mirror of
git://sourceware.org/git/glibc.git
synced 2024-11-27 03:41:23 +08:00
460860f457
Linux 6.7 removed ia64 from the official tree [1], following the general principle that a glibc port needs upstream support for the architecture in all the components it depends on (binutils, GCC, and the Linux kernel). Apart from the removal of sysdeps/ia64 and sysdeps/unix/sysv/linux/ia64, there are updates to various comments referencing ia64 for which removal of those references seemed appropriate. The configuration is removed from README and build-many-glibcs.py. The CONTRIBUTED-BY, elf/elf.h, manual/contrib.texi (the porting mention), *.po files, config.guess, and longlong.h are not changed. For Linux it allows cleanup some clone2 support on multiple files. The following bug can be closed as WONTFIX: BZ 22634 [2], BZ 14250 [3], BZ 21634 [4], BZ 10163 [5], BZ 16401 [6], and BZ 11585 [7]. [1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=43ff221426d33db909f7159fdf620c3b052e2d1c [2] https://sourceware.org/bugzilla/show_bug.cgi?id=22634 [3] https://sourceware.org/bugzilla/show_bug.cgi?id=14250 [4] https://sourceware.org/bugzilla/show_bug.cgi?id=21634 [5] https://sourceware.org/bugzilla/show_bug.cgi?id=10163 [6] https://sourceware.org/bugzilla/show_bug.cgi?id=16401 [7] https://sourceware.org/bugzilla/show_bug.cgi?id=11585 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2059 lines
86 KiB
Plaintext
2059 lines
86 KiB
Plaintext
@c We need some definitions here.
|
||
@ifclear mult
|
||
@ifhtml
|
||
@set mult @U{00B7}
|
||
@set infty @U{221E}
|
||
@set pie @U{03C0}
|
||
@end ifhtml
|
||
@iftex
|
||
@set mult @cdot
|
||
@set infty @infty
|
||
@end iftex
|
||
@ifclear mult
|
||
@set mult *
|
||
@set infty oo
|
||
@set pie pi
|
||
@end ifclear
|
||
@macro mul
|
||
@value{mult}
|
||
@end macro
|
||
@macro infinity
|
||
@value{infty}
|
||
@end macro
|
||
@ifnottex
|
||
@macro pi
|
||
@value{pie}
|
||
@end macro
|
||
@end ifnottex
|
||
@end ifclear
|
||
|
||
@node Mathematics, Arithmetic, Syslog, Top
|
||
@c %MENU% Math functions, useful constants, random numbers
|
||
@chapter Mathematics
|
||
|
||
This chapter contains information about functions for performing
|
||
mathematical computations, such as trigonometric functions. Most of
|
||
these functions have prototypes declared in the header file
|
||
@file{math.h}. The complex-valued functions are defined in
|
||
@file{complex.h}.
|
||
@pindex math.h
|
||
@pindex complex.h
|
||
|
||
All mathematical functions which take a floating-point argument
|
||
have three variants, one each for @code{double}, @code{float}, and
|
||
@code{long double} arguments. The @code{double} versions are mostly
|
||
defined in @w{ISO C89}. The @code{float} and @code{long double}
|
||
versions are from the numeric extensions to C included in @w{ISO C99}.
|
||
|
||
Which of the three versions of a function should be used depends on the
|
||
situation. For most calculations, the @code{float} functions are the
|
||
fastest. On the other hand, the @code{long double} functions have the
|
||
highest precision. @code{double} is somewhere in between. It is
|
||
usually wise to pick the narrowest type that can accommodate your data.
|
||
Not all machines have a distinct @code{long double} type; it may be the
|
||
same as @code{double}.
|
||
|
||
@Theglibc{} also provides @code{_Float@var{N}} and
|
||
@code{_Float@var{N}x} types. These types are defined in @w{ISO/IEC TS
|
||
18661-3}, which extends @w{ISO C} and defines floating-point types that
|
||
are not machine-dependent. When such a type, such as @code{_Float128},
|
||
is supported by @theglibc{}, extra variants for most of the mathematical
|
||
functions provided for @code{double}, @code{float}, and @code{long
|
||
double} are also provided for the supported type. Throughout this
|
||
manual, the @code{_Float@var{N}} and @code{_Float@var{N}x} variants of
|
||
these functions are described along with the @code{double},
|
||
@code{float}, and @code{long double} variants and they come from
|
||
@w{ISO/IEC TS 18661-3}, unless explicitly stated otherwise.
|
||
|
||
Support for @code{_Float@var{N}} or @code{_Float@var{N}x} types is
|
||
provided for @code{_Float32}, @code{_Float64} and @code{_Float32x} on
|
||
all platforms.
|
||
It is also provided for @code{_Float128} and @code{_Float64x} on
|
||
powerpc64le (PowerPC 64-bits little-endian), x86_64, x86,
|
||
aarch64, alpha, loongarch, mips64, riscv, s390 and sparc.
|
||
|
||
@menu
|
||
* Mathematical Constants:: Precise numeric values for often-used
|
||
constants.
|
||
* Trig Functions:: Sine, cosine, tangent, and friends.
|
||
* Inverse Trig Functions:: Arcsine, arccosine, etc.
|
||
* Exponents and Logarithms:: Also pow and sqrt.
|
||
* Hyperbolic Functions:: sinh, cosh, tanh, etc.
|
||
* Special Functions:: Bessel, gamma, erf.
|
||
* Errors in Math Functions:: Known Maximum Errors in Math Functions.
|
||
* Pseudo-Random Numbers:: Functions for generating pseudo-random
|
||
numbers.
|
||
* FP Function Optimizations:: Fast code or small code.
|
||
@end menu
|
||
|
||
@node Mathematical Constants
|
||
@section Predefined Mathematical Constants
|
||
@cindex constants
|
||
@cindex mathematical constants
|
||
|
||
The header @file{math.h} defines several useful mathematical constants.
|
||
All values are defined as preprocessor macros starting with @code{M_}.
|
||
The values provided are:
|
||
|
||
@vtable @code
|
||
@item M_E
|
||
The base of natural logarithms.
|
||
@item M_LOG2E
|
||
The logarithm to base @code{2} of @code{M_E}.
|
||
@item M_LOG10E
|
||
The logarithm to base @code{10} of @code{M_E}.
|
||
@item M_LN2
|
||
The natural logarithm of @code{2}.
|
||
@item M_LN10
|
||
The natural logarithm of @code{10}.
|
||
@item M_PI
|
||
Pi, the ratio of a circle's circumference to its diameter.
|
||
@item M_PI_2
|
||
Pi divided by two.
|
||
@item M_PI_4
|
||
Pi divided by four.
|
||
@item M_1_PI
|
||
The reciprocal of pi (1/pi)
|
||
@item M_2_PI
|
||
Two times the reciprocal of pi.
|
||
@item M_2_SQRTPI
|
||
Two times the reciprocal of the square root of pi.
|
||
@item M_SQRT2
|
||
The square root of two.
|
||
@item M_SQRT1_2
|
||
The reciprocal of the square root of two (also the square root of 1/2).
|
||
@end vtable
|
||
|
||
These constants come from the Unix98 standard and were also available in
|
||
4.4BSD; therefore they are only defined if
|
||
@code{_XOPEN_SOURCE=500}, or a more general feature select macro, is
|
||
defined. The default set of features includes these constants.
|
||
@xref{Feature Test Macros}.
|
||
|
||
All values are of type @code{double}. As an extension, @theglibc{}
|
||
also defines these constants with type @code{long double} and
|
||
@code{float}. The @code{long double} macros have a lowercase @samp{l}
|
||
while the @code{float} macros have a lowercase @samp{f} appended to
|
||
their names: @code{M_El}, @code{M_PIl}, and so forth. These are only
|
||
available if @code{_GNU_SOURCE} is defined.
