mirror of
git://sourceware.org/git/glibc.git
synced 2025-01-12 12:07:12 +08:00
624 lines
19 KiB
C
624 lines
19 KiB
C
/* Machine-dependent ELF dynamic relocation inline functions. Alpha version.
|
|
Copyright (C) 1996-2001, 2002 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Richard Henderson <rth@tamu.edu>.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
/* This was written in the absence of an ABI -- don't expect
|
|
it to remain unchanged. */
|
|
|
|
#ifndef dl_machine_h
|
|
#define dl_machine_h 1
|
|
|
|
#define ELF_MACHINE_NAME "alpha"
|
|
|
|
#include <string.h>
|
|
|
|
|
|
/* Mask identifying addresses reserved for the user program,
|
|
where the dynamic linker should not map anything. */
|
|
#define ELF_MACHINE_USER_ADDRESS_MASK 0x120000000UL
|
|
|
|
/* Return nonzero iff ELF header is compatible with the running host. */
|
|
static inline int
|
|
elf_machine_matches_host (const Elf64_Ehdr *ehdr)
|
|
{
|
|
return ehdr->e_machine == EM_ALPHA;
|
|
}
|
|
|
|
/* Return the link-time address of _DYNAMIC. The multiple-got-capable
|
|
linker no longer allocates the first .got entry for this. But not to
|
|
worry, no special tricks are needed. */
|
|
static inline Elf64_Addr
|
|
elf_machine_dynamic (void)
|
|
{
|
|
#ifndef NO_AXP_MULTI_GOT_LD
|
|
return (Elf64_Addr) &_DYNAMIC;
|
|
#else
|
|
register Elf64_Addr *gp __asm__ ("$29");
|
|
return gp[-4096];
|
|
#endif
|
|
}
|
|
|
|
/* Return the run-time load address of the shared object. */
|
|
static inline Elf64_Addr
|
|
elf_machine_load_address (void)
|
|
{
|
|
/* NOTE: While it is generally unfriendly to put data in the text
|
|
segment, it is only slightly less so when the "data" is an
|
|
instruction. While we don't have to worry about GLD just yet, an
|
|
optimizing linker might decide that our "data" is an unreachable
|
|
instruction and throw it away -- with the right switches, DEC's
|
|
linker will do this. What ought to happen is we should add
|
|
something to GAS to allow us access to the new GPREL_HI32/LO32
|
|
relocation types stolen from OSF/1 3.0. */
|
|
/* This code relies on the fact that BRADDR relocations do not
|
|
appear in dynamic relocation tables. Not that that would be very
|
|
useful anyway -- br/bsr has a 4MB range and the shared libraries
|
|
are usually many many terabytes away. */
|
|
|
|
Elf64_Addr dot;
|
|
long int zero_disp;
|
|
|
|
asm("br %0, 1f\n"
|
|
"0:\n\t"
|
|
"br $0, 2f\n"
|
|
"1:\n\t"
|
|
".section\t.data\n"
|
|
"2:\n\t"
|
|
".quad 0b\n\t"
|
|
".previous"
|
|
: "=r"(dot));
|
|
|
|
zero_disp = *(int *) dot;
|
|
zero_disp = (zero_disp << 43) >> 41;
|
|
|
|
return dot - *(Elf64_Addr *) (dot + 4 + zero_disp);
|
|
}
|
|
|
|
/* Set up the loaded object described by L so its unrelocated PLT
|
|
entries will jump to the on-demand fixup code in dl-runtime.c. */
