glibc/manual
Chung-Lin Tang 15a0c5730d elf: Fix slow DSO sorting behavior in dynamic loader (BZ #17645)
This second patch contains the actual implementation of a new sorting algorithm
for shared objects in the dynamic loader, which solves the slow behavior that
the current "old" algorithm falls into when the DSO set contains circular
dependencies.

The new algorithm implemented here is simply depth-first search (DFS) to obtain
the Reverse-Post Order (RPO) sequence, a topological sort. A new l_visited:1
bitfield is added to struct link_map to more elegantly facilitate such a search.

The DFS algorithm is applied to the input maps[nmap-1] backwards towards
maps[0]. This has the effect of a more "shallow" recursion depth in general
since the input is in BFS. Also, when combined with the natural order of
processing l_initfini[] at each node, this creates a resulting output sorting
closer to the intuitive "left-to-right" order in most cases.

Another notable implementation adjustment related to this _dl_sort_maps change
is the removing of two char arrays 'used' and 'done' in _dl_close_worker to
represent two per-map attributes. This has been changed to simply use two new
bit-fields l_map_used:1, l_map_done:1 added to struct link_map. This also allows
discarding the clunky 'used' array sorting that _dl_sort_maps had to sometimes
do along the way.

Tunable support for switching between different sorting algorithms at runtime is
also added. A new tunable 'glibc.rtld.dynamic_sort' with current valid values 1
(old algorithm) and 2 (new DFS algorithm) has been added. At time of commit
of this patch, the default setting is 1 (old algorithm).

Signed-off-by: Chung-Lin Tang  <cltang@codesourcery.com>
Reviewed-by: Adhemerval Zanella  <adhemerval.zanella@linaro.org>
2021-10-21 11:23:53 -03:00
..
examples
argp.texi
arith.texi Add fmaximum, fminimum functions 2021-09-28 23:31:35 +00:00
charset.texi
check-safety.sh
conf.texi
contrib.texi
creature.texi manual: Update _TIME_BITS to clarify it's user defined 2021-10-18 13:31:15 -03:00
crypt.texi
ctype.texi
debug.texi
dir
errno.texi
fdl-1.3.texi
filesys.texi
freemanuals.texi
getopt.texi
header.texi
install-plain.texi
install.texi Update install.texi, and regenerate INSTALL. 2021-08-01 16:48:43 -04:00
intro.texi
io.texi
ipc.texi
job.texi
lang.texi
lgpl-2.1.texi
libc-texinfo.sh
libc.texinfo
libcbook.texi
libdl.texi
llio.texi llio.texi: Wording fixes in description of closefrom() 2021-08-26 15:23:07 -03:00
locale.texi
macros.texi
maint.texi
Makefile
math.texi
memory.texi manual: Drop the .so suffix in libc_malloc_debug description 2021-07-27 07:54:46 +05:30
message.texi
nss.texi
nsswitch.texi
pattern.texi nptl: Move cancel state out of cancelhandling 2021-06-09 15:16:45 -03:00
pipe.texi
platform.texi x86: Install <bits/platform/x86.h> [BZ #27958] 2021-07-23 05:12:51 -07:00
probes.texi
process.texi posix: Add _Fork [BZ #4737] 2021-06-28 15:55:56 -03:00
README.pretty-printers
README.tunables
resource.texi
search.texi
setjmp.texi
signal.texi
socket.texi
startup.texi
stdio-fp.c
stdio.texi Add C2X _PRINTF_NAN_LEN_MAX 2021-09-30 20:53:34 +00:00
string.texi
summary.pl Remove "Contributed by" lines 2021-09-03 22:06:44 +05:30
sysinfo.texi
syslog.texi
terminal.texi
texinfo.tex
texis.awk
threads.texi
time.texi
tsort.awk Remove "Contributed by" lines 2021-09-03 22:06:44 +05:30
tunables.texi elf: Fix slow DSO sorting behavior in dynamic loader (BZ #17645) 2021-10-21 11:23:53 -03:00
users.texi
xtract-typefun.awk

			TUNABLE FRAMEWORK
			=================

Tunables is a feature in the GNU C Library that allows application authors and
distribution maintainers to alter the runtime library behaviour to match their
workload.

The tunable framework allows modules within glibc to register variables that
may be tweaked through an environment variable.  It aims to enforce a strict
namespace rule to bring consistency to naming of these tunable environment
variables across the project.  This document is a guide for glibc developers to
add tunables to the framework.

