mirror of
git://sourceware.org/git/glibc.git
synced 2024-11-21 01:12:26 +08:00
f753fa7dea
Intel Control-flow Enforcement Technology (CET) instructions: https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-en forcement-technology-preview.pdf includes Indirect Branch Tracking (IBT) and Shadow Stack (SHSTK). GNU_PROPERTY_X86_FEATURE_1_IBT is added to GNU program property to indicate that all executable sections are compatible with IBT when ENDBR instruction starts each valid target where an indirect branch instruction can land. Linker sets GNU_PROPERTY_X86_FEATURE_1_IBT on output only if it is set on all relocatable inputs. On an IBT capable processor, the following steps should be taken: 1. When loading an executable without an interpreter, enable IBT and lock IBT if GNU_PROPERTY_X86_FEATURE_1_IBT is set on the executable. 2. When loading an executable with an interpreter, enable IBT if GNU_PROPERTY_X86_FEATURE_1_IBT is set on the interpreter. a. If GNU_PROPERTY_X86_FEATURE_1_IBT isn't set on the executable, disable IBT. b. Lock IBT. 3. If IBT is enabled, when loading a shared object without GNU_PROPERTY_X86_FEATURE_1_IBT: a. If legacy interwork is allowed, then mark all pages in executable PT_LOAD segments in legacy code page bitmap. Failure of legacy code page bitmap allocation causes an error. b. If legacy interwork isn't allowed, it causes an error. GNU_PROPERTY_X86_FEATURE_1_SHSTK is added to GNU program property to indicate that all executable sections are compatible with SHSTK where return address popped from shadow stack always matches return address popped from normal stack. Linker sets GNU_PROPERTY_X86_FEATURE_1_SHSTK on output only if it is set on all relocatable inputs. On a SHSTK capable processor, the following steps should be taken: 1. When loading an executable without an interpreter, enable SHSTK if GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on the executable. 2. When loading an executable with an interpreter, enable SHSTK if GNU_PROPERTY_X86_FEATURE_1_SHSTK is set on interpreter. a. If GNU_PROPERTY_X86_FEATURE_1_SHSTK isn't set on the executable or any shared objects loaded via the DT_NEEDED tag, disable SHSTK. b. Otherwise lock SHSTK. 3. After SHSTK is enabled, it is an error to load a shared object without GNU_PROPERTY_X86_FEATURE_1_SHSTK. To enable CET support in glibc, --enable-cet is required to configure glibc. When CET is enabled, both compiler and assembler must support CET. Otherwise, it is a configure-time error. To support CET run-time control, 1. _dl_x86_feature_1 is added to the writable ld.so namespace to indicate if IBT or SHSTK are enabled at run-time. It should be initialized by init_cpu_features. 2. For dynamic executables: a. A l_cet field is added to struct link_map to indicate if IBT or SHSTK is enabled in an ELF module. _dl_process_pt_note or _rtld_process_pt_note is called to process PT_NOTE segment for GNU program property and set l_cet. b. _dl_open_check is added to check IBT and SHSTK compatibilty when dlopening a shared object. 3. Replace i386 _dl_runtime_resolve and _dl_runtime_profile with _dl_runtime_resolve_shstk and _dl_runtime_profile_shstk, respectively if SHSTK is enabled. CET run-time control can be changed via GLIBC_TUNABLES with $ export GLIBC_TUNABLES=glibc.tune.x86_shstk=[permissive|on|off] $ export GLIBC_TUNABLES=glibc.tune.x86_ibt=[permissive|on|off] 1. permissive: SHSTK is disabled when dlopening a legacy ELF module. 