|
|
|
|
static inline int
|
|
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
|
|
{
|
|
Elf64_Addr plt;
|
|
extern void _dl_runtime_resolve (void);
|
|
extern void _dl_runtime_profile (void);
|
|
|
|
if (l->l_info[DT_JMPREL] && lazy)
|
|
{
|
|
/* The GOT entries for the functions in the PLT have not been
|
|
filled in yet. Their initial contents are directed to the
|
|
PLT which arranges for the dynamic linker to be called. */
|
|
plt = D_PTR (l, l_info[DT_PLTGOT]);
|
|
|
|
/* This function will be called to perform the relocation. */
|
|
if (!profile)
|
|
*(Elf64_Addr *)(plt + 16) = (Elf64_Addr) &_dl_runtime_resolve;
|
|
else
|
|
{
|
|
*(Elf64_Addr *)(plt + 16) = (Elf64_Addr) &_dl_runtime_profile;
|
|
|
|
if (_dl_name_match_p (GL(dl_profile), l))
|
|
{
|
|
/* This is the object we are looking for. Say that we really
|
|
want profiling and the timers are started. */
|
|
GL(dl_profile_map) = l;
|
|
}
|
|
}
|
|
|
|
/* Identify this shared object */
|
|
*(Elf64_Addr *)(plt + 24) = (Elf64_Addr) l;
|
|
|
|
/* If the first instruction of the plt entry is not
|
|
"br $28, plt0", we have to reinitialize .plt for lazy relocation. */
|
|
if (*(unsigned int *)(plt + 32) != 0xc39ffff7)
|
|
{
|
|
unsigned int val = 0xc39ffff7;
|
|
unsigned int *slot, *end;
|
|
const Elf64_Rela *rela = (const Elf64_Rela *)
|
|
D_PTR (l, l_info[DT_JMPREL]);
|
|
Elf64_Addr l_addr = l->l_addr;
|
|
|
|
/* br t12,.+4; ldq t12,12(t12); nop; jmp t12,(t12),.+4 */
|
|
*(unsigned long *)plt = 0xa77b000cc3600000;
|
|
*(unsigned long *)(plt + 8) = 0x6b7b000047ff041f;
|
|
slot = (unsigned int *)(plt + 32);
|
|
end = (unsigned int *)(plt + 32
|
|
+ l->l_info[DT_PLTRELSZ]->d_un.d_val / 2);
|
|
while (slot < end)
|
|
{
|
|
/* br at,.plt+0 */
|
|
*slot = val;
|
|
*(Elf64_Addr *) rela->r_offset = (Elf64_Addr) slot - l_addr;
|
|
val -= 3;
|
|
slot += 3;
|
|
++rela;
|
|
}
|
|
}
|
|
}
|
|
|
|
return lazy;
|
|
}
|
|
|
|
/* This code is used in dl-runtime.c to call the `fixup' function
|
|
and then redirect to the address it returns. */
|
|
#define TRAMPOLINE_TEMPLATE(tramp_name, fixup_name, IMB) \
|
|
extern void tramp_name (void); \
|
|
asm ( "\
|
|
.globl " #tramp_name " \n\
|
|
.ent " #tramp_name " \n\
|
|
" #tramp_name ": \n\
|
|
lda $sp, -44*8($sp) \n\
|
|
.frame $sp, 44*8, $26 \n\
|
|
/* Preserve all integer registers that C normally \n\
|
|
doesn't. */ \n\
|
|
stq $26, 0*8($sp) \n\
|
|
stq $0, 1*8($sp) \n\
|
|
stq $1, 2*8($sp) \n\
|
|
stq $2, 3*8($sp) \n\
|
|
stq $3, 4*8($sp) \n\
|
|
stq $4, 5*8($sp) \n\
|
|
stq $5, 6*8($sp) \n\
|
|
stq $6, 7*8($sp) \n\
|
|
stq $7, 8*8($sp) \n\
|
|
stq $8, 9*8($sp) \n\
|
|
stq $16, 10*8($sp) \n\
|
|
stq $17, 11*8($sp) \n\
|
|
stq $18, 12*8($sp) \n\
|
|
stq $19, 13*8($sp) \n\
|
|
stq $20, 14*8($sp) \n\
|
|
stq $21, 15*8($sp) \n\
|
|
stq $22, 16*8($sp) \n\
