glibc/math/s_ctanf.c
Joseph Myers 0b87419b69 Fix ctan, ctanh missing underflows (bug 18595).
Similar to various other bugs in this area, ctan and ctanh can fail to
raise the underflow exception for some cases of results that are tiny
and inexact.  This patch forces the exception in a similar way to
previous fixes.

Tested for x86_64 and x86.

	[BZ #18595]
	* math/s_ctan.c (__ctan): Force underflow exception for results
	whose real or imaginary part has small absolute value.
	* math/s_ctanf.c (__ctanf): Likewise.
	* math/s_ctanh.c (__ctanh): Likewise.
	* math/s_ctanhf.c (__ctanhf): Likewise.
	* math/s_ctanhl.c (__ctanhl): Likewise.
	* math/s_ctanl.c (__ctanl): Likewise.
	* math/auto-libm-test-in: Do not allow missing underflow for ctan
	and ctanh.  Add more tests of ctan and ctanh.
2015-09-15 17:46:08 +00:00

130 lines
3.3 KiB
C

/* Complex tangent function for float.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__ctanf (__complex__ float x)
{
__complex__ float res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (__isinf_nsf (__imag__ x))
{
__real__ res = __copysignf (0.0, __real__ x);
__imag__ res = __copysignf (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
if (__isinf_nsf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
float sinrx, cosrx;
float den;
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2 / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabsf (__real__ x) > FLT_MIN))
{
__sincosf (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0f;
}
if (fabsf (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
float exp_2t = __ieee754_expf (2 * t);
__imag__ res = __copysignf (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsf (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expf (2 * __imag__ x);
}
else
{
float sinhix, coshix;
if (fabsf (__imag__ x) > FLT_MIN)
{
sinhix = __ieee754_sinhf (__imag__ x);
coshix = __ieee754_coshf (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0f;
}
if (fabsf (sinhix) > fabsf (cosrx) * FLT_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
if (fabsf (__real__ res) < FLT_MIN)
{
float force_underflow = __real__ res * __real__ res;
math_force_eval (force_underflow);
}
if (fabsf (__imag__ res) < FLT_MIN)
{
float force_underflow = __imag__ res * __imag__ res;
math_force_eval (force_underflow);
}
}
return res;
}
#ifndef __ctanf
weak_alias (__ctanf, ctanf)
#endif