
|
{ .mib
|
|
shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
|
|
mov GR_Bias = 0x0FFFF // Create exponent bias
|
|
(p13) br.cond.spnt LOG1P_LT_Minus_1 // Branch if x<-1
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
|
|
fmerge.se FR_S_hi = f1,FR_Z // Form |x+1|
|
|
(p8) br.cond.spnt LOG1P_EQ_Minus_1 // Branch if x=-1
|
|
}
|
|
;;
|
|
|
|
{ .mmb
|
|
getf.exp GR_N = FR_Z // Get N = exponent of x+1
|
|
ldfd FR_h = [GR_ad_tbl_1] // Load h_1
|
|
(p10) br.cond.spnt LOG1P_unsupported // Branch for unsupported type
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
|
|
fcmp.eq.s0 p8, p0 = FR_Input_X, f0 // Dummy op to flag denormals
|
|
pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
|
|
}
|
|
;;
|
|
|
|
//
|
|
// For performance, don't use result of pmpyshr2.u for 4 cycles.
|
|
//
|
|
{ .mmi
|
|
ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
|
|
sub GR_N = GR_N, GR_Bias
|
|
mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
|
|
fms.s1 FR_S_lo = FR_AA, f1, FR_Z // Form S_lo = AA - Z
|
|
sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
|
|
setf.sig FR_float_N = GR_N // Put integer N into rightmost significand
|
|
fmin.s1 FR_BB = FR_X_Prime, f1 // For S_lo, form BB = min(X,1.0)
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
getf.exp GR_M = FR_W // Get signexp of w = x
|
|
ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
|
|
extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe FR_Q1 = [GR_ad_q] // Load Q1
|
|
shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
|
|
add GR_ad_p2 = 0x30,GR_ad_p // Point to P_4
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
|
|
shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
|
|
and GR_M = GR_exp_mask, GR_M // Get exponent of w = x
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
|
|
cmp.lt p8, p9 = GR_M, GR_exp_2tom7 // Test |x| < 2^-7
|
|
cmp.lt p7, p0 = GR_M, GR_exp_2tom80 // Test |x| < 2^-80
|
|
}
|
|
;;
|
|
|
|
// Small path is separate code
|
|
// p7 is for the small path: |x| < 2^-80
|
|
// near1 and regular paths are merged.
|
|
// p8 is for the near1 path: |x| < 2^-7
|
|
// p9 is for regular path: |x| >= 2^-7
|
|
|
|
{ .mfi
|
|
ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
(p9) setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
|
|
(p7) fnma.s0 f8 = FR_X_Prime, FR_X_Prime, FR_X_Prime // Result x - x*x
|
|
(p7) br.ret.spnt b0 // Branch if |x| < 2^-80
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p8) ldfe FR_P7 = [GR_ad_p],16 // Load P_7 for near1 path
|
|
(p8) ldfe FR_P4 = [GR_ad_p2],16 // Load P_4 for near1 path
|
|
(p9) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
|
|
}
|
|
;;
|
|
|
|
//
|
|
// For performance, don't use result of pmpyshr2.u for 4 cycles.