|
|
stq $23, 17*8($sp) \n\
|
|
stq $24, 18*8($sp) \n\
|
|
stq $25, 19*8($sp) \n\
|
|
stq $29, 20*8($sp) \n\
|
|
stt $f0, 21*8($sp) \n\
|
|
stt $f1, 22*8($sp) \n\
|
|
stt $f10, 23*8($sp) \n\
|
|
stt $f11, 24*8($sp) \n\
|
|
stt $f12, 25*8($sp) \n\
|
|
stt $f13, 26*8($sp) \n\
|
|
stt $f14, 27*8($sp) \n\
|
|
stt $f15, 28*8($sp) \n\
|
|
stt $f16, 29*8($sp) \n\
|
|
stt $f17, 30*8($sp) \n\
|
|
stt $f18, 31*8($sp) \n\
|
|
stt $f19, 32*8($sp) \n\
|
|
stt $f20, 33*8($sp) \n\
|
|
stt $f21, 34*8($sp) \n\
|
|
stt $f22, 35*8($sp) \n\
|
|
stt $f23, 36*8($sp) \n\
|
|
stt $f24, 37*8($sp) \n\
|
|
stt $f25, 38*8($sp) \n\
|
|
stt $f26, 39*8($sp) \n\
|
|
stt $f27, 40*8($sp) \n\
|
|
stt $f28, 41*8($sp) \n\
|
|
stt $f29, 42*8($sp) \n\
|
|
stt $f30, 43*8($sp) \n\
|
|
.mask 0x27ff01ff, -44*8 \n\
|
|
.fmask 0xfffffc03, -(44-21)*8 \n\
|
|
/* Set up our $gp */ \n\
|
|
br $gp, .+4 \n\
|
|
ldgp $gp, 0($gp) \n\
|
|
.prologue 0 \n\
|
|
/* Set up the arguments for fixup: */ \n\
|
|
/* $16 = link_map out of plt0 */ \n\
|
|
/* $17 = offset of reloc entry = ($28 - $27 - 20) /12 * 24 */\n\
|
|
/* $18 = return address */ \n\
|
|
subq $28, $27, $17 \n\
|
|
ldq $16, 8($27) \n\
|
|
subq $17, 20, $17 \n\
|
|
mov $26, $18 \n\
|
|
addq $17, $17, $17 \n\
|
|
/* Do the fixup */ \n\
|
|
bsr $26, " ASM_ALPHA_NG_SYMBOL_PREFIX #fixup_name "..ng\n\
|
|
/* Move the destination address into position. */ \n\
|
|
mov $0, $27 \n\
|
|
/* Restore program registers. */ \n\
|
|
ldq $26, 0*8($sp) \n\
|
|
ldq $0, 1*8($sp) \n\
|
|
ldq $1, 2*8($sp) \n\
|
|
ldq $2, 3*8($sp) \n\
|
|
ldq $3, 4*8($sp) \n\
|
|
ldq $4, 5*8($sp) \n\
|
|
ldq $5, 6*8($sp) \n\
|
|
ldq $6, 7*8($sp) \n\
|
|
ldq $7, 8*8($sp) \n\
|
|
ldq $8, 9*8($sp) \n\
|
|
ldq $16, 10*8($sp) \n\
|
|
ldq $17, 11*8($sp) \n\
|
|
ldq $18, 12*8($sp) \n\
|
|
ldq $19, 13*8($sp) \n\
|
|
ldq $20, 14*8($sp) \n\
|
|
ldq $21, 15*8($sp) \n\
|
|
ldq $22, 16*8($sp) \n\
|
|
ldq $23, 17*8($sp) \n\
|
|
ldq $24, 18*8($sp) \n\
|
|
ldq $25, 19*8($sp) \n\
|
|
ldq $29, 20*8($sp) \n\
|
|
ldt $f0, 21*8($sp) \n\
|
|
ldt $f1, 22*8($sp) \n\
|
|
ldt $f10, 23*8($sp) \n\
|
|
ldt $f11, 24*8($sp) \n\
|
|
ldt $f12, 25*8($sp) \n\
|
|
ldt $f13, 26*8($sp) \n\
|
|
ldt $f14, 27*8($sp) \n\
|
|
ldt $f15, 28*8($sp) \n\
|
|
ldt $f16, 29*8($sp) \n\
|
|
ldt $f17, 30*8($sp) \n\
|
|
ldt $f18, 31*8($sp) \n\
|
|
ldt $f19, 32*8($sp) \n\
|
|
ldt $f20, 33*8($sp) \n\
|
|
ldt $f21, 34*8($sp) \n\
|
|
ldt $f22, 35*8($sp) \n\
|
|
ldt $f23, 36*8($sp) \n\
|
|
ldt $f24, 37*8($sp) \n\
|
|
ldt $f25, 38*8($sp) \n\
|
|
ldt $f26, 39*8($sp) \n\
|
|
ldt $f27, 40*8($sp) \n\
|
|
ldt $f28, 41*8($sp) \n\
|
|
ldt $f29, 42*8($sp) \n\
|
|
ldt $f30, 43*8($sp) \n\
|
|
/* Flush the Icache after having modified the .plt code. */\n\
|
|
" #IMB " \n\
|
|
/* Clean up and turn control to the destination */ \n\
|
|