2. on: IBT or SHSTK are always enabled, regardless if there are IBT or SHSTK bits in GNU program property. 3. off: IBT or SHSTK are always disabled, regardless if there are IBT or SHSTK bits in GNU program property. <cet.h> from CET-enabled GCC is automatically included by assembly codes to add GNU_PROPERTY_X86_FEATURE_1_IBT and GNU_PROPERTY_X86_FEATURE_1_SHSTK to GNU program property. _CET_ENDBR is added at the entrance of all assembly functions whose address may be taken. _CET_NOTRACK is used to insert NOTRACK prefix with indirect jump table to support IBT. It is defined as notrack when _CET_NOTRACK is defined in <cet.h>. [BZ #21598] * configure.ac: Add --enable-cet. * configure: Regenerated. * elf/Makefille (all-built-dso): Add a comment. * elf/dl-load.c (filebuf): Moved before "dynamic-link.h". Include <dl-prop.h>. (_dl_map_object_from_fd): Call _dl_process_pt_note on PT_NOTE segment. * elf/dl-open.c: Include <dl-prop.h>. (dl_open_worker): Call _dl_open_check. * elf/rtld.c: Include <dl-prop.h>. (dl_main): Call _rtld_process_pt_note on PT_NOTE segment. Call _rtld_main_check. * sysdeps/generic/dl-prop.h: New file. * sysdeps/i386/dl-cet.c: Likewise. * sysdeps/unix/sysv/linux/x86/cpu-features.c: Likewise. * sysdeps/unix/sysv/linux/x86/dl-cet.h: Likewise. * sysdeps/x86/cet-tunables.h: Likewise. * sysdeps/x86/check-cet.awk: Likewise. * sysdeps/x86/configure: Likewise. * sysdeps/x86/configure.ac: Likewise. * sysdeps/x86/dl-cet.c: Likewise. * sysdeps/x86/dl-procruntime.c: Likewise. * sysdeps/x86/dl-prop.h: Likewise. * sysdeps/x86/libc-start.h: Likewise. * sysdeps/x86/link_map.h: Likewise. * sysdeps/i386/dl-trampoline.S (_dl_runtime_resolve): Add _CET_ENDBR. (_dl_runtime_profile): Likewise. (_dl_runtime_resolve_shstk): New. (_dl_runtime_profile_shstk): Likewise. * sysdeps/linux/x86/Makefile (sysdep-dl-routines): Add dl-cet if CET is enabled. (CFLAGS-.o): Add -fcf-protection if CET is enabled. (CFLAGS-.os): Likewise. (CFLAGS-.op): Likewise. (CFLAGS-.oS): Likewise. (asm-CPPFLAGS): Add -fcf-protection -include cet.h if CET is enabled. (tests-special): Add $(objpfx)check-cet.out. (cet-built-dso): New. (+$(cet-built-dso:=.note)): Likewise. (common-generated): Add $(cet-built-dso:$(common-objpfx)%=%.note). ($(objpfx)check-cet.out): New. (generated): Add check-cet.out. * sysdeps/x86/cpu-features.c: Include <dl-cet.h> and <cet-tunables.h>. (TUNABLE_CALLBACK (set_x86_ibt)): New prototype. (TUNABLE_CALLBACK (set_x86_shstk)): Likewise. (init_cpu_features): Call get_cet_status to check CET status and update dl_x86_feature_1 with CET status. Call TUNABLE_CALLBACK (set_x86_ibt) and TUNABLE_CALLBACK (set_x86_shstk). Disable and lock CET in libc.a. * sysdeps/x86/cpu-tunables.c: Include <cet-tunables.h>. (TUNABLE_CALLBACK (set_x86_ibt)): New function. (TUNABLE_CALLBACK (set_x86_shstk)): Likewise. * sysdeps/x86/sysdep.h (_CET_NOTRACK): New. (_CET_ENDBR): Define if not defined. (ENTRY): Add _CET_ENDBR. * sysdeps/x86/dl-tunables.list (glibc.tune): Add x86_ibt and x86_shstk. * sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Add _CET_ENDBR. (_dl_runtime_profile): Likewise.
656 lines
20 KiB
C
656 lines
20 KiB
C
/* Load a shared object at runtime, relocate it, and run its initializer.