|
|
//
|
|
{ .mmf
|
|
(p8) ldfe FR_P6 = [GR_ad_p],16 // Load P_6 for near1 path
|
|
(p8) ldfe FR_P3 = [GR_ad_p2],16 // Load P_3 for near1 path
|
|
(p9) fma.s1 FR_S_lo = FR_S_lo, f1, FR_BB // S_lo = S_lo + BB
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
(p8) ldfe FR_P5 = [GR_ad_p],16 // Load P_5 for near1 path
|
|
(p8) ldfe FR_P2 = [GR_ad_p2],16 // Load P_2 for near1 path
|
|
(p8) fmpy.s1 FR_wsq = FR_W, FR_W // wsq = w * w for near1 path
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p8) ldfe FR_P1 = [GR_ad_p2],16 ;; // Load P_1 for near1 path
|
|
nop.m 999
|
|
(p9) extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p9) shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
|
|
(p9) fcvt.xf FR_float_N = FR_float_N
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p9) ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p9) ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
|
|
(p9) fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
nop.m 999
|
|
nop.m 999
|
|
(p9) fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fmpy.s1 FR_w4 = FR_wsq, FR_wsq // w4 = w^4 for near1 path
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_p87 = FR_W, FR_P8, FR_P7 // p87 = w * P8 + P7
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_S_lo = FR_S_lo, FR_2_to_minus_N, f0 // S_lo = S_lo * 2^(-N)
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_p43 = FR_W, FR_P4, FR_P3 // p43 = w * P4 + P3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fmpy.s1 FR_w6 = FR_w4, FR_wsq // w6 = w^6 for near1 path
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_p432 = FR_W, FR_p43, FR_P2 // p432 = w * p43 + P2
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_p876 = FR_W, FR_p87, FR_P6 // p876 = w * p87 + P6
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi = N * log2_hi + H
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N * log2_lo + h
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r = G * S_lo + (G * S_hi - 1)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_p4321 = FR_W, FR_p432, FR_P1 // p4321 = w * p432 + P1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_p8765 = FR_W, FR_p876, FR_P5 // p8765 = w * p876 + P5
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_Y_lo = FR_wsq, FR_p4321, f0 // Y_lo = wsq * p4321
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_Y_hi = FR_W, f1, f0 // Y_hi = w for near1 path
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo = poly_lo * r + Q2
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s1 FR_Y_lo = FR_w6, FR_p8765,FR_Y_lo // Y_lo = w6 * p8765 + w2 * p4321
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1 * rsq + r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h // poly_lo = poly_lo*r^3 + h
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo = poly_hi + poly_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Remainder of code is common for near1 and regular paths
|
|
{ .mfb
|
|
nop.m 999
|
|
fadd.s0 f8 = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
|
|
br.ret.sptk b0 // Common exit for 2^-80 < x < inf
|
|
}
|
|
;;
|
|
|
|
|
|
// Here if x=-1
|
|
LOG1P_EQ_Minus_1:
|
|
//
|
|
// If x=-1 raise divide by zero and return -inf
|
|
//
|
|
{ .mfi
|
|
mov GR_Parameter_TAG = 138
|
|
fsub.s1 FR_Output_X_tmp = f0, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
frcpa.s0 FR_Output_X_tmp, p8 = FR_Output_X_tmp, f0
|
|
br.cond.sptk __libm_error_region
|
|
}
|
|
;;
|
|
|
|
LOG1P_special:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m.unc p8, p0 = FR_Input_X, 0x1E1 // Test for natval, nan, +inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// For SNaN raise invalid and return QNaN.
|
|
// For QNaN raise invalid and return QNaN.
|
|
// For +Inf return +Inf.
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
(p8) fmpy.s0 f8 = FR_Input_X, f1
|
|
(p8) br.ret.sptk b0 // Return for natval, nan, +inf
|
|
}
|
|
;;
|
|
|
|
//
|
|
// For -Inf raise invalid and return QNaN.
|
|
//
|
|
{ .mfb
|
|
mov GR_Parameter_TAG = 139
|
|
fmpy.s0 FR_Output_X_tmp = FR_Input_X, f0
|
|
br.cond.sptk __libm_error_region
|
|
}
|
|
;;
|
|
|
|
|
|
LOG1P_unsupported:
|
|
//
|
|
// Return generated NaN or other value.
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fmpy.s0 f8 = FR_Input_X, f0
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
// Here if -inf < x < -1
|
|
LOG1P_LT_Minus_1:
|
|
//
|
|
// Deal with x < -1 in a special way - raise
|
|
// invalid and produce QNaN indefinite.
|
|
//
|
|
{ .mfb
|
|
mov GR_Parameter_TAG = 139
|
|
frcpa.s0 FR_Output_X_tmp, p8 = f0, f0
|
|
br.cond.sptk __libm_error_region
|
|
}
|
|
;;
|
|
|
|
|
|
GLOBAL_IEEE754_END(log1pl)
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
.body
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y
|
|
nop.b 0 // Parameter 3 address
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
nop.m 999
|
|
nop.m 999
|
|
add GR_Parameter_RESULT = 48,sp
|
|
};;
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_error_region#)
|
|
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|