|
||
|
||
Likewise, @theglibc{} also defines these constants with the types
|
||
@code{_Float@var{N}} and @code{_Float@var{N}x} for the machines that
|
||
have support for such types enabled (@pxref{Mathematics}) and if
|
||
@code{_GNU_SOURCE} is defined. When available, the macros names are
|
||
appended with @samp{f@var{N}} or @samp{f@var{N}x}, such as @samp{f128}
|
||
for the type @code{_Float128}.
|
||
|
||
@vindex PI
|
||
@emph{Note:} Some programs use a constant named @code{PI} which has the
|
||
same value as @code{M_PI}. This constant is not standard; it may have
|
||
appeared in some old AT&T headers, and is mentioned in Stroustrup's book
|
||
on C++. It infringes on the user's name space, so @theglibc{}
|
||
does not define it. Fixing programs written to expect it is simple:
|
||
replace @code{PI} with @code{M_PI} throughout, or put @samp{-DPI=M_PI}
|
||
on the compiler command line.
|
||
|
||
@node Trig Functions
|
||
@section Trigonometric Functions
|
||
@cindex trigonometric functions
|
||
|
||
These are the familiar @code{sin}, @code{cos}, and @code{tan} functions.
|
||
The arguments to all of these functions are in units of radians; recall
|
||
that pi radians equals 180 degrees.
|
||
|
||
@cindex pi (trigonometric constant)
|
||
The math library normally defines @code{M_PI} to a @code{double}
|
||
approximation of pi. If strict ISO and/or POSIX compliance
|
||
are requested this constant is not defined, but you can easily define it
|
||
yourself:
|
||
|
||
@smallexample
|
||
#define M_PI 3.14159265358979323846264338327
|
||
@end smallexample
|
||
|
||
@noindent
|
||
You can also compute the value of pi with the expression @code{acos
|
||
(-1.0)}.
|
||
|
||
@deftypefun double sin (double @var{x})
|
||
@deftypefunx float sinf (float @var{x})
|
||
@deftypefunx {long double} sinl (long double @var{x})
|
||
@deftypefunx _FloatN sinfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx sinfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{sinfN, TS 18661-3:2015, math.h}
|
||
@standardsx{sinfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the sine of @var{x}, where @var{x} is given in
|
||
radians. The return value is in the range @code{-1} to @code{1}.
|
||
@end deftypefun
|
||
|
||
@deftypefun double cos (double @var{x})
|
||
@deftypefunx float cosf (float @var{x})
|
||
@deftypefunx {long double} cosl (long double @var{x})
|
||
@deftypefunx _FloatN cosfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx cosfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{cosfN, TS 18661-3:2015, math.h}
|
||
@standardsx{cosfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the cosine of @var{x}, where @var{x} is given in
|
||
radians. The return value is in the range @code{-1} to @code{1}.
|
||
@end deftypefun
|
||
|
||
@deftypefun double tan (double @var{x})
|
||
@deftypefunx float tanf (float @var{x})
|
||
@deftypefunx {long double} tanl (long double @var{x})
|
||
@deftypefunx _FloatN tanfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx tanfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{tanfN, TS 18661-3:2015, math.h}
|
||
@standardsx{tanfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the tangent of @var{x}, where @var{x} is given in
|
||
radians.
|
||
|
||
Mathematically, the tangent function has singularities at odd multiples
|
||
of pi/2. If the argument @var{x} is too close to one of these
|
||
singularities, @code{tan} will signal overflow.
|
||
@end deftypefun
|
||
|
||
In many applications where @code{sin} and @code{cos} are used, the sine
|
||
and cosine of the same angle are needed at the same time. It is more
|
||
efficient to compute them simultaneously, so the library provides a
|
||
function to do that.
|
||
|
||
@deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx})
|
||
@deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx})
|
||
@deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx})
|
||
@deftypefunx _FloatN sincosfN (_Float@var{N} @var{x}, _Float@var{N} *@var{sinx}, _Float@var{N} *@var{cosx})
|
||
@deftypefunx _FloatNx sincosfNx (_Float@var{N}x @var{x}, _Float@var{N}x *@var{sinx}, _Float@var{N}x *@var{cosx})
|
||
@standards{GNU, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the sine of @var{x} in @code{*@var{sinx}} and the
|
||
cosine of @var{x} in @code{*@var{cosx}}, where @var{x} is given in
|
||
radians. Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in
|
||
the range of @code{-1} to @code{1}.
|
||
|
||
All these functions, including the @code{_Float@var{N}} and
|
||
@code{_Float@var{N}x} variants, are GNU extensions. Portable programs
|
||
should be prepared to cope with their absence.
|
||
@end deftypefun
|
||
|
||
@cindex complex trigonometric functions
|
||
|
||
@w{ISO C99} defines variants of the trig functions which work on
|
||
complex numbers. @Theglibc{} provides these functions, but they
|
||
are only useful if your compiler supports the new complex types defined
|
||
by the standard.
|
||
@c XXX Change this when gcc is fixed. -zw
|
||
(As of this writing GCC supports complex numbers, but there are bugs in
|
||
the implementation.)
|
||
|
||
@deftypefun {complex double} csin (complex double @var{z})
|
||
@deftypefunx {complex float} csinf (complex float @var{z})
|
||
@deftypefunx {complex long double} csinl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} csinfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} csinfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{csinfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{csinfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@c There are calls to nan* that could trigger @mtslocale if they didn't get
|
||
@c empty strings.
|
||
These functions return the complex sine of @var{z}.
|
||
The mathematical definition of the complex sine is
|
||
|
||
@ifnottex
|
||
@math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}.
|
||
@end ifnottex
|
||
@tex
|
||
$$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$
|
||
@end tex
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} ccos (complex double @var{z})
|
||
@deftypefunx {complex float} ccosf (complex float @var{z})
|
||
@deftypefunx {complex long double} ccosl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} ccosfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} ccosfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{ccosfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{ccosfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the complex cosine of @var{z}.
|
||
The mathematical definition of the complex cosine is
|
||
|
||
@ifnottex
|
||
@math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))}
|
||
@end ifnottex
|
||
@tex
|
||
$$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$
|
||
@end tex
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} ctan (complex double @var{z})
|
||
@deftypefunx {complex float} ctanf (complex float @var{z})
|
||
@deftypefunx {complex long double} ctanl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} ctanfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} ctanfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{ctanfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{ctanfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the complex tangent of @var{z}.
|
||
The mathematical definition of the complex tangent is
|
||
|
||
@ifnottex
|
||
@math{tan (z) = -i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))}
|
||
@end ifnottex
|
||
@tex
|
||
$$\tan(z) = -i \cdot {e^{zi} - e^{-zi}\over e^{zi} + e^{-zi}}$$
|
||
@end tex
|
||
|
||
@noindent
|
||
The complex tangent has poles at @math{pi/2 + 2n}, where @math{n} is an
|
||
integer. @code{ctan} may signal overflow if @var{z} is too close to a
|
||
pole.
|
||
@end deftypefun
|
||
|
||
|
||
@node Inverse Trig Functions
|
||
@section Inverse Trigonometric Functions
|
||
@cindex inverse trigonometric functions
|
||
|
||
These are the usual arcsine, arccosine and arctangent functions,
|
||
which are the inverses of the sine, cosine and tangent functions
|
||
respectively.
|
||
|
||
@deftypefun double asin (double @var{x})
|
||
@deftypefunx float asinf (float @var{x})
|
||
@deftypefunx {long double} asinl (long double @var{x})
|
||
@deftypefunx _FloatN asinfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx asinfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{asinfN, TS 18661-3:2015, math.h}
|
||
@standardsx{asinfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute the arcsine of @var{x}---that is, the value whose
|
||
sine is @var{x}. The value is in units of radians. Mathematically,
|
||
there are infinitely many such values; the one actually returned is the
|
||
one between @code{-pi/2} and @code{pi/2} (inclusive).
