mirror of
git://sourceware.org/git/glibc.git
synced 2024-11-27 03:41:23 +08:00
e859d1d90a
2001-05-12 Andreas Jaeger <aj@suse.de> * sysdeps/ieee754/dbl-64/e_asin.c: Include "math_private.h" for internal prototypes. * sysdeps/ieee754/dbl-64/s_atan.c: Likewise. * sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise. * sysdeps/ieee754/dbl-64/e_remainder.c: Likewise. * sysdeps/ieee754/dbl-64/e_pow.c: Likewise. * sysdeps/ieee754/dbl-64/e_log.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp.c: Likewise. * sysdeps/ieee754/dbl-64/e_atan2.c: Likewise. * sysdeps/generic/e_rem_pio2l.c: Likewise. (__ieee754_rem_pio2l): Fix prototype. * math/math_private.h (__copysign): Add internal prototype.
252 lines
8.6 KiB
C
252 lines
8.6 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* Copyright (c) International Business Machines Corp., 2001
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
/***************************************************************************/
|
|
/* MODULE_NAME:uexp.c */
|
|
/* */
|
|
/* FUNCTION:uexp */
|
|
/* exp1 */
|
|
/* */
|
|
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */
|
|
/* mpa.c mpexp.x slowexp.c */
|
|
/* */
|
|
/* An ultimate exp routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of e^x */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
#include "endian.h"
|
|
#include "uexp.h"
|
|
#include "mydefs.h"
|
|
#include "MathLib.h"
|
|
#include "uexp.tbl"
|
|
#include "math_private.h"
|
|
|
|
double __slowexp(double);
|
|
|
|
/***************************************************************************/
|
|
/* An ultimate exp routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of e^x */
|
|
/***************************************************************************/
|
|
double __ieee754_exp(double x) {
|
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
|
mynumber junk1, junk2, binexp = {{0,0}};
|
|
#if 0
|
|
int4 k;
|
|
#endif
|
|
int4 i,j,m,n,ex;
|
|
|
|
junk1.x = x;
|
|
m = junk1.i[HIGH_HALF];
|
|
n = m&hugeint;
|
|
|
|
if (n > smallint && n < bigint) {
|
|
|
|
y = x*log2e.x + three51.x;
|
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
|
|
|
junk1.x = y;
|
|
|
|
eps = bexp*ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
|
t = x - bexp*ln_two1.x;
|
|
|
|
y = t + three33.x;
|
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
|
junk2.x = y;
|
|
del = (t - base) - eps; /* x = bexp*ln(2) + base + del */
|
|
eps = del + del*del*(p3.x*del + p2.x);
|
|
|
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+1023)<<20;
|
|
|
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
|
|
|
al = coar.x[i]*fine.x[j];
|
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
|
|
|
rem=(bet + bet*eps)+al*eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (res == (res+cor*err_0)) return res*binexp.x;
|
|
else return __slowexp(x); /*if error is over bound */
|
|
}
|
|
|
|
if (n <= smallint) return 1.0;
|
|
|
|
if (n >= badint) {
|
|
if (n > infint) return(zero/zero); /* x is NaN, return invalid */
|
|
if (n < infint) return ( (x>0) ? (hhuge*hhuge) : (tiny*tiny) );
|
|
/* x is finite, cause either overflow or underflow */
|
|
if (junk1.i[LOW_HALF] != 0) return (zero/zero); /* x is NaN */
|
|
return ((x>0)?inf.x:zero ); /* |x| = inf; return either inf or 0 */
|
|
}
|
|
|
|
y = x*log2e.x + three51.x;
|
|
bexp = y - three51.x;
|
|
junk1.x = y;
|
|
eps = bexp*ln_two2.x;
|
|
t = x - bexp*ln_two1.x;
|
|
y = t + three33.x;
|
|
base = y - three33.x;
|
|
junk2.x = y;
|
|
del = (t - base) - eps;
|
|
eps = del + del*del*(p3.x*del + p2.x);
|
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
|
al = coar.x[i]*fine.x[j];
|
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
|
rem=(bet + bet*eps)+al*eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (m>>31) {
|
|
ex=junk1.i[LOW_HALF];
|
|
if (res < 1.0) {res+=res; cor+=cor; ex-=1;}
|
|
if (ex >=-1022) {
|
|
binexp.i[HIGH_HALF] = (1023+ex)<<20;