lda $sp, 44*8($sp) \n\
|
|
jmp $31, ($27) \n\
|
|
.end " #tramp_name)
|
|
|
|
#ifndef PROF
|
|
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
|
|
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup, imb); \
|
|
TRAMPOLINE_TEMPLATE (_dl_runtime_profile, profile_fixup, /* nop */);
|
|
#else
|
|
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
|
|
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup, imb); \
|
|
strong_alias (_dl_runtime_resolve, _dl_runtime_profile);
|
|
#endif
|
|
|
|
/* Initial entry point code for the dynamic linker.
|
|
The C function `_dl_start' is the real entry point;
|
|
its return value is the user program's entry point. */
|
|
|
|
#define RTLD_START asm ("\
|
|
.section .text \n\
|
|
.set at \n\
|
|
.globl _start \n\
|
|
.ent _start \n\
|
|
_start: \n\
|
|
br $gp, 0f \n\
|
|
0: ldgp $gp, 0($gp) \n\
|
|
.prologue 0 \n\
|
|
/* Pass pointer to argument block to _dl_start. */ \n\
|
|
mov $sp, $16 \n\
|
|
bsr $26, "ASM_ALPHA_NG_SYMBOL_PREFIX"_dl_start..ng \n\
|
|
.end _start \n\
|
|
/* FALLTHRU */ \n\
|
|
.globl _dl_start_user \n\
|
|
.ent _dl_start_user \n\
|
|
_dl_start_user: \n\
|
|
.frame $30,0,$31,0 \n\
|
|
.prologue 0 \n\
|
|
/* Save the user entry point address in s0. */ \n\
|
|
mov $0, $9 \n\
|
|
/* Store the highest stack address. */ \n\
|
|
stq $30, __libc_stack_end \n\
|
|
/* See if we were run as a command with the executable \n\
|
|
file name as an extra leading argument. */ \n\
|
|
ldl $1, _dl_skip_args \n\
|
|
bne $1, $fixup_stack \n\
|
|
$fixup_stack_ret: \n\
|
|
/* The special initializer gets called with the stack \n\
|
|
just as the application's entry point will see it; \n\
|
|
it can switch stacks if it moves these contents \n\
|
|
over. */ \n\
|
|
" RTLD_START_SPECIAL_INIT " \n\
|
|
/* Call _dl_init(_dl_loaded, argc, argv, envp) to run \n\
|
|
initializers. */ \n\
|
|
ldq $16, _rtld_local \n\
|
|
ldq $17, 0($sp) \n\
|
|
lda $18, 8($sp) \n\
|
|
s8addq $17, 8, $19 \n\
|
|
addq $19, $18, $19 \n\
|
|
jsr $26, _dl_init_internal \n\
|
|
/* Pass our finalizer function to the user in $0. */ \n\
|
|
lda $0, _dl_fini \n\
|
|
/* Jump to the user's entry point. */ \n\
|
|
mov $9, $27 \n\
|
|
jmp ($9) \n\
|
|
$fixup_stack: \n\
|
|
/* Adjust the stack pointer to skip _dl_skip_args words.\n\
|
|
This involves copying everything down, since the \n\
|
|
stack pointer must always be 16-byte aligned. */ \n\
|
|
ldq $2, 0($sp) \n\
|
|
ldq $5, _dl_argv \n\
|
|
subq $31, $1, $6 \n\
|
|
subq $2, $1, $2 \n\
|
|
s8addq $6, $5, $5 \n\
|
|
mov $sp, $4 \n\
|
|
s8addq $1, $sp, $3 \n\
|
|
stq $2, 0($sp) \n\
|
|
stq $5, _dl_argv \n\
|
|
/* Copy down argv. */ \n\
|
|
0: ldq $5, 8($3) \n\
|
|
addq $4, 8, $4 \n\
|
|
addq $3, 8, $3 \n\
|
|
stq $5, 0($4) \n\
|
|
bne $5, 0b \n\
|
|
/* Copy down envp. */ \n\
|
|
1: ldq $5, 8($3) \n\