|
||
|
||
The arcsine function is defined mathematically only
|
||
over the domain @code{-1} to @code{1}. If @var{x} is outside the
|
||
domain, @code{asin} signals a domain error.
|
||
@end deftypefun
|
||
|
||
@deftypefun double acos (double @var{x})
|
||
@deftypefunx float acosf (float @var{x})
|
||
@deftypefunx {long double} acosl (long double @var{x})
|
||
@deftypefunx _FloatN acosfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx acosfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{acosfN, TS 18661-3:2015, math.h}
|
||
@standardsx{acosfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute the arccosine of @var{x}---that is, the value
|
||
whose cosine is @var{x}. The value is in units of radians.
|
||
Mathematically, there are infinitely many such values; the one actually
|
||
returned is the one between @code{0} and @code{pi} (inclusive).
|
||
|
||
The arccosine function is defined mathematically only
|
||
over the domain @code{-1} to @code{1}. If @var{x} is outside the
|
||
domain, @code{acos} signals a domain error.
|
||
@end deftypefun
|
||
|
||
@deftypefun double atan (double @var{x})
|
||
@deftypefunx float atanf (float @var{x})
|
||
@deftypefunx {long double} atanl (long double @var{x})
|
||
@deftypefunx _FloatN atanfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx atanfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{atanfN, TS 18661-3:2015, math.h}
|
||
@standardsx{atanfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute the arctangent of @var{x}---that is, the value
|
||
whose tangent is @var{x}. The value is in units of radians.
|
||
Mathematically, there are infinitely many such values; the one actually
|
||
returned is the one between @code{-pi/2} and @code{pi/2} (inclusive).
|
||
@end deftypefun
|
||
|
||
@deftypefun double atan2 (double @var{y}, double @var{x})
|
||
@deftypefunx float atan2f (float @var{y}, float @var{x})
|
||
@deftypefunx {long double} atan2l (long double @var{y}, long double @var{x})
|
||
@deftypefunx _FloatN atan2fN (_Float@var{N} @var{y}, _Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx atan2fNx (_Float@var{N}x @var{y}, _Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{atan2fN, TS 18661-3:2015, math.h}
|
||
@standardsx{atan2fNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
This function computes the arctangent of @var{y}/@var{x}, but the signs
|
||
of both arguments are used to determine the quadrant of the result, and
|
||
@var{x} is permitted to be zero. The return value is given in radians
|
||
and is in the range @code{-pi} to @code{pi}, inclusive.
|
||
|
||
If @var{x} and @var{y} are coordinates of a point in the plane,
|
||
@code{atan2} returns the signed angle between the line from the origin
|
||
to that point and the x-axis. Thus, @code{atan2} is useful for
|
||
converting Cartesian coordinates to polar coordinates. (To compute the
|
||
radial coordinate, use @code{hypot}; see @ref{Exponents and
|
||
Logarithms}.)
|
||
|
||
@c This is experimentally true. Should it be so? -zw
|
||
If both @var{x} and @var{y} are zero, @code{atan2} returns zero.
|
||
@end deftypefun
|
||
|
||
@cindex inverse complex trigonometric functions
|
||
@w{ISO C99} defines complex versions of the inverse trig functions.
|
||
|
||
@deftypefun {complex double} casin (complex double @var{z})
|
||
@deftypefunx {complex float} casinf (complex float @var{z})
|
||
@deftypefunx {complex long double} casinl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} casinfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} casinfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{casinfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{casinfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute the complex arcsine of @var{z}---that is, the
|
||
value whose sine is @var{z}. The value returned is in radians.
|
||
|
||
Unlike the real-valued functions, @code{casin} is defined for all
|
||
values of @var{z}.
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} cacos (complex double @var{z})
|
||
@deftypefunx {complex float} cacosf (complex float @var{z})
|
||
@deftypefunx {complex long double} cacosl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} cacosfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} cacosfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{cacosfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{cacosfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute the complex arccosine of @var{z}---that is, the
|
||
value whose cosine is @var{z}. The value returned is in radians.
|
||
|
||
Unlike the real-valued functions, @code{cacos} is defined for all
|
||
values of @var{z}.
|
||
@end deftypefun
|
||
|
||
|
||
@deftypefun {complex double} catan (complex double @var{z})
|
||
@deftypefunx {complex float} catanf (complex float @var{z})
|
||
@deftypefunx {complex long double} catanl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} catanfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} catanfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{catanfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{catanfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute the complex arctangent of @var{z}---that is,
|
||
the value whose tangent is @var{z}. The value is in units of radians.
|
||
@end deftypefun
|
||
|
||
|
||
@node Exponents and Logarithms
|
||
@section Exponentiation and Logarithms
|
||
@cindex exponentiation functions
|
||
@cindex power functions
|
||
@cindex logarithm functions
|
||
|
||
@deftypefun double exp (double @var{x})
|
||
@deftypefunx float expf (float @var{x})
|
||
@deftypefunx {long double} expl (long double @var{x})
|
||
@deftypefunx _FloatN expfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx expfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{expfN, TS 18661-3:2015, math.h}
|
||
@standardsx{expfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute @code{e} (the base of natural logarithms) raised
|
||
to the power @var{x}.
|
||
|
||
If the magnitude of the result is too large to be representable,
|
||
@code{exp} signals overflow.
|
||
@end deftypefun
|
||
|
||
@deftypefun double exp2 (double @var{x})
|
||
@deftypefunx float exp2f (float @var{x})
|
||
@deftypefunx {long double} exp2l (long double @var{x})
|
||
@deftypefunx _FloatN exp2fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx exp2fNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{exp2fN, TS 18661-3:2015, math.h}
|
||
@standardsx{exp2fNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute @code{2} raised to the power @var{x}.
|
||
Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}.
|
||
@end deftypefun
|
||
|
||
@deftypefun double exp10 (double @var{x})
|
||
@deftypefunx float exp10f (float @var{x})
|
||
@deftypefunx {long double} exp10l (long double @var{x})
|
||
@deftypefunx _FloatN exp10fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx exp10fNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{exp10fN, TS 18661-4:2015, math.h}
|
||
@standardsx{exp10fNx, TS 18661-4:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute @code{10} raised to the power @var{x}.
|
||
Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}.
|
||
|
||
The @code{exp10} functions are from TS 18661-4:2015.
|
||
@end deftypefun
|
||
|
||
|
||
@deftypefun double log (double @var{x})
|
||
@deftypefunx float logf (float @var{x})
|
||
@deftypefunx {long double} logl (long double @var{x})
|
||
@deftypefunx _FloatN logfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx logfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{logfN, TS 18661-3:2015, math.h}
|
||
@standardsx{logfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions compute the natural logarithm of @var{x}. @code{exp (log
|
||
(@var{x}))} equals @var{x}, exactly in mathematics and approximately in
|
||
C.
|
||
|
||
If @var{x} is negative, @code{log} signals a domain error. If @var{x}
|
||
is zero, it returns negative infinity; if @var{x} is too close to zero,
|
||
it may signal overflow.
|
||
@end deftypefun
|
||
|
||
@deftypefun double log10 (double @var{x})
|
||
@deftypefunx float log10f (float @var{x})
|
||
@deftypefunx {long double} log10l (long double @var{x})
|
||
@deftypefunx _FloatN log10fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx log10fNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{log10fN, TS 18661-3:2015, math.h}
|
||
@standardsx{log10fNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the base-10 logarithm of @var{x}.
|
||
@code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}.
