glibc/sysdeps/ieee754/dbl-64/s_fma.c
Joseph Myers 4b6574a6f6 Redirect fma calls to __fma in libm
include/math.h has a mechanism to redirect internal calls to various
libm functions, that can often be inlined by the compiler, to call
non-exported __* names for those functions in the case when the calls
aren't inlined, with the redirection being disabled when
NO_MATH_REDIRECT.  Add fma to the functions to which this mechanism is
applied.

At present, libm-internal fma calls (generally to __builtin_fma*
functions) are only done when it's known the call will be inlined,
with alternative code not relying on an fma operation being used in
the caller otherwise.  This patch is in preparation for adding the TS
18661 / C2X narrowing fma functions to glibc; it will be natural for
the narrowing function implementations to call the underlying fma
functions unconditionally, with this either being inlined or resulting
in an __fma* call.  (Using two levels of round-to-odd computation like
that, in the case where there isn't an fma hardware instruction, isn't
optimal but is certainly a lot simpler for the initial implementation
than writing different narrowing fma implementations for all the
various pairs of formats.)

Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by the patch (using
<https://sourceware.org/pipermail/libc-alpha/2021-September/130991.html>
to fix installed library stripping in build-many-glibcs.py).  Also
tested for x86_64.
2021-09-15 22:57:35 +00:00