|
|
if (res == (res+cor*err_0)) return res*binexp.x;
|
|
else return __slowexp(x); /*if error is over bound */
|
|
}
|
|
ex = -(1022+ex);
|
|
binexp.i[HIGH_HALF] = (1023-ex)<<20;
|
|
res*=binexp.x;
|
|
cor*=binexp.x;
|
|
eps=1.0000000001+err_0*binexp.x;
|
|
t=1.0+res;
|
|
y = ((1.0-t)+res)+cor;
|
|
res=t+y;
|
|
cor = (t-res)+y;
|
|
if (res == (res + eps*cor))
|
|
{ binexp.i[HIGH_HALF] = 0x00100000;
|
|
return (res-1.0)*binexp.x;
|
|
}
|
|
else return __slowexp(x); /* if error is over bound */
|
|
}
|
|
else {
|
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+767)<<20;
|
|
if (res == (res+cor*err_0)) return res*binexp.x*t256.x;
|
|
else return __slowexp(x);
|
|
}
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Compute e^(x+xx)(Double-Length number) .The routine also receive */
|
|
/* bound of error of previous calculation .If after computing exp */
|
|
/* error bigger than allows routine return non positive number */
|
|
/*else return e^(x + xx) (always positive ) */
|
|
/************************************************************************/
|
|
|
|
double __exp1(double x, double xx, double error) {
|
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
|
mynumber junk1, junk2, binexp = {{0,0}};
|
|
#if 0
|
|
int4 k;
|
|
#endif
|
|
int4 i,j,m,n,ex;
|
|
|
|
junk1.x = x;
|
|
m = junk1.i[HIGH_HALF];
|
|
n = m&hugeint; /* no sign */
|
|
|
|
if (n > smallint && n < bigint) {
|
|
y = x*log2e.x + three51.x;
|
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
|
|
|
junk1.x = y;
|
|
|
|
eps = bexp*ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
|
t = x - bexp*ln_two1.x;
|
|
|
|
y = t + three33.x;
|
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
|
junk2.x = y;
|
|
del = (t - base) + (xx-eps); /* x = bexp*ln(2) + base + del */
|
|
eps = del + del*del*(p3.x*del + p2.x);
|
|
|
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+1023)<<20;
|
|
|
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
|
|
|
al = coar.x[i]*fine.x[j];
|
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
|
|
|
rem=(bet + bet*eps)+al*eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (res == (res+cor*(1.0+error+err_1))) return res*binexp.x;
|
|
else return -10.0;
|
|
}
|
|
|
|
if (n <= smallint) return 1.0; /* if x->0 e^x=1 */
|
|
|
|
if (n >= badint) {
|
|
if (n > infint) return(zero/zero); /* x is NaN, return invalid */
|
|
if (n < infint) return ( (x>0) ? (hhuge*hhuge) : (tiny*tiny) );
|
|
/* x is finite, cause either overflow or underflow */
|
|
if (junk1.i[LOW_HALF] != 0) return (zero/zero); /* x is NaN */
|
|
return ((x>0)?inf.x:zero ); /* |x| = inf; return either inf or 0 */
|
|
}
|
|
|
|
y = x*log2e.x + three51.x;
|
|
bexp = y - three51.x;
|
|
junk1.x = y;
|
|
eps = bexp*ln_two2.x;
|
|
t = x - bexp*ln_two1.x;
|
|
y = t + three33.x;
|
|
base = y - three33.x;
|
|
junk2.x = y;
|
|
del = (t - base) + (xx-eps);
|
|
eps = del + del*del*(p3.x*del + p2.x);
|
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
|
al = coar.x[i]*fine.x[j];
|
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
|
rem=(bet + bet*eps)+al*eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (m>>31) {
|
|
ex=junk1.i[LOW_HALF];
|
|
if (res < 1.0) {res+=res; cor+=cor; ex-=1;}
|
|
if (ex >=-1022) {
|
|
binexp.i[HIGH_HALF] = (1023+ex)<<20;
|
|
if (res == (res+cor*(1.0+error+err_1))) return res*binexp.x;
|
|
else return -10.0;
|
|
}
|
|
ex = -(1022+ex);
|
|
binexp.i[HIGH_HALF] = (1023-ex)<<20;
|
|
res*=binexp.x;
|
|
cor*=binexp.x;
|
|
eps=1.00000000001+(error+err_1)*binexp.x;
|
|
t=1.0+res;
|
|
y = ((1.0-t)+res)+cor;
|
|
res=t+y;
|
|
cor = (t-res)+y;
|
|
if (res == (res + eps*cor))
|
|
{binexp.i[HIGH_HALF] = 0x00100000; return (res-1.0)*binexp.x;}
|
|
else return -10.0;
|
|
}
|
|
else {
|
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+767)<<20;
|
|
if (res == (res+cor*(1.0+error+err_1)))
|
|
return res*binexp.x*t256.x;
|
|
else return -10.0;
|
|
}
|
|
}
|