|
||
|
||
@end deftypefun
|
||
|
||
@deftypefun double log2 (double @var{x})
|
||
@deftypefunx float log2f (float @var{x})
|
||
@deftypefunx {long double} log2l (long double @var{x})
|
||
@deftypefunx _FloatN log2fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx log2fNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{log2fN, TS 18661-3:2015, math.h}
|
||
@standardsx{log2fNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the base-2 logarithm of @var{x}.
|
||
@code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}.
|
||
@end deftypefun
|
||
|
||
@deftypefun double logb (double @var{x})
|
||
@deftypefunx float logbf (float @var{x})
|
||
@deftypefunx {long double} logbl (long double @var{x})
|
||
@deftypefunx _FloatN logbfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx logbfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{logbfN, TS 18661-3:2015, math.h}
|
||
@standardsx{logbfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions extract the exponent of @var{x} and return it as a
|
||
floating-point value. If @code{FLT_RADIX} is two, @code{logb} is equal
|
||
to @code{floor (log2 (x))}, except it's probably faster.
|
||
|
||
If @var{x} is de-normalized, @code{logb} returns the exponent @var{x}
|
||
would have if it were normalized. If @var{x} is infinity (positive or
|
||
negative), @code{logb} returns @math{@infinity{}}. If @var{x} is zero,
|
||
@code{logb} returns @math{@infinity{}}. It does not signal.
|
||
@end deftypefun
|
||
|
||
@deftypefun int ilogb (double @var{x})
|
||
@deftypefunx int ilogbf (float @var{x})
|
||
@deftypefunx int ilogbl (long double @var{x})
|
||
@deftypefunx int ilogbfN (_Float@var{N} @var{x})
|
||
@deftypefunx int ilogbfNx (_Float@var{N}x @var{x})
|
||
@deftypefunx {long int} llogb (double @var{x})
|
||
@deftypefunx {long int} llogbf (float @var{x})
|
||
@deftypefunx {long int} llogbl (long double @var{x})
|
||
@deftypefunx {long int} llogbfN (_Float@var{N} @var{x})
|
||
@deftypefunx {long int} llogbfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{ilogbfN, TS 18661-3:2015, math.h}
|
||
@standardsx{ilogbfNx, TS 18661-3:2015, math.h}
|
||
@standardsx{llogbfN, TS 18661-3:2015, math.h}
|
||
@standardsx{llogbfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions are equivalent to the corresponding @code{logb}
|
||
functions except that they return signed integer values. The
|
||
@code{ilogb}, @code{ilogbf}, and @code{ilogbl} functions are from ISO
|
||
C99; the @code{llogb}, @code{llogbf}, @code{llogbl} functions are from
|
||
TS 18661-1:2014; the @code{ilogbfN}, @code{ilogbfNx}, @code{llogbfN},
|
||
and @code{llogbfNx} functions are from TS 18661-3:2015.
|
||
@end deftypefun
|
||
|
||
@noindent
|
||
Since integers cannot represent infinity and NaN, @code{ilogb} instead
|
||
returns an integer that can't be the exponent of a normal floating-point
|
||
number. @file{math.h} defines constants so you can check for this.
|
||
|
||
@deftypevr Macro int FP_ILOGB0
|
||
@standards{ISO, math.h}
|
||
@code{ilogb} returns this value if its argument is @code{0}. The
|
||
numeric value is either @code{INT_MIN} or @code{-INT_MAX}.
|
||
|
||
This macro is defined in @w{ISO C99}.
|
||
@end deftypevr
|
||
|
||
@deftypevr Macro {long int} FP_LLOGB0
|
||
@standards{ISO, math.h}
|
||
@code{llogb} returns this value if its argument is @code{0}. The
|
||
numeric value is either @code{LONG_MIN} or @code{-LONG_MAX}.
|
||
|
||
This macro is defined in TS 18661-1:2014.
|
||
@end deftypevr
|
||
|
||
@deftypevr Macro int FP_ILOGBNAN
|
||
@standards{ISO, math.h}
|
||
@code{ilogb} returns this value if its argument is @code{NaN}. The
|
||
numeric value is either @code{INT_MIN} or @code{INT_MAX}.
|
||
|
||
This macro is defined in @w{ISO C99}.
|
||
@end deftypevr
|
||
|
||
@deftypevr Macro {long int} FP_LLOGBNAN
|
||
@standards{ISO, math.h}
|
||
@code{llogb} returns this value if its argument is @code{NaN}. The
|
||
numeric value is either @code{LONG_MIN} or @code{LONG_MAX}.
|
||
|
||
This macro is defined in TS 18661-1:2014.
|
||
@end deftypevr
|
||
|
||
These values are system specific. They might even be the same. The
|
||
proper way to test the result of @code{ilogb} is as follows:
|
||
|
||
@smallexample
|
||
i = ilogb (f);
|
||
if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
|
||
@{
|
||
if (isnan (f))
|
||
@{
|
||
/* @r{Handle NaN.} */
|
||
@}
|
||
else if (f == 0.0)
|
||
@{
|
||
/* @r{Handle 0.0.} */
|
||
@}
|
||
else
|
||
@{
|
||
/* @r{Some other value with large exponent,}
|
||
@r{perhaps +Inf.} */
|
||
@}
|
||
@}
|
||
@end smallexample
|
||
|
||
@deftypefun double pow (double @var{base}, double @var{power})
|
||
@deftypefunx float powf (float @var{base}, float @var{power})
|
||
@deftypefunx {long double} powl (long double @var{base}, long double @var{power})
|
||
@deftypefunx _FloatN powfN (_Float@var{N} @var{base}, _Float@var{N} @var{power})
|
||
@deftypefunx _FloatNx powfNx (_Float@var{N}x @var{base}, _Float@var{N}x @var{power})
|
||
@standards{ISO, math.h}
|
||
@standardsx{powfN, TS 18661-3:2015, math.h}
|
||
@standardsx{powfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These are general exponentiation functions, returning @var{base} raised
|
||
to @var{power}.
|
||
|
||
Mathematically, @code{pow} would return a complex number when @var{base}
|
||
is negative and @var{power} is not an integral value. @code{pow} can't
|
||
do that, so instead it signals a domain error. @code{pow} may also
|
||
underflow or overflow the destination type.
|
||
@end deftypefun
|
||
|
||
@cindex square root function
|
||
@deftypefun double sqrt (double @var{x})
|
||
@deftypefunx float sqrtf (float @var{x})
|
||
@deftypefunx {long double} sqrtl (long double @var{x})
|
||
@deftypefunx _FloatN sqrtfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx sqrtfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{sqrtfN, TS 18661-3:2015, math.h}
|
||
@standardsx{sqrtfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the nonnegative square root of @var{x}.
|
||
|
||
If @var{x} is negative, @code{sqrt} signals a domain error.
|
||
Mathematically, it should return a complex number.
|
||
@end deftypefun
|
||
|
||
@cindex cube root function
|
||
@deftypefun double cbrt (double @var{x})
|
||
@deftypefunx float cbrtf (float @var{x})
|
||
@deftypefunx {long double} cbrtl (long double @var{x})
|
||
@deftypefunx _FloatN cbrtfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx cbrtfNx (_Float@var{N}x @var{x})
|
||
@standards{BSD, math.h}
|
||
@standardsx{cbrtfN, TS 18661-3:2015, math.h}
|
||
@standardsx{cbrtfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the cube root of @var{x}. They cannot
|
||
fail; every representable real value has a representable real cube root.