|
|
Copyright (C) 1996-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <assert.h>
|
|
#include <dlfcn.h>
|
|
#include <errno.h>
|
|
#include <libintl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sys/mman.h> /* Check whether MAP_COPY is defined. */
|
|
#include <sys/param.h>
|
|
#include <libc-lock.h>
|
|
#include <ldsodefs.h>
|
|
#include <sysdep-cancel.h>
|
|
#include <tls.h>
|
|
#include <stap-probe.h>
|
|
#include <atomic.h>
|
|
#include <libc-internal.h>
|
|
|
|
#include <dl-dst.h>
|
|
#include <dl-prop.h>
|
|
|
|
|
|
/* We must be careful not to leave us in an inconsistent state. Thus we
|
|
catch any error and re-raise it after cleaning up. */
|
|
|
|
struct dl_open_args
|
|
{
|
|
const char *file;
|
|
int mode;
|
|
/* This is the caller of the dlopen() function. */
|
|
const void *caller_dlopen;
|
|
struct link_map *map;
|
|
/* Namespace ID. */
|
|
Lmid_t nsid;
|
|
/* Original parameters to the program and the current environment. */
|
|
int argc;
|
|
char **argv;
|
|
char **env;
|
|
};
|
|
|
|
|
|
static int
|
|
add_to_global (struct link_map *new)
|
|
{
|
|
struct link_map **new_global;
|
|
unsigned int to_add = 0;
|
|
unsigned int cnt;
|
|
|
|
/* Count the objects we have to put in the global scope. */
|
|
for (cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt)
|
|
if (new->l_searchlist.r_list[cnt]->l_global == 0)
|
|
++to_add;
|
|
|
|
/* The symbols of the new objects and its dependencies are to be
|
|
introduced into the global scope that will be used to resolve
|
|
references from other dynamically-loaded objects.
|
|
|
|
The global scope is the searchlist in the main link map. We
|
|
extend this list if necessary. There is one problem though:
|
|
since this structure was allocated very early (before the libc
|
|
is loaded) the memory it uses is allocated by the malloc()-stub
|
|
in the ld.so. When we come here these functions are not used
|
|
anymore. Instead the malloc() implementation of the libc is
|
|
used. But this means the block from the main map cannot be used
|
|
in an realloc() call. Therefore we allocate a completely new
|
|
array the first time we have to add something to the locale scope. */
|
|
|
|
struct link_namespaces *ns = &GL(dl_ns)[new->l_ns];
|
|
if (ns->_ns_global_scope_alloc == 0)
|
|
{
|
|
/* This is the first dynamic object given global scope. */
|
|
ns->_ns_global_scope_alloc
|
|
= ns->_ns_main_searchlist->r_nlist + to_add + 8;
|
|
new_global = (struct link_map **)
|
|
malloc (ns->_ns_global_scope_alloc * sizeof (struct link_map *));
|
|
if (new_global == NULL)
|
|
{
|
|
ns->_ns_global_scope_alloc = 0;
|
|
nomem:
|
|
_dl_signal_error (ENOMEM, new->l_libname->name, NULL,
|
|
N_("cannot extend global scope"));
|
|
return 1;
|
|
}
|
|
|
|
/* Copy over the old entries. */
|
|
ns->_ns_main_searchlist->r_list
|
|
= memcpy (new_global, ns->_ns_main_searchlist->r_list,
|
|
(ns->_ns_main_searchlist->r_nlist
|
|
* sizeof (struct link_map *)));
|
|
}
|
|
else if (ns->_ns_main_searchlist->r_nlist + to_add
|
|
> ns->_ns_global_scope_alloc)
|
|
{
|
|
/* We have to extend the existing array of link maps in the
|
|
main map. */
|
|
struct link_map **old_global
|
|
= GL(dl_ns)[new->l_ns]._ns_main_searchlist->r_list;
|
|
size_t new_nalloc = ((ns->_ns_global_scope_alloc + to_add) * 2);
|
|
|
|
new_global = (struct link_map **)
|
|
malloc (new_nalloc * sizeof (struct link_map *));
|
|
if (new_global == NULL)
|
|