|
|
addq $4, 8, $4 \n\
|
|
addq $3, 8, $3 \n\
|
|
stq $5, 0($4) \n\
|
|
bne $5, 1b \n\
|
|
/* Copy down auxiliary table. */ \n\
|
|
2: ldq $5, 8($3) \n\
|
|
ldq $6, 16($3) \n\
|
|
addq $4, 16, $4 \n\
|
|
addq $3, 16, $3 \n\
|
|
stq $5, -8($4) \n\
|
|
stq $6, 0($4) \n\
|
|
bne $5, 2b \n\
|
|
br $fixup_stack_ret \n\
|
|
.end _dl_start_user \n\
|
|
.set noat \n\
|
|
.previous");
|
|
|
|
#ifndef RTLD_START_SPECIAL_INIT
|
|
#define RTLD_START_SPECIAL_INIT /* nothing */
|
|
#endif
|
|
|
|
/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry, so
|
|
PLT entries should not be allowed to define the value.
|
|
ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to one
|
|
of the main executable's symbols, as for a COPY reloc, which we don't
|
|
use. */
|
|
#define elf_machine_type_class(type) \
|
|
(((type) == R_ALPHA_JMP_SLOT) * ELF_RTYPE_CLASS_PLT)
|
|
|
|
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
|
|
#define ELF_MACHINE_JMP_SLOT R_ALPHA_JMP_SLOT
|
|
|
|
/* The alpha never uses Elf64_Rel relocations. */
|
|
#define ELF_MACHINE_NO_REL 1
|
|
|
|
/* Fix up the instructions of a PLT entry to invoke the function
|
|
rather than the dynamic linker. */
|
|
static inline Elf64_Addr
|
|
elf_machine_fixup_plt (struct link_map *l, lookup_t t,
|
|
const Elf64_Rela *reloc,
|
|
Elf64_Addr *got_addr, Elf64_Addr value)
|
|
{
|
|
const Elf64_Rela *rela_plt;
|
|
Elf64_Word *plte;
|
|
long int edisp;
|
|
|
|
/* Store the value we are going to load. */
|
|
*got_addr = value;
|
|
|
|
/* Recover the PLT entry address by calculating reloc's index into the
|
|
.rela.plt, and finding that entry in the .plt. */
|
|
rela_plt = (void *) D_PTR (l, l_info[DT_JMPREL]);
|
|
plte = (void *) (D_PTR (l, l_info[DT_PLTGOT]) + 32);
|
|
plte += 3 * (reloc - rela_plt);
|
|
|
|
/* Find the displacement from the plt entry to the function. */
|
|
edisp = (long int) (value - (Elf64_Addr)&plte[3]) / 4;
|
|
|
|
if (edisp >= -0x100000 && edisp < 0x100000)
|
|
{
|
|
/* If we are in range, use br to perfect branch prediction and
|
|
elide the dependency on the address load. This case happens,
|
|
e.g., when a shared library call is resolved to the same library. */
|
|
|
|
int hi, lo;
|
|
hi = value - (Elf64_Addr)&plte[0];
|
|
lo = (short int) hi;
|
|
hi = (hi - lo) >> 16;
|
|
|
|
/* Emit "lda $27,lo($27)" */
|
|
plte[1] = 0x237b0000 | (lo & 0xffff);
|
|
|
|
/* Emit "br $31,function" */
|
|
plte[2] = 0xc3e00000 | (edisp & 0x1fffff);
|
|
|
|
/* Think about thread-safety -- the previous instructions must be
|
|
committed to memory before the first is overwritten. */
|
|
__asm__ __volatile__("wmb" : : : "memory");
|
|
|
|
/* Emit "ldah $27,hi($27)" */
|
|
plte[0] = 0x277b0000 | (hi & 0xffff);
|
|
}
|
|
else
|
|
{
|
|
/* Don't bother with the hint since we already know the hint is
|
|