|
||
@end deftypefun
|
||
|
||
@deftypefun double hypot (double @var{x}, double @var{y})
|
||
@deftypefunx float hypotf (float @var{x}, float @var{y})
|
||
@deftypefunx {long double} hypotl (long double @var{x}, long double @var{y})
|
||
@deftypefunx _FloatN hypotfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
|
||
@deftypefunx _FloatNx hypotfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
|
||
@standards{ISO, math.h}
|
||
@standardsx{hypotfN, TS 18661-3:2015, math.h}
|
||
@standardsx{hypotfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return @code{sqrt (@var{x}*@var{x} +
|
||
@var{y}*@var{y})}. This is the length of the hypotenuse of a right
|
||
triangle with sides of length @var{x} and @var{y}, or the distance
|
||
of the point (@var{x}, @var{y}) from the origin. Using this function
|
||
instead of the direct formula is wise, since the error is
|
||
much smaller. See also the function @code{cabs} in @ref{Absolute Value}.
|
||
@end deftypefun
|
||
|
||
@deftypefun double expm1 (double @var{x})
|
||
@deftypefunx float expm1f (float @var{x})
|
||
@deftypefunx {long double} expm1l (long double @var{x})
|
||
@deftypefunx _FloatN expm1fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx expm1fNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{expm1fN, TS 18661-3:2015, math.h}
|
||
@standardsx{expm1fNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return a value equivalent to @code{exp (@var{x}) - 1}.
|
||
They are computed in a way that is accurate even if @var{x} is
|
||
near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing
|
||
to subtraction of two numbers that are nearly equal.
|
||
@end deftypefun
|
||
|
||
@deftypefun double log1p (double @var{x})
|
||
@deftypefunx float log1pf (float @var{x})
|
||
@deftypefunx {long double} log1pl (long double @var{x})
|
||
@deftypefunx _FloatN log1pfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx log1pfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{log1pfN, TS 18661-3:2015, math.h}
|
||
@standardsx{log1pfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return a value equivalent to @w{@code{log (1 + @var{x})}}.
|
||
They are computed in a way that is accurate even if @var{x} is
|
||
near zero.
|
||
@end deftypefun
|
||
|
||
@cindex complex exponentiation functions
|
||
@cindex complex logarithm functions
|
||
|
||
@w{ISO C99} defines complex variants of some of the exponentiation and
|
||
logarithm functions.
|
||
|
||
@deftypefun {complex double} cexp (complex double @var{z})
|
||
@deftypefunx {complex float} cexpf (complex float @var{z})
|
||
@deftypefunx {complex long double} cexpl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} cexpfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} cexpfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{cexpfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{cexpfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return @code{e} (the base of natural
|
||
logarithms) raised to the power of @var{z}.
|
||
Mathematically, this corresponds to the value
|
||
|
||
@ifnottex
|
||
@math{exp (z) = exp (creal (z)) * (cos (cimag (z)) + I * sin (cimag (z)))}
|
||
@end ifnottex
|
||
@tex
|
||
$$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$
|
||
@end tex
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} clog (complex double @var{z})
|
||
@deftypefunx {complex float} clogf (complex float @var{z})
|
||
@deftypefunx {complex long double} clogl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} clogfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} clogfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{clogfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{clogfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the natural logarithm of @var{z}.
|
||
Mathematically, this corresponds to the value
|
||
|
||
@ifnottex
|
||
@math{log (z) = log (cabs (z)) + I * carg (z)}
|
||
@end ifnottex
|
||
@tex
|
||
$$\log(z) = \log |z| + i \arg z$$
|
||
@end tex
|
||
|
||
@noindent
|
||
@code{clog} has a pole at 0, and will signal overflow if @var{z} equals
|
||
or is very close to 0. It is well-defined for all other values of
|
||
@var{z}.
|
||
@end deftypefun
|
||
|
||
|
||
@deftypefun {complex double} clog10 (complex double @var{z})
|
||
@deftypefunx {complex float} clog10f (complex float @var{z})
|
||
@deftypefunx {complex long double} clog10l (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} clog10fN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} clog10fNx (complex _Float@var{N}x @var{z})
|
||
@standards{GNU, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the base 10 logarithm of the complex value
|
||
@var{z}. Mathematically, this corresponds to the value
|
||
|
||
@ifnottex
|
||
@math{log10 (z) = log10 (cabs (z)) + I * carg (z) / log (10)}
|
||
@end ifnottex
|
||
@tex
|
||
$$\log_{10}(z) = \log_{10}|z| + i \arg z / \log (10)$$
|
||
@end tex
|
||
|
||
All these functions, including the @code{_Float@var{N}} and
|
||
@code{_Float@var{N}x} variants, are GNU extensions.
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} csqrt (complex double @var{z})
|
||
@deftypefunx {complex float} csqrtf (complex float @var{z})
|
||
@deftypefunx {complex long double} csqrtl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} csqrtfN (_Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} csqrtfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{csqrtfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{csqrtfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the complex square root of the argument @var{z}. Unlike
|
||
the real-valued functions, they are defined for all values of @var{z}.
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power})
|
||
@deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power})
|
||
@deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power})
|
||
@deftypefunx {complex _FloatN} cpowfN (complex _Float@var{N} @var{base}, complex _Float@var{N} @var{power})
|
||
@deftypefunx {complex _FloatNx} cpowfNx (complex _Float@var{N}x @var{base}, complex _Float@var{N}x @var{power})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{cpowfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{cpowfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return @var{base} raised to the power of
|
||
@var{power}. This is equivalent to @w{@code{cexp (y * clog (x))}}
|
||
@end deftypefun
|
||
|
||
@node Hyperbolic Functions
|
||
@section Hyperbolic Functions
|
||
@cindex hyperbolic functions
|
||
|
||
The functions in this section are related to the exponential functions;
|
||
see @ref{Exponents and Logarithms}.
|
||
|
||
@deftypefun double sinh (double @var{x})
|
||
@deftypefunx float sinhf (float @var{x})
|
||
@deftypefunx {long double} sinhl (long double @var{x})
|
||
@deftypefunx _FloatN sinhfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx sinhfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{sinhfN, TS 18661-3:2015, math.h}
|
||
@standardsx{sinhfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the hyperbolic sine of @var{x}, defined
|
||
mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}. They
|
||
may signal overflow if @var{x} is too large.
|
||
@end deftypefun
|
||
|
||
@deftypefun double cosh (double @var{x})
|
||
@deftypefunx float coshf (float @var{x})
|
||
@deftypefunx {long double} coshl (long double @var{x})
|
||
@deftypefunx _FloatN coshfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx coshfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{coshfN, TS 18661-3:2015, math.h}
|
||
@standardsx{coshfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the hyperbolic cosine of @var{x},
|
||
defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}.
|
||
They may signal overflow if @var{x} is too large.
|
||
@end deftypefun
|
||
|
||
@deftypefun double tanh (double @var{x})
|
||
@deftypefunx float tanhf (float @var{x})
|
||
@deftypefunx {long double} tanhl (long double @var{x})
|
||
@deftypefunx _FloatN tanhfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx tanhfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{tanhfN, TS 18661-3:2015, math.h}
|
||
@standardsx{tanhfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the hyperbolic tangent of @var{x},
|
||
defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}.
|
||
They may signal overflow if @var{x} is too large.
|
||
@end deftypefun
|
||
|
||
@cindex hyperbolic functions
|
||
|
||
There are counterparts for the hyperbolic functions which take
|
||
complex arguments.
|
||
|
||
@deftypefun {complex double} csinh (complex double @var{z})
|
||
@deftypefunx {complex float} csinhf (complex float @var{z})
|
||
@deftypefunx {complex long double} csinhl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} csinhfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} csinhfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{csinhfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{csinhfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the complex hyperbolic sine of @var{z}, defined
|
||
mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}.
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} ccosh (complex double @var{z})
|
||
@deftypefunx {complex float} ccoshf (complex float @var{z})
|
||
@deftypefunx {complex long double} ccoshl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} ccoshfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} ccoshfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{ccoshfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{ccoshfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the complex hyperbolic cosine of @var{z}, defined
|
||
mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}.