ADDING A NEW TUNABLE
--------------------

The TOP_NAMESPACE macro is defined by default as 'glibc'.  If distributions
intend to add their own tunables, they should do so in a different top
namespace by overriding the TOP_NAMESPACE macro for that tunable.  Downstream
implementations are discouraged from using the 'glibc' top namespace for
tunables they don't already have consensus to push upstream.

There are three steps to adding a tunable:

1. Add a tunable to the list and fully specify its properties:

For each tunable you want to add, make an entry in elf/dl-tunables.list.  The
format of the file is as follows:

TOP_NAMESPACE {
  NAMESPACE1 {
    TUNABLE1 {
      # tunable attributes, one per line
    }
    # A tunable with default attributes, i.e. string variable.
    TUNABLE2
    TUNABLE3 {
      # its attributes
    }
  }
  NAMESPACE2 {
    ...
  }
}

The list of allowed attributes are:

- type:			Data type.  Defaults to STRING.  Allowed types are:
			INT_32, UINT_64, SIZE_T and STRING.  Numeric types may
			be in octal or hexadecimal format too.

- minval:		Optional minimum acceptable value.  For a string type
			this is the minimum length of the value.

- maxval:		Optional maximum acceptable value.  For a string type
			this is the maximum length of the value.

- default:		Specify an optional default value for the tunable.

- env_alias:		An alias environment variable

- security_level:	Specify security level of the tunable for AT_SECURE
			binaries.  Valid values are:

			SXID_ERASE: (default) Do not read and do not pass on to
			child processes.
			SXID_IGNORE: Do not read, but retain for non-AT_SECURE
			child processes.
			NONE: Read all the time.

2. Use TUNABLE_GET/TUNABLE_SET/TUNABLE_SET_WITH_BOUNDS to get and set tunables.

3. OPTIONAL: If tunables in a namespace are being used multiple times within a
   specific module, set the TUNABLE_NAMESPACE macro to reduce the amount of
   typing.

GETTING AND SETTING TUNABLES
----------------------------

When the TUNABLE_NAMESPACE macro is defined, one may get tunables in that
module using the TUNABLE_GET macro as follows:

  val = TUNABLE_GET (check, int32_t, TUNABLE_CALLBACK (check_callback))

where 'check' is the tunable name, 'int32_t' is the C type of the tunable and
'check_callback' is the function to call if the tunable got initialized to a
non-default value.  The macro returns the value as type 'int32_t'.

The callback function should be defined as follows:

  void
  TUNABLE_CALLBACK (check_callback) (int32_t *valp)
  {
  ...
  }

where it can expect the tunable value to be passed in VALP.

Tunables in the module can be updated using:

  TUNABLE_SET (check, val)

where 'check' is the tunable name and 'val' is a value of same type.

To get and set tunables in a different namespace from that module, use the full
form of the macros as follows:

  val = TUNABLE_GET_FULL (glibc, cpu, hwcap_mask, uint64_t, NULL)

  TUNABLE_SET_FULL (glibc, cpu, hwcap_mask, val)

where 'glibc' is the top namespace, 'cpu' is the tunable namespace and the
remaining arguments are the same as the short form macros.

The minimum and maximum values can updated together with the tunable value
using:

  TUNABLE_SET_WITH_BOUNDS (check, val, min, max)

where 'check' is the tunable name, 'val' is a value of same type, 'min' and
'max' are the minimum and maximum values of the tunable.

To set the minimum and maximum values of tunables in a different namespace
from that module, use the full form of the macros as follows:

  val = TUNABLE_GET_FULL (glibc, cpu, hwcap_mask, uint64_t, NULL)

  TUNABLE_SET_WITH_BOUNDS_FULL (glibc, cpu, hwcap_mask, val, min, max)

where 'glibc' is the top namespace, 'cpu' is the tunable namespace and the
remaining arguments are the same as the short form macros.

When TUNABLE_NAMESPACE is not defined in a module, TUNABLE_GET is equivalent to
TUNABLE_GET_FULL, so you will need to provide full namespace information for
both macros.  Likewise for TUNABLE_SET, TUNABLE_SET_FULL,
TUNABLE_SET_WITH_BOUNDS and TUNABLE_SET_WITH_BOUNDS_FULL.

** IMPORTANT NOTE **

The tunable list is set as read-only after the dynamic linker relocates itself,
so setting tunable values must be limited only to tunables within the dynamic
linker, that too before relocation.

FUTURE WORK
-----------

The framework currently only allows a one-time initialization of variables
through environment variables and in some cases, modification of variables via
an API call.  A future goals for this project include:

- Setting system-wide and user-wide defaults for tunables through some
  mechanism like a configuration file.

- Allow tweaking of some tunables at runtime