wrong. Eliding it prevents the wrong page from getting pulled
|
|
into the cache. */
|
|
|
|
int hi, lo;
|
|
hi = (Elf64_Addr)got_addr - (Elf64_Addr)&plte[0];
|
|
lo = (short)hi;
|
|
hi = (hi - lo) >> 16;
|
|
|
|
/* Emit "ldq $27,lo($27)" */
|
|
plte[1] = 0xa77b0000 | (lo & 0xffff);
|
|
|
|
/* Emit "jmp $31,($27)" */
|
|
plte[2] = 0x6bfb0000;
|
|
|
|
/* Think about thread-safety -- the previous instructions must be
|
|
committed to memory before the first is overwritten. */
|
|
__asm__ __volatile__("wmb" : : : "memory");
|
|
|
|
/* Emit "ldah $27,hi($27)" */
|
|
plte[0] = 0x277b0000 | (hi & 0xffff);
|
|
}
|
|
|
|
/* At this point, if we've been doing runtime resolution, Icache is dirty.
|
|
This will be taken care of in _dl_runtime_resolve. If instead we are
|
|
doing this as part of non-lazy startup relocation, that bit of code
|
|
hasn't made it into Icache yet, so there's nothing to clean up. */
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Return the final value of a plt relocation. */
|
|
static inline Elf64_Addr
|
|
elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc,
|
|
Elf64_Addr value)
|
|
{
|
|
return value + reloc->r_addend;
|
|
}
|
|
|
|
#endif /* !dl_machine_h */
|
|
|
|
#ifdef RESOLVE
|
|
|
|
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
|
|
MAP is the object containing the reloc. */
|
|
static inline void
|
|
elf_machine_rela (struct link_map *map,
|
|
const Elf64_Rela *reloc,
|
|
const Elf64_Sym *sym,
|
|
const struct r_found_version *version,
|
|
Elf64_Addr *const reloc_addr)
|
|
{
|
|
unsigned long int const r_type = ELF64_R_TYPE (reloc->r_info);
|
|
|
|
#if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC && !defined SHARED
|
|
/* This is defined in rtld.c, but nowhere in the static libc.a; make the
|
|
reference weak so static programs can still link. This declaration
|
|
cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP)
|
|
because rtld.c contains the common defn for _dl_rtld_map, which is
|
|
incompatible with a weak decl in the same file. */
|
|
weak_extern (_dl_rtld_map);
|
|
#endif
|
|
|
|
/* We cannot use a switch here because we cannot locate the switch
|
|
jump table until we've self-relocated. */
|
|
|
|
#if !defined RTLD_BOOTSTRAP || !defined HAVE_Z_COMBRELOC
|
|
if (__builtin_expect (r_type == R_ALPHA_RELATIVE, 0))
|
|
{
|
|
# if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC
|
|
/* Already done in dynamic linker. */
|
|
if (map != &GL(dl_rtld_map))
|
|
# endif
|
|
{
|
|
/* XXX Make some timings. Maybe it's preferable to test for
|
|
unaligned access and only do it the complex way if necessary. */
|
|
void *reloc_addr_1 = reloc_addr;
|
|
Elf64_Addr reloc_addr_val;
|
|
|
|
/* Load value without causing unaligned trap. */
|
|
memcpy (&reloc_addr_val, reloc_addr_1, 8);
|
|