goto nomem;
|
|
|
|
memcpy (new_global, old_global,
|
|
ns->_ns_global_scope_alloc * sizeof (struct link_map *));
|
|
|
|
ns->_ns_global_scope_alloc = new_nalloc;
|
|
ns->_ns_main_searchlist->r_list = new_global;
|
|
|
|
if (!RTLD_SINGLE_THREAD_P)
|
|
THREAD_GSCOPE_WAIT ();
|
|
|
|
free (old_global);
|
|
}
|
|
|
|
/* Now add the new entries. */
|
|
unsigned int new_nlist = ns->_ns_main_searchlist->r_nlist;
|
|
for (cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt)
|
|
{
|
|
struct link_map *map = new->l_searchlist.r_list[cnt];
|
|
|
|
if (map->l_global == 0)
|
|
{
|
|
map->l_global = 1;
|
|
ns->_ns_main_searchlist->r_list[new_nlist++] = map;
|
|
|
|
/* We modify the global scope. Report this. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
|
|
_dl_debug_printf ("\nadd %s [%lu] to global scope\n",
|
|
map->l_name, map->l_ns);
|
|
}
|
|
}
|
|
atomic_write_barrier ();
|
|
ns->_ns_main_searchlist->r_nlist = new_nlist;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Search link maps in all namespaces for the DSO that contains the object at
|
|
address ADDR. Returns the pointer to the link map of the matching DSO, or
|
|
NULL if a match is not found. */
|
|
struct link_map *
|
|
_dl_find_dso_for_object (const ElfW(Addr) addr)
|
|
{
|
|
struct link_map *l;
|
|
|
|
/* Find the highest-addressed object that ADDR is not below. */
|
|
for (Lmid_t ns = 0; ns < GL(dl_nns); ++ns)
|
|
for (l = GL(dl_ns)[ns]._ns_loaded; l != NULL; l = l->l_next)
|
|
if (addr >= l->l_map_start && addr < l->l_map_end
|
|
&& (l->l_contiguous
|
|
|| _dl_addr_inside_object (l, (ElfW(Addr)) addr)))
|
|
{
|
|
assert (ns == l->l_ns);
|
|
return l;
|
|
}
|
|
return NULL;
|
|
}
|
|
rtld_hidden_def (_dl_find_dso_for_object);
|
|
|
|
static void
|
|
dl_open_worker (void *a)
|
|
{
|
|
struct dl_open_args *args = a;
|
|
const char *file = args->file;
|
|
int mode = args->mode;
|
|
struct link_map *call_map = NULL;
|
|
|
|
/* Determine the caller's map if necessary. This is needed in case
|
|
we have a DST, when we don't know the namespace ID we have to put
|
|
the new object in, or when the file name has no path in which
|
|
case we need to look along the RUNPATH/RPATH of the caller. */
|
|
const char *dst = strchr (file, '$');
|
|
if (dst != NULL || args->nsid == __LM_ID_CALLER
|
|
|| strchr (file, '/') == NULL)
|
|
{
|
|
const void *caller_dlopen = args->caller_dlopen;
|
|
|
|
/* We have to find out from which object the caller is calling.
|
|
By default we assume this is the main application. */
|
|
call_map = GL(dl_ns)[LM_ID_BASE]._ns_loaded;
|
|
|
|
struct link_map *l = _dl_find_dso_for_object ((ElfW(Addr)) caller_dlopen);
|
|
|
|
if (l)
|
|
call_map = l;
|
|
|
|
if (args->nsid == __LM_ID_CALLER)
|
|
args->nsid = call_map->l_ns;
|
|
}
|
|
|
|
/* One might be tempted to assert that we are RT_CONSISTENT at this point, but that
|
|
may not be true if this is a recursive call to dlopen. */
|
|
_dl_debug_initialize (0, args->nsid);
|
|
|
|
/* Load the named object. */
|
|
struct link_map *new;
|
|
args->map = new = _dl_map_object (call_map, file, lt_loaded, 0,
|
|
mode | __RTLD_CALLMAP, args->nsid);
|
|
|
|
/* If the pointer returned is NULL this means the RTLD_NOLOAD flag is
|
|
set and the object is not already loaded. */
|
|
if (new == NULL)
|
|
{
|
|
assert (mode & RTLD_NOLOAD);
|
|
return;
|
|
}
|
|
|
|
/* Mark the object as not deletable if the RTLD_NODELETE flags was passed.