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} ctanh (complex double @var{z})
|
||
@deftypefunx {complex float} ctanhf (complex float @var{z})
|
||
@deftypefunx {complex long double} ctanhl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} ctanhfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} ctanhfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{ctanhfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{ctanhfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the complex hyperbolic tangent of @var{z},
|
||
defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
|
||
@end deftypefun
|
||
|
||
|
||
@cindex inverse hyperbolic functions
|
||
|
||
@deftypefun double asinh (double @var{x})
|
||
@deftypefunx float asinhf (float @var{x})
|
||
@deftypefunx {long double} asinhl (long double @var{x})
|
||
@deftypefunx _FloatN asinhfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx asinhfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{asinhfN, TS 18661-3:2015, math.h}
|
||
@standardsx{asinhfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the inverse hyperbolic sine of @var{x}---the
|
||
value whose hyperbolic sine is @var{x}.
|
||
@end deftypefun
|
||
|
||
@deftypefun double acosh (double @var{x})
|
||
@deftypefunx float acoshf (float @var{x})
|
||
@deftypefunx {long double} acoshl (long double @var{x})
|
||
@deftypefunx _FloatN acoshfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx acoshfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{acoshfN, TS 18661-3:2015, math.h}
|
||
@standardsx{acoshfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the inverse hyperbolic cosine of @var{x}---the
|
||
value whose hyperbolic cosine is @var{x}. If @var{x} is less than
|
||
@code{1}, @code{acosh} signals a domain error.
|
||
@end deftypefun
|
||
|
||
@deftypefun double atanh (double @var{x})
|
||
@deftypefunx float atanhf (float @var{x})
|
||
@deftypefunx {long double} atanhl (long double @var{x})
|
||
@deftypefunx _FloatN atanhfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx atanhfNx (_Float@var{N}x @var{x})
|
||
@standards{ISO, math.h}
|
||
@standardsx{atanhfN, TS 18661-3:2015, math.h}
|
||
@standardsx{atanhfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the inverse hyperbolic tangent of @var{x}---the
|
||
value whose hyperbolic tangent is @var{x}. If the absolute value of
|
||
@var{x} is greater than @code{1}, @code{atanh} signals a domain error;
|
||
if it is equal to 1, @code{atanh} returns infinity.
|
||
@end deftypefun
|
||
|
||
@cindex inverse complex hyperbolic functions
|
||
|
||
@deftypefun {complex double} casinh (complex double @var{z})
|
||
@deftypefunx {complex float} casinhf (complex float @var{z})
|
||
@deftypefunx {complex long double} casinhl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} casinhfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} casinhfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{casinhfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{casinhfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the inverse complex hyperbolic sine of
|
||
@var{z}---the value whose complex hyperbolic sine is @var{z}.
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} cacosh (complex double @var{z})
|
||
@deftypefunx {complex float} cacoshf (complex float @var{z})
|
||
@deftypefunx {complex long double} cacoshl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} cacoshfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} cacoshfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{cacoshfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{cacoshfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the inverse complex hyperbolic cosine of
|
||
@var{z}---the value whose complex hyperbolic cosine is @var{z}. Unlike
|
||
the real-valued functions, there are no restrictions on the value of @var{z}.
|
||
@end deftypefun
|
||
|
||
@deftypefun {complex double} catanh (complex double @var{z})
|
||
@deftypefunx {complex float} catanhf (complex float @var{z})
|
||
@deftypefunx {complex long double} catanhl (complex long double @var{z})
|
||
@deftypefunx {complex _FloatN} catanhfN (complex _Float@var{N} @var{z})
|
||
@deftypefunx {complex _FloatNx} catanhfNx (complex _Float@var{N}x @var{z})
|
||
@standards{ISO, complex.h}
|
||
@standardsx{catanhfN, TS 18661-3:2015, complex.h}
|
||
@standardsx{catanhfNx, TS 18661-3:2015, complex.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
These functions return the inverse complex hyperbolic tangent of
|
||
@var{z}---the value whose complex hyperbolic tangent is @var{z}. Unlike
|
||
the real-valued functions, there are no restrictions on the value of
|
||
@var{z}.
|
||
@end deftypefun
|
||
|
||
@node Special Functions
|
||
@section Special Functions
|
||
@cindex special functions
|
||
@cindex Bessel functions
|
||
@cindex gamma function
|
||
|
||
These are some more exotic mathematical functions which are sometimes
|
||
useful. Currently they only have real-valued versions.
|
||
|
||
@deftypefun double erf (double @var{x})
|
||
@deftypefunx float erff (float @var{x})
|
||
@deftypefunx {long double} erfl (long double @var{x})
|
||
@deftypefunx _FloatN erffN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx erffNx (_Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{erffN, TS 18661-3:2015, math.h}
|
||
@standardsx{erffNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{erf} returns the error function of @var{x}. The error
|
||
function is defined as
|
||
@tex
|
||
$$\hbox{erf}(x) = {2\over\sqrt{\pi}}\cdot\int_0^x e^{-t^2} \hbox{d}t$$
|
||
@end tex
|
||
@ifnottex
|
||
@smallexample
|
||
erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
|
||
@end smallexample
|
||
@end ifnottex
|
||
@end deftypefun
|
||
|
||
@deftypefun double erfc (double @var{x})
|
||
@deftypefunx float erfcf (float @var{x})
|
||
@deftypefunx {long double} erfcl (long double @var{x})
|
||
@deftypefunx _FloatN erfcfN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx erfcfNx (_Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{erfcfN, TS 18661-3:2015, math.h}
|
||
@standardsx{erfcfNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a
|
||
fashion that avoids round-off error when @var{x} is large.
|
||
@end deftypefun
|
||
|
||
@deftypefun double lgamma (double @var{x})
|
||
@deftypefunx float lgammaf (float @var{x})
|
||
@deftypefunx {long double} lgammal (long double @var{x})
|
||
@deftypefunx _FloatN lgammafN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx lgammafNx (_Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{lgammafN, TS 18661-3:2015, math.h}
|
||
@standardsx{lgammafNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
|
||
@code{lgamma} returns the natural logarithm of the absolute value of
|
||
the gamma function of @var{x}. The gamma function is defined as
|
||
@tex
|
||
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
|
||
@end tex
|
||
@ifnottex
|
||
@smallexample
|
||
gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
|
||
@end smallexample
|
||
@end ifnottex
|
||
|
||
@vindex signgam
|
||
The sign of the gamma function is stored in the global variable
|
||
@var{signgam}, which is declared in @file{math.h}. It is @code{1} if
|
||
the intermediate result was positive or zero, or @code{-1} if it was
|
||
negative.
|
||
|
||
To compute the real gamma function you can use the @code{tgamma}
|
||
function or you can compute the values as follows:
|
||
@smallexample
|
||
lgam = lgamma(x);
|
||
gam = signgam*exp(lgam);
|
||
@end smallexample
|
||
|
||
The gamma function has singularities at the non-positive integers.
|
||
@code{lgamma} will raise the zero divide exception if evaluated at a
|
||
singularity.
|
||
@end deftypefun
|
||
|
||
@deftypefun double lgamma_r (double @var{x}, int *@var{signp})
|
||
@deftypefunx float lgammaf_r (float @var{x}, int *@var{signp})
|
||
@deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp})
|
||
@deftypefunx _FloatN lgammafN_r (_Float@var{N} @var{x}, int *@var{signp})
|
||
@deftypefunx _FloatNx lgammafNx_r (_Float@var{N}x @var{x}, int *@var{signp})
|
||
@standards{XPG, math.h}
|
||
@standardsx{lgammafN_r, GNU, math.h}
|
||
@standardsx{lgammafNx_r, GNU, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{lgamma_r} is just like @code{lgamma}, but it stores the sign of
|
||
the intermediate result in the variable pointed to by @var{signp}
|
||
instead of in the @var{signgam} global. This means it is reentrant.