reloc_addr_val += map->l_addr;
|
|
|
|
/* Store value without causing unaligned trap. */
|
|
memcpy (reloc_addr_1, &reloc_addr_val, 8);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
if (__builtin_expect (r_type == R_ALPHA_NONE, 0))
|
|
return;
|
|
else
|
|
{
|
|
Elf64_Addr loadbase, sym_value;
|
|
|
|
loadbase = RESOLVE (&sym, version, r_type);
|
|
sym_value = sym ? loadbase + sym->st_value : 0;
|
|
sym_value += reloc->r_addend;
|
|
|
|
if (r_type == R_ALPHA_GLOB_DAT)
|
|
*reloc_addr = sym_value;
|
|
#ifdef RESOLVE_CONFLICT_FIND_MAP
|
|
/* In .gnu.conflict section, R_ALPHA_JMP_SLOT relocations have
|
|
R_ALPHA_JMP_SLOT in lower 8 bits and the remaining 24 bits
|
|
are .rela.plt index. */
|
|
else if ((r_type & 0xff) == R_ALPHA_JMP_SLOT)
|
|
{
|
|
/* elf_machine_fixup_plt needs the map reloc_addr points into,
|
|
while in _dl_resolve_conflicts map is _dl_loaded. */
|
|
RESOLVE_CONFLICT_FIND_MAP (map, reloc_addr);
|
|
reloc = ((const Elf64_Rela *) D_PTR (map, l_info[DT_JMPREL]))
|
|
+ (r_type >> 8);
|
|
elf_machine_fixup_plt (map, 0, reloc, reloc_addr, sym_value);
|
|
}
|
|
#else
|
|
else if (r_type == R_ALPHA_JMP_SLOT)
|
|
elf_machine_fixup_plt (map, 0, reloc, reloc_addr, sym_value);
|
|
#endif
|
|
#ifndef RTLD_BOOTSTRAP
|
|
else if (r_type == R_ALPHA_REFQUAD)
|
|
{
|
|
void *reloc_addr_1 = reloc_addr;
|
|
|
|
/* Store value without causing unaligned trap. */
|
|
memcpy (reloc_addr_1, &sym_value, 8);
|
|
}
|
|
#endif
|
|
else
|
|
_dl_reloc_bad_type (map, r_type, 0);
|
|
}
|
|
}
|
|
|
|
/* Let do-rel.h know that on Alpha if l_addr is 0, all RELATIVE relocs
|
|
can be skipped. */
|
|
#define ELF_MACHINE_REL_RELATIVE 1
|
|
|
|
static inline void
|
|
elf_machine_rela_relative (Elf64_Addr l_addr, const Elf64_Rela *reloc,
|
|
Elf64_Addr *const reloc_addr)
|
|
{
|
|
/* XXX Make some timings. Maybe it's preverable to test for
|
|
unaligned access and only do it the complex way if necessary. */
|
|
void *reloc_addr_1 = reloc_addr;
|
|
Elf64_Addr reloc_addr_val;
|
|
|
|
/* Load value without causing unaligned trap. */
|
|
memcpy (&reloc_addr_val, reloc_addr_1, 8);
|
|
reloc_addr_val += l_addr;
|
|
|
|
/* Store value without causing unaligned trap. */
|
|
memcpy (reloc_addr_1, &reloc_addr_val, 8);
|
|
}
|
|
|
|
static inline void
|
|
elf_machine_lazy_rel (struct link_map *map,
|
|
Elf64_Addr l_addr, const Elf64_Rela *reloc)
|
|
{
|
|
Elf64_Addr * const reloc_addr = (void *)(l_addr + reloc->r_offset);
|
|
unsigned long int const r_type = ELF64_R_TYPE (reloc->r_info);
|
|
|
|
if (r_type == R_ALPHA_JMP_SLOT)
|
|
{
|
|
/* Perform a RELATIVE reloc on the .got entry that transfers
|
|
to the .plt. */
|
|
*reloc_addr += l_addr;
|
|
}
|
|
else if (r_type == R_ALPHA_NONE)
|
|
return;
|
|
else
|
|
_dl_reloc_bad_type (map, r_type, 1);
|
|
}
|
|
|
|
#endif /* RESOLVE */
|