|
|
Do this early so that we don't skip marking the object if it was
|
|
already loaded. */
|
|
if (__glibc_unlikely (mode & RTLD_NODELETE))
|
|
new->l_flags_1 |= DF_1_NODELETE;
|
|
|
|
if (__glibc_unlikely (mode & __RTLD_SPROF))
|
|
/* This happens only if we load a DSO for 'sprof'. */
|
|
return;
|
|
|
|
/* This object is directly loaded. */
|
|
++new->l_direct_opencount;
|
|
|
|
/* It was already open. */
|
|
if (__glibc_unlikely (new->l_searchlist.r_list != NULL))
|
|
{
|
|
/* Let the user know about the opencount. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
|
|
_dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n",
|
|
new->l_name, new->l_ns, new->l_direct_opencount);
|
|
|
|
/* If the user requested the object to be in the global namespace
|
|
but it is not so far, add it now. */
|
|
if ((mode & RTLD_GLOBAL) && new->l_global == 0)
|
|
(void) add_to_global (new);
|
|
|
|
assert (_dl_debug_initialize (0, args->nsid)->r_state == RT_CONSISTENT);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Load that object's dependencies. */
|
|
_dl_map_object_deps (new, NULL, 0, 0,
|
|
mode & (__RTLD_DLOPEN | RTLD_DEEPBIND | __RTLD_AUDIT));
|
|
|
|
/* So far, so good. Now check the versions. */
|
|
for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i)
|
|
if (new->l_searchlist.r_list[i]->l_real->l_versions == NULL)
|
|
(void) _dl_check_map_versions (new->l_searchlist.r_list[i]->l_real,
|
|
0, 0);
|
|
|
|
#ifdef SHARED
|
|
/* Auditing checkpoint: we have added all objects. */
|
|
if (__glibc_unlikely (GLRO(dl_naudit) > 0))
|
|
{
|
|
struct link_map *head = GL(dl_ns)[new->l_ns]._ns_loaded;
|
|
/* Do not call the functions for any auditing object. */
|
|
if (head->l_auditing == 0)
|
|
{
|
|
struct audit_ifaces *afct = GLRO(dl_audit);
|
|
for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt)
|
|
{
|
|
if (afct->activity != NULL)
|
|
afct->activity (&head->l_audit[cnt].cookie, LA_ACT_CONSISTENT);
|
|
|
|
afct = afct->next;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Notify the debugger all new objects are now ready to go. */
|
|
struct r_debug *r = _dl_debug_initialize (0, args->nsid);
|
|
r->r_state = RT_CONSISTENT;
|
|
_dl_debug_state ();
|
|
LIBC_PROBE (map_complete, 3, args->nsid, r, new);
|
|
|
|
_dl_open_check (new);
|
|
|
|
/* Print scope information. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
|
|
_dl_show_scope (new, 0);
|
|
|
|
/* Only do lazy relocation if `LD_BIND_NOW' is not set. */
|
|
int reloc_mode = mode & __RTLD_AUDIT;
|
|
if (GLRO(dl_lazy))
|
|
reloc_mode |= mode & RTLD_LAZY;
|
|
|
|
/* Sort the objects by dependency for the relocation process. This
|
|
allows IFUNC relocations to work and it also means copy
|
|
relocation of dependencies are if necessary overwritten. */
|
|
unsigned int nmaps = 0;
|
|
struct link_map *l = new;
|
|
do
|
|
{
|
|
if (! l->l_real->l_relocated)
|
|
++nmaps;
|
|
l = l->l_next;
|
|
}
|
|
while (l != NULL);
|
|
struct link_map *maps[nmaps];
|
|
nmaps = 0;
|
|
l = new;
|
|
do
|
|
{
|
|
if (! l->l_real->l_relocated)
|
|
maps[nmaps++] = l;
|
|
l = l->l_next;
|
|
}
|
|
while (l != NULL);
|
|
_dl_sort_maps (maps, nmaps, NULL, false);
|
|
|
|
int relocation_in_progress = 0;
|
|
|
|
for (unsigned int i = nmaps; i-- > 0; )
|
|
{
|
|
l = maps[i];
|
|
|
|
if (! relocation_in_progress)
|
|
{
|
|