|
||
|
||
The @code{lgammaf@var{N}_r} and @code{lgammaf@var{N}x_r} functions are
|
||
GNU extensions.
|
||
@end deftypefun
|
||
|
||
@deftypefun double gamma (double @var{x})
|
||
@deftypefunx float gammaf (float @var{x})
|
||
@deftypefunx {long double} gammal (long double @var{x})
|
||
@standards{SVID, math.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
|
||
These functions exist for compatibility reasons. They are equivalent to
|
||
@code{lgamma} etc. It is better to use @code{lgamma} since for one the
|
||
name reflects better the actual computation, and moreover @code{lgamma} is
|
||
standardized in @w{ISO C99} while @code{gamma} is not.
|
||
@end deftypefun
|
||
|
||
@deftypefun double tgamma (double @var{x})
|
||
@deftypefunx float tgammaf (float @var{x})
|
||
@deftypefunx {long double} tgammal (long double @var{x})
|
||
@deftypefunx _FloatN tgammafN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx tgammafNx (_Float@var{N}x @var{x})
|
||
@standardsx{tgamma, XPG, math.h}
|
||
@standardsx{tgamma, ISO, math.h}
|
||
@standardsx{tgammaf, XPG, math.h}
|
||
@standardsx{tgammaf, ISO, math.h}
|
||
@standardsx{tgammal, XPG, math.h}
|
||
@standardsx{tgammal, ISO, math.h}
|
||
@standardsx{tgammafN, TS 18661-3:2015, math.h}
|
||
@standardsx{tgammafNx, TS 18661-3:2015, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{tgamma} applies the gamma function to @var{x}. The gamma
|
||
function is defined as
|
||
@tex
|
||
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
|
||
@end tex
|
||
@ifnottex
|
||
@smallexample
|
||
gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
|
||
@end smallexample
|
||
@end ifnottex
|
||
|
||
This function was introduced in @w{ISO C99}. The @code{_Float@var{N}}
|
||
and @code{_Float@var{N}x} variants were introduced in @w{ISO/IEC TS
|
||
18661-3}.
|
||
@end deftypefun
|
||
|
||
@deftypefun double j0 (double @var{x})
|
||
@deftypefunx float j0f (float @var{x})
|
||
@deftypefunx {long double} j0l (long double @var{x})
|
||
@deftypefunx _FloatN j0fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx j0fNx (_Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{j0fN, GNU, math.h}
|
||
@standardsx{j0fNx, GNU, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{j0} returns the Bessel function of the first kind of order 0 of
|
||
@var{x}. It may signal underflow if @var{x} is too large.
|
||
|
||
The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
|
||
extensions.
|
||
@end deftypefun
|
||
|
||
@deftypefun double j1 (double @var{x})
|
||
@deftypefunx float j1f (float @var{x})
|
||
@deftypefunx {long double} j1l (long double @var{x})
|
||
@deftypefunx _FloatN j1fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx j1fNx (_Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{j1fN, GNU, math.h}
|
||
@standardsx{j1fNx, GNU, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{j1} returns the Bessel function of the first kind of order 1 of
|
||
@var{x}. It may signal underflow if @var{x} is too large.
|
||
|
||
The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
|
||
extensions.
|
||
@end deftypefun
|
||
|
||
@deftypefun double jn (int @var{n}, double @var{x})
|
||
@deftypefunx float jnf (int @var{n}, float @var{x})
|
||
@deftypefunx {long double} jnl (int @var{n}, long double @var{x})
|
||
@deftypefunx _FloatN jnfN (int @var{n}, _Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx jnfNx (int @var{n}, _Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{jnfN, GNU, math.h}
|
||
@standardsx{jnfNx, GNU, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{jn} returns the Bessel function of the first kind of order
|
||
@var{n} of @var{x}. It may signal underflow if @var{x} is too large.
|
||
|
||
The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
|
||
extensions.
|
||
@end deftypefun
|
||
|
||
@deftypefun double y0 (double @var{x})
|
||
@deftypefunx float y0f (float @var{x})
|
||
@deftypefunx {long double} y0l (long double @var{x})
|
||
@deftypefunx _FloatN y0fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx y0fNx (_Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{y0fN, GNU, math.h}
|
||
@standardsx{y0fNx, GNU, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{y0} returns the Bessel function of the second kind of order 0 of
|
||
@var{x}. It may signal underflow if @var{x} is too large. If @var{x}
|
||
is negative, @code{y0} signals a domain error; if it is zero,
|
||
@code{y0} signals overflow and returns @math{-@infinity}.
|
||
|
||
The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
|
||
extensions.
|
||
@end deftypefun
|
||
|
||
@deftypefun double y1 (double @var{x})
|
||
@deftypefunx float y1f (float @var{x})
|
||
@deftypefunx {long double} y1l (long double @var{x})
|
||
@deftypefunx _FloatN y1fN (_Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx y1fNx (_Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{y1fN, GNU, math.h}
|
||
@standardsx{y1fNx, GNU, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{y1} returns the Bessel function of the second kind of order 1 of
|
||
@var{x}. It may signal underflow if @var{x} is too large. If @var{x}
|
||
is negative, @code{y1} signals a domain error; if it is zero,
|
||
@code{y1} signals overflow and returns @math{-@infinity}.
|
||
|
||
The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
|
||
extensions.
|
||
@end deftypefun
|
||
|
||
@deftypefun double yn (int @var{n}, double @var{x})
|
||
@deftypefunx float ynf (int @var{n}, float @var{x})
|
||
@deftypefunx {long double} ynl (int @var{n}, long double @var{x})
|
||
@deftypefunx _FloatN ynfN (int @var{n}, _Float@var{N} @var{x})
|
||
@deftypefunx _FloatNx ynfNx (int @var{n}, _Float@var{N}x @var{x})
|
||
@standards{SVID, math.h}
|
||
@standardsx{ynfN, GNU, math.h}
|
||
@standardsx{ynfNx, GNU, math.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
@code{yn} returns the Bessel function of the second kind of order @var{n} of
|
||
@var{x}. It may signal underflow if @var{x} is too large. If @var{x}
|
||
is negative, @code{yn} signals a domain error; if it is zero,
|
||
@code{yn} signals overflow and returns @math{-@infinity}.
|
||
|
||
The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
|
||
extensions.
|
||
@end deftypefun
|
||
|
||
@node Errors in Math Functions
|
||
@section Known Maximum Errors in Math Functions
|
||
@cindex math errors
|
||
@cindex ulps
|
||
|
||
This section lists the known errors of the functions in the math
|
||
library. Errors are measured in ``units of the last place''. This is a
|
||
measure for the relative error. For a number @math{z} with the
|
||
representation @math{d.d@dots{}d@mul{}2^e} (we assume IEEE
|
||
floating-point numbers with base 2) the ULP is represented by
|
||
|
||
@tex
|
||
$${|d.d\dots d - (z/2^e)|}\over {2^{p-1}}$$
|
||
@end tex
|
||
@ifnottex
|
||
@smallexample
|
||
|d.d...d - (z / 2^e)| / 2^(p - 1)
|
||
@end smallexample
|
||
@end ifnottex
|
||
|
||
@noindent
|
||
where @math{p} is the number of bits in the mantissa of the
|
||
floating-point number representation. Ideally the error for all
|
||
functions is always less than 0.5ulps in round-to-nearest mode. Using
|
||
rounding bits this is also
|
||
possible and normally implemented for the basic operations. Except
|
||
for certain functions such as @code{sqrt}, @code{fma} and @code{rint}
|
||
whose results are fully specified by reference to corresponding IEEE
|
||
754 floating-point operations, and conversions between strings and
|
||
floating point, @theglibc{} does not aim for correctly rounded results
|
||
for functions in the math library, and does not aim for correctness in
|
||
whether ``inexact'' exceptions are raised. Instead, the goals for
|
||
accuracy of functions without fully specified results are as follows;
|
||
some functions have bugs meaning they do not meet these goals in all
|
||
cases. In the future, @theglibc{} may provide some other correctly
|
||
rounding functions under the names such as @code{crsin} proposed for
|
||
an extension to ISO C.