305 lines
9.4 KiB
C

/* Compute x * y + z as ternary operation.
Copyright (C) 2010-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#define NO_MATH_REDIRECT
#include <float.h>
#include <math.h>
#include <fenv.h>
#include <ieee754.h>
#include <math-barriers.h>
#include <fenv_private.h>
#include <libm-alias-double.h>
#include <tininess.h>
#include <math-use-builtins.h>
/* This implementation uses rounding to odd to avoid problems with
double rounding. See a paper by Boldo and Melquiond:
http://www.lri.fr/~melquion/doc/08-tc.pdf */
double
__fma (double x, double y, double z)
{
#if USE_FMA_BUILTIN
return __builtin_fma (x, y, z);
#else
/* Use generic implementation. */
union ieee754_double u, v, w;
int adjust = 0;
u.d = x;
v.d = y;
w.d = z;
if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0)
|| __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|| __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|| __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|| __builtin_expect (u.ieee.exponent + v.ieee.exponent
<= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0))
{
/* If z is Inf, but x and y are finite, the result should be
z rather than NaN. */
if (w.ieee.exponent == 0x7ff
&& u.ieee.exponent != 0x7ff
&& v.ieee.exponent != 0x7ff)
return (z + x) + y;
/* If z is zero and x are y are nonzero, compute the result
as x * y to avoid the wrong sign of a zero result if x * y
underflows to 0. */
if (z == 0 && x != 0 && y != 0)
return x * y;
/* If x or y or z is Inf/NaN, or if x * y is zero, compute as
x * y + z. */
if (u.ieee.exponent == 0x7ff
|| v.ieee.exponent == 0x7ff
|| w.ieee.exponent == 0x7ff
|| x == 0
|| y == 0)
return x * y + z;
/* If fma will certainly overflow, compute as x * y. */
if (u.ieee.exponent + v.ieee.exponent > 0x7ff + IEEE754_DOUBLE_BIAS)
return x * y;
/* If x * y is less than 1/4 of DBL_TRUE_MIN, neither the
result nor whether there is underflow depends on its exact
value, only on its sign. */
if (u.ieee.exponent + v.ieee.exponent
< IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2)
{
int neg = u.ieee.negative ^ v.ieee.negative;
double tiny = neg ? -0x1p-1074 : 0x1p-1074;
if (w.ieee.exponent >= 3)
return tiny + z;
/* Scaling up, adding TINY and scaling down produces the
correct result, because in round-to-nearest mode adding
TINY has no effect and in other modes double rounding is
harmless. But it may not produce required underflow
exceptions. */
v.d = z * 0x1p54 + tiny;
if (TININESS_AFTER_ROUNDING
? v.ieee.exponent < 55
: (w.ieee.exponent == 0
|| (w.ieee.exponent == 1
&& w.ieee.negative != neg
&& w.ieee.mantissa1 == 0
&& w.ieee.mantissa0 == 0)))
{
double force_underflow = x * y;
math_force_eval (force_underflow);
}
return v.d * 0x1p-54;
}
if (u.ieee.exponent + v.ieee.exponent
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
{
/* Compute 1p-53 times smaller result and multiply
at the end. */
if (u.ieee.exponent > v.ieee.exponent)
u.ieee.exponent -= DBL_MANT_DIG;
else
v.ieee.exponent -= DBL_MANT_DIG;
/* If x + y exponent is very large and z exponent is very small,
it doesn't matter if we don't adjust it. */
if (w.ieee.exponent > DBL_MANT_DIG)
w.ieee.exponent -= DBL_MANT_DIG;
adjust = 1;
}
else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
{
/* Similarly.
If z exponent is very large and x and y exponents are
very small, adjust them up to avoid spurious underflows,
rather than down. */
if (u.ieee.exponent + v.ieee.exponent
<= IEEE754_DOUBLE_BIAS + 2 * DBL_MANT_DIG)
{
if (u.ieee.exponent > v.ieee.exponent)
u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
else
v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
}
else if (u.ieee.exponent > v.ieee.exponent)
{
if (u.ieee.exponent > DBL_MANT_DIG)
u.ieee.exponent -= DBL_MANT_DIG;
}
else if (v.ieee.exponent > DBL_MANT_DIG)
v.ieee.exponent -= DBL_MANT_DIG;
w.ieee.exponent -= DBL_MANT_DIG;
adjust = 1;
}
else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
{
u.ieee.exponent -= DBL_MANT_DIG;
if (v.ieee.exponent)
v.ieee.exponent += DBL_MANT_DIG;
else
v.d *= 0x1p53;
}
else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
{
v.ieee.exponent -= DBL_MANT_DIG;
if (u.ieee.exponent)
u.ieee.exponent += DBL_MANT_DIG;
else
u.d *= 0x1p53;
}
else /* if (u.ieee.exponent + v.ieee.exponent
<= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */
{
if (u.ieee.exponent > v.ieee.exponent)
u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
else
v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 6)
{
if (w.ieee.exponent)
w.ieee.exponent += 2 * DBL_MANT_DIG + 2;
else
w.d *= 0x1p108;
adjust = -1;
}
/* Otherwise x * y should just affect inexact
and nothing else. */
}
x = u.d;
y = v.d;
z = w.d;
}
/* Ensure correct sign of exact 0 + 0. */
if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
{
x = math_opt_barrier (x);
return x * y + z;
}
fenv_t env;
libc_feholdexcept_setround (&env, FE_TONEAREST);
/* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
#define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
double x1 = x * C;
double y1 = y * C;
double m1 = x * y;
x1 = (x - x1) + x1;
y1 = (y - y1) + y1;
double x2 = x - x1;
double y2 = y - y1;
double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
/* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
double a1 = z + m1;
double t1 = a1 - z;
double t2 = a1 - t1;
t1 = m1 - t1;
t2 = z - t2;
double a2 = t1 + t2;
/* Ensure the arithmetic is not scheduled after feclearexcept call. */
math_force_eval (m2);
math_force_eval (a2);
feclearexcept (FE_INEXACT);
/* If the result is an exact zero, ensure it has the correct sign. */
if (a1 == 0 && m2 == 0)
{
libc_feupdateenv (&env);
/* Ensure that round-to-nearest value of z + m1 is not reused. */
z = math_opt_barrier (z);
return z + m1;
}
libc_fesetround (FE_TOWARDZERO);
/* Perform m2 + a2 addition with round to odd. */
u.d = a2 + m2;
if (__glibc_unlikely (adjust < 0))
{
if ((u.ieee.mantissa1 & 1) == 0)
u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
v.d = a1 + u.d;
/* Ensure the addition is not scheduled after fetestexcept call. */
math_force_eval (v.d);
}
/* Reset rounding mode and test for inexact simultaneously. */
int j = libc_feupdateenv_test (&env, FE_INEXACT) != 0;
if (__glibc_likely (adjust == 0))
{
if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
u.ieee.mantissa1 |= j;
/* Result is a1 + u.d. */
return a1 + u.d;
}
else if (__glibc_likely (adjust > 0))
{
if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
u.ieee.mantissa1 |= j;
/* Result is a1 + u.d, scaled up. */
return (a1 + u.d) * 0x1p53;
}
else
{
/* If a1 + u.d is exact, the only rounding happens during
scaling down. */
if (j == 0)
return v.d * 0x1p-108;
/* If result rounded to zero is not subnormal, no double
rounding will occur. */
if (v.ieee.exponent > 108)
return (a1 + u.d) * 0x1p-108;
/* If v.d * 0x1p-108 with round to zero is a subnormal above
or equal to DBL_MIN / 2, then v.d * 0x1p-108 shifts mantissa
down just by 1 bit, which means v.ieee.mantissa1 |= j would
change the round bit, not sticky or guard bit.
v.d * 0x1p-108 never normalizes by shifting up,
so round bit plus sticky bit should be already enough
for proper rounding. */
if (v.ieee.exponent == 108)
{
/* If the exponent would be in the normal range when
rounding to normal precision with unbounded exponent
range, the exact result is known and spurious underflows
must be avoided on systems detecting tininess after
rounding. */
if (TININESS_AFTER_ROUNDING)
{
w.d = a1 + u.d;
if (w.ieee.exponent == 109)
return w.d * 0x1p-108;
}
/* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
v.ieee.mantissa1 & 1 is the round bit and j is our sticky
bit. */
w.d = 0.0;
w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
w.ieee.negative = v.ieee.negative;
v.ieee.mantissa1 &= ~3U;
v.d *= 0x1p-108;
w.d *= 0x1p-2;
return v.d + w.d;
}
v.ieee.mantissa1 |= j;
return v.d * 0x1p-108;
}
#endif /* ! USE_FMA_BUILTIN */
}
#ifndef __fma
libm_alias_double (__fma, fma)
#endif