/* Notify the debugger that relocations are about to happen. */
|
|
LIBC_PROBE (reloc_start, 2, args->nsid, r);
|
|
relocation_in_progress = 1;
|
|
}
|
|
|
|
#ifdef SHARED
|
|
if (__glibc_unlikely (GLRO(dl_profile) != NULL))
|
|
{
|
|
/* If this here is the shared object which we want to profile
|
|
make sure the profile is started. We can find out whether
|
|
this is necessary or not by observing the `_dl_profile_map'
|
|
variable. If it was NULL but is not NULL afterwards we must
|
|
start the profiling. */
|
|
struct link_map *old_profile_map = GL(dl_profile_map);
|
|
|
|
_dl_relocate_object (l, l->l_scope, reloc_mode | RTLD_LAZY, 1);
|
|
|
|
if (old_profile_map == NULL && GL(dl_profile_map) != NULL)
|
|
{
|
|
/* We must prepare the profiling. */
|
|
_dl_start_profile ();
|
|
|
|
/* Prevent unloading the object. */
|
|
GL(dl_profile_map)->l_flags_1 |= DF_1_NODELETE;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
_dl_relocate_object (l, l->l_scope, reloc_mode, 0);
|
|
}
|
|
|
|
/* If the file is not loaded now as a dependency, add the search
|
|
list of the newly loaded object to the scope. */
|
|
bool any_tls = false;
|
|
unsigned int first_static_tls = new->l_searchlist.r_nlist;
|
|
for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i)
|
|
{
|
|
struct link_map *imap = new->l_searchlist.r_list[i];
|
|
int from_scope = 0;
|
|
|
|
/* If the initializer has been called already, the object has
|
|
not been loaded here and now. */
|
|
if (imap->l_init_called && imap->l_type == lt_loaded)
|
|
{
|
|
struct r_scope_elem **runp = imap->l_scope;
|
|
size_t cnt = 0;
|
|
|
|
while (*runp != NULL)
|
|
{
|
|
if (*runp == &new->l_searchlist)
|
|
break;
|
|
++cnt;
|
|
++runp;
|
|
}
|
|
|
|
if (*runp != NULL)
|
|
/* Avoid duplicates. */
|
|
continue;
|
|
|
|
if (__glibc_unlikely (cnt + 1 >= imap->l_scope_max))
|
|
{
|
|
/* The 'r_scope' array is too small. Allocate a new one
|
|
dynamically. */
|
|
size_t new_size;
|
|
struct r_scope_elem **newp;
|
|
|
|
#define SCOPE_ELEMS(imap) \
|
|
(sizeof (imap->l_scope_mem) / sizeof (imap->l_scope_mem[0]))
|
|
|
|
if (imap->l_scope != imap->l_scope_mem
|
|
&& imap->l_scope_max < SCOPE_ELEMS (imap))
|
|
{
|
|
new_size = SCOPE_ELEMS (imap);
|
|
newp = imap->l_scope_mem;
|
|
}
|
|
else
|
|
{
|
|
new_size = imap->l_scope_max * 2;
|
|
newp = (struct r_scope_elem **)
|
|
malloc (new_size * sizeof (struct r_scope_elem *));
|
|
if (newp == NULL)
|
|
_dl_signal_error (ENOMEM, "dlopen", NULL,
|
|
N_("cannot create scope list"));
|
|
}
|
|
|
|
memcpy (newp, imap->l_scope, cnt * sizeof (imap->l_scope[0]));
|
|
struct r_scope_elem **old = imap->l_scope;
|
|
|
|
imap->l_scope = newp;
|
|
|
|
if (old != imap->l_scope_mem)
|
|
_dl_scope_free (old);
|
|
|
|
imap->l_scope_max = new_size;
|
|
}
|
|
|
|
/* First terminate the extended list. Otherwise a thread
|
|
might use the new last element and then use the garbage
|
|
at offset IDX+1. */
|
|
imap->l_scope[cnt + 1] = NULL;
|
|
atomic_write_barrier ();
|
|
imap->l_scope[cnt] = &new->l_searchlist;
|
|
|
|
/* Print only new scope information. */
|
|
from_scope = cnt;
|
|
}
|
|
/* Only add TLS memory if this object is loaded now and
|
|
therefore is not yet initialized. */
|
|
else if (! imap->l_init_called
|
|
/* Only if the module defines thread local data. */
|
|
&& __builtin_expect (imap->l_tls_blocksize > 0, 0))
|
|
{
|
|
/* Now that we know the object is loaded successfully add
|
|
modules containing TLS data to the slot info table. We
|
|
might have to increase its size. */
|
|
_dl_add_to_slotinfo (imap);
|
|
|
|
if (imap->l_need_tls_init
|
|
&& first_static_tls == new->l_searchlist.r_nlist)
|
|
first_static_tls = i;
|
|
|
|
/* We have to bump the generation counter. */
|
|
any_tls = true;
|
|
}
|
|
|
|
/* Print scope information. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES))
|
|
_dl_show_scope (imap, from_scope);
|
|
}
|
|
|
|
/* Bump the generation number if necessary. */
|
|
if (any_tls && __builtin_expect (++GL(dl_tls_generation) == 0, 0))
|
|
_dl_fatal_printf (N_("\
|
|
TLS generation counter wrapped! Please report this."));
|
|
|
|
/* We need a second pass for static tls data, because _dl_update_slotinfo
|
|
must not be run while calls to _dl_add_to_slotinfo are still pending. */
|
|
for (unsigned int i = first_static_tls; i < new->l_searchlist.r_nlist; ++i)
|
|
{
|
|
struct link_map *imap = new->l_searchlist.r_list[i];
|
|
|
|
if (imap->l_need_tls_init
|
|
&& ! imap->l_init_called
|
|
&& imap->l_tls_blocksize > 0)
|
|
{
|
|
/* For static TLS we have to allocate the memory here and
|
|
now, but we can delay updating the DTV. */
|
|
imap->l_need_tls_init = 0;
|
|
#ifdef SHARED
|
|
/* Update the slot information data for at least the
|
|
generation of the DSO we are allocating data for. */
|
|
_dl_update_slotinfo (imap->l_tls_modid);
|
|
#endif
|
|
|
|
GL(dl_init_static_tls) (imap);
|
|
assert (imap->l_need_tls_init == 0);
|
|
}
|
|
}
|
|
|
|
/* Notify the debugger all new objects have been relocated. */
|
|
if (relocation_in_progress)
|
|
LIBC_PROBE (reloc_complete, 3, args->nsid, r, new);
|
|
|
|
#ifndef SHARED
|
|
DL_STATIC_INIT (new);
|
|
#endif
|
|
|
|
/* Run the initializer functions of new objects. */
|
|
_dl_init (new, args->argc, args->argv, args->env);
|
|
|
|
/* Now we can make the new map available in the global scope. */
|
|
if (mode & RTLD_GLOBAL)
|
|
/* Move the object in the global namespace. */
|
|
if (add_to_global (new) != 0)
|
|
/* It failed. */
|
|
return;
|
|
|
|
#ifndef SHARED
|
|
/* We must be the static _dl_open in libc.a. A static program that
|
|
has loaded a dynamic object now has competition. */
|
|
__libc_multiple_libcs = 1;
|
|
#endif
|
|
|
|
/* Let the user know about the opencount. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
|
|
_dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n",
|
|
new->l_name, new->l_ns, new->l_direct_opencount);
|
|
}
|
|
|
|
|
|
void *
|
|
_dl_open (const char *file, int mode, const void *caller_dlopen, Lmid_t nsid,
|
|
int argc, char *argv[], char *env[])
|
|
{
|
|
if ((mode & RTLD_BINDING_MASK) == 0)
|
|
/* One of the flags must be set. */
|
|
_dl_signal_error (EINVAL, file, NULL, N_("invalid mode for dlopen()"));
|
|
|
|
/* Make sure we are alone. */
|
|
__rtld_lock_lock_recursive (GL(dl_load_lock));
|
|
|
|
if (__glibc_unlikely (nsid == LM_ID_NEWLM))
|
|
{
|
|
/* Find a new namespace. */
|
|
for (nsid = 1; DL_NNS > 1 && nsid < GL(dl_nns); ++nsid)
|
|
if (GL(dl_ns)[nsid]._ns_loaded == NULL)
|
|
break;
|
|
|
|
if (__glibc_unlikely (nsid == DL_NNS))
|
|
{
|
|
/* No more namespace available. */
|
|
__rtld_lock_unlock_recursive (GL(dl_load_lock));
|
|
|
|
_dl_signal_error (EINVAL, file, NULL, N_("\
|
|
no more namespaces available for dlmopen()"));
|
|
}
|
|
else if (nsid == GL(dl_nns))
|
|
{
|
|
__rtld_lock_initialize (GL(dl_ns)[nsid]._ns_unique_sym_table.lock);
|
|
++GL(dl_nns);
|
|
}
|
|
|
|
_dl_debug_initialize (0, nsid)->r_state = RT_CONSISTENT;
|
|
}
|
|
/* Never allow loading a DSO in a namespace which is empty. Such
|
|
direct placements is only causing problems. Also don't allow
|
|
loading into a namespace used for auditing. */
|
|
else if (__glibc_unlikely (nsid != LM_ID_BASE && nsid != __LM_ID_CALLER)
|
|
&& (__glibc_unlikely (nsid < 0 || nsid >= GL(dl_nns))
|
|
/* This prevents the [NSID] index expressions from being
|
|
evaluated, so the compiler won't think that we are
|
|
accessing an invalid index here in the !SHARED case where
|
|
DL_NNS is 1 and so any NSID != 0 is invalid. */
|
|
|| DL_NNS == 1
|
|
|| GL(dl_ns)[nsid]._ns_nloaded == 0
|
|
|| GL(dl_ns)[nsid]._ns_loaded->l_auditing))
|
|
_dl_signal_error (EINVAL, file, NULL,
|
|
N_("invalid target namespace in dlmopen()"));
|
|
|
|
struct dl_open_args args;
|
|
args.file = file;
|
|
args.mode = mode;
|
|
args.caller_dlopen = caller_dlopen;
|
|
args.map = NULL;
|
|
args.nsid = nsid;
|
|
args.argc = argc;
|
|
args.argv = argv;
|
|
args.env = env;
|
|
|
|
struct dl_exception exception;
|
|
int errcode = _dl_catch_exception (&exception, dl_open_worker, &args);
|
|
|
|
#if defined USE_LDCONFIG && !defined MAP_COPY
|
|
/* We must unmap the cache file. */
|
|
_dl_unload_cache ();
|
|
#endif
|
|
|
|
/* See if an error occurred during loading. */
|
|
if (__glibc_unlikely (exception.errstring != NULL))
|
|
{
|
|
/* Remove the object from memory. It may be in an inconsistent
|
|
state if relocation failed, for example. */
|
|
if (args.map)
|
|
{
|
|
/* Maybe some of the modules which were loaded use TLS.
|
|
Since it will be removed in the following _dl_close call
|
|
we have to mark the dtv array as having gaps to fill the
|
|
holes. This is a pessimistic assumption which won't hurt
|
|
if not true. There is no need to do this when we are
|
|
loading the auditing DSOs since TLS has not yet been set
|
|
up. */
|
|
if ((mode & __RTLD_AUDIT) == 0)
|
|
GL(dl_tls_dtv_gaps) = true;
|
|
|
|
_dl_close_worker (args.map, true);
|
|
}
|
|
|
|
assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT);
|
|
|
|
/* Release the lock. */
|
|
__rtld_lock_unlock_recursive (GL(dl_load_lock));
|
|
|
|
/* Reraise the error. */
|
|
_dl_signal_exception (errcode, &exception, NULL);
|
|
}
|
|
|
|
assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT);
|
|
|
|
/* Release the lock. */
|
|
__rtld_lock_unlock_recursive (GL(dl_load_lock));
|
|
|
|
return args.map;
|
|
}
|
|
|
|
|
|
void
|
|
_dl_show_scope (struct link_map *l, int from)
|
|
{
|
|
_dl_debug_printf ("object=%s [%lu]\n",
|
|
DSO_FILENAME (l->l_name), l->l_ns);
|
|
if (l->l_scope != NULL)
|
|
for (int scope_cnt = from; l->l_scope[scope_cnt] != NULL; ++scope_cnt)
|
|
{
|
|
_dl_debug_printf (" scope %u:", scope_cnt);
|
|
|
|
for (unsigned int cnt = 0; cnt < l->l_scope[scope_cnt]->r_nlist; ++cnt)
|
|
if (*l->l_scope[scope_cnt]->r_list[cnt]->l_name)
|
|
_dl_debug_printf_c (" %s",
|
|
l->l_scope[scope_cnt]->r_list[cnt]->l_name);
|
|
else
|
|
_dl_debug_printf_c (" %s", RTLD_PROGNAME);
|
|
|
|
_dl_debug_printf_c ("\n");
|
|
}
|
|
else
|
|
_dl_debug_printf (" no scope\n");
|
|
_dl_debug_printf ("\n");
|
|
}
|