|
||
|
||
@itemize @bullet
|
||
|
||
@item
|
||
Each function with a floating-point result behaves as if it computes
|
||
an infinite-precision result that is within a few ulp (in both real
|
||
and complex parts, for functions with complex results) of the
|
||
mathematically correct value of the function (interpreted together
|
||
with ISO C or POSIX semantics for the function in question) at the
|
||
exact value passed as the input. Exceptions are raised appropriately
|
||
for this value and in accordance with IEEE 754 / ISO C / POSIX
|
||
semantics, and it is then rounded according to the current rounding
|
||
direction to the result that is returned to the user. @code{errno}
|
||
may also be set (@pxref{Math Error Reporting}). (The ``inexact''
|
||
exception may be raised, or not raised, even if this is inconsistent
|
||
with the infinite-precision value.)
|
||
|
||
@item
|
||
For the IBM @code{long double} format, as used on PowerPC GNU/Linux,
|
||
the accuracy goal is weaker for input values not exactly representable
|
||
in 106 bits of precision; it is as if the input value is some value
|
||
within 0.5ulp of the value actually passed, where ``ulp'' is
|
||
interpreted in terms of a fixed-precision 106-bit mantissa, but not
|
||
necessarily the exact value actually passed with discontiguous
|
||
mantissa bits.
|
||
|
||
@item
|
||
For the IBM @code{long double} format, functions whose results are
|
||
fully specified by reference to corresponding IEEE 754 floating-point
|
||
operations have the same accuracy goals as other functions, but with
|
||
the error bound being the same as that for division (3ulp).
|
||
Furthermore, ``inexact'' and ``underflow'' exceptions may be raised
|
||
for all functions for any inputs, even where such exceptions are
|
||
inconsistent with the returned value, since the underlying
|
||
floating-point arithmetic has that property.
|
||
|
||
@item
|
||
Functions behave as if the infinite-precision result computed is zero,
|
||
infinity or NaN if and only if that is the mathematically correct
|
||
infinite-precision result. They behave as if the infinite-precision
|
||
result computed always has the same sign as the mathematically correct
|
||
result.
|
||
|
||
@item
|
||
If the mathematical result is more than a few ulp above the overflow
|
||
threshold for the current rounding direction, the value returned is
|
||
the appropriate overflow value for the current rounding direction,
|
||
with the overflow exception raised.
|
||
|
||
@item
|
||
If the mathematical result has magnitude well below half the least
|
||
subnormal magnitude, the returned value is either zero or the least
|
||
subnormal (in each case, with the correct sign), according to the
|
||
current rounding direction and with the underflow exception raised.
|
||
|
||
@item
|
||
Where the mathematical result underflows (before rounding) and is not
|
||
exactly representable as a floating-point value, the function does not
|
||
behave as if the computed infinite-precision result is an exact value
|
||
in the subnormal range. This means that the underflow exception is
|
||
raised other than possibly for cases where the mathematical result is
|
||
very close to the underflow threshold and the function behaves as if
|
||
it computes an infinite-precision result that does not underflow. (So
|
||
there may be spurious underflow exceptions in cases where the
|
||
underflowing result is exact, but not missing underflow exceptions in
|
||
cases where it is inexact.)
|
||
|
||
@item
|
||
@Theglibc{} does not aim for functions to satisfy other properties of
|
||
the underlying mathematical function, such as monotonicity, where not
|
||
implied by the above goals.
|
||
|
||
@item
|
||
All the above applies to both real and complex parts, for complex
|
||
functions.
|
||
|
||
@end itemize
|
||
|
||
Therefore many of the functions in the math library have errors. The
|
||
table lists the maximum error for each function which is exposed by one
|
||
of the existing tests in the test suite. The table tries to cover as much
|
||
as possible and list the actual maximum error (or at least a ballpark
|
||
figure) but this is often not achieved due to the large search space.
|
||
|
||
The table lists the ULP values for different architectures. Different
|
||
architectures have different results since their hardware support for
|
||
floating-point operations varies and also the existing hardware support
|
||
is different. Only the round-to-nearest rounding mode is covered by
|
||
this table. Functions not listed do not have known errors. Vector
|
||
versions of functions in the x86_64 libmvec library have a maximum error
|
||
of 4 ulps.
|
||
|
||
@page
|
||
@c This multitable does not fit on a single page
|
||
@include libm-err.texi
|
||
|
||
@node Pseudo-Random Numbers
|
||
@section Pseudo-Random Numbers
|
||
@cindex random numbers
|
||
@cindex pseudo-random numbers
|
||
@cindex seed (for random numbers)
|
||
|
||
This section describes the GNU facilities for generating a series of
|
||
pseudo-random numbers. The numbers generated are not truly random;
|
||
typically, they form a sequence that repeats periodically, with a period
|
||
so large that you can ignore it for ordinary purposes. The random
|
||
number generator works by remembering a @dfn{seed} value which it uses
|
||
to compute the next random number and also to compute a new seed.
|
||
|
||
Although the generated numbers look unpredictable within one run of a
|
||
program, the sequence of numbers is @emph{exactly the same} from one run
|
||
to the next. This is because the initial seed is always the same. This
|
||
is convenient when you are debugging a program, but it is unhelpful if
|
||
you want the program to behave unpredictably. If you want a different
|
||
pseudo-random series each time your program runs, you must specify a
|
||
different seed each time. For ordinary purposes, basing the seed on the
|
||
current time works well. For random numbers in cryptography,
|
||
@pxref{Unpredictable Bytes}.
|
||
|
||
You can obtain repeatable sequences of numbers on a particular machine type
|
||
by specifying the same initial seed value for the random number
|
||
generator. There is no standard meaning for a particular seed value;
|
||
the same seed, used in different C libraries or on different CPU types,
|
||
will give you different random numbers.
|
||
|
||
@Theglibc{} supports the standard @w{ISO C} random number functions
|
||
plus two other sets derived from BSD and SVID. The BSD and @w{ISO C}
|
||
functions provide identical, somewhat limited functionality. If only a
|
||
small number of random bits are required, we recommend you use the
|
||
@w{ISO C} interface, @code{rand} and @code{srand}. The SVID functions
|
||
provide a more flexible interface, which allows better random number
|
||
generator algorithms, provides more random bits (up to 48) per call, and
|
||
can provide random floating-point numbers. These functions are required
|
||
by the XPG standard and therefore will be present in all modern Unix
|
||
systems.
|
||
|
||
@menu
|
||
* ISO Random:: @code{rand} and friends.
|
||
* BSD Random:: @code{random} and friends.
|
||
* SVID Random:: @code{drand48} and friends.
|
||
* High Quality Random:: @code{arc4random} and friends.
|
||
@end menu
|
||
|
||
@node ISO Random
|
||
@subsection ISO C Random Number Functions
|
||
|
||
This section describes the random number functions that are part of
|
||
the @w{ISO C} standard.
|
||
|
||
To use these facilities, you should include the header file
|
||
@file{stdlib.h} in your program.
|
||
@pindex stdlib.h
|
||
|
||
@deftypevr Macro int RAND_MAX
|
||
@standards{ISO, stdlib.h}
|
||
The value of this macro is an integer constant representing the largest
|
||
value the @code{rand} function can return. In @theglibc{}, it is
|
||
@code{2147483647}, which is the largest signed integer representable in
|
||
32 bits. In other libraries, it may be as low as @code{32767}.
|
||
@end deftypevr
|
||
|
||
@deftypefun int rand (void)
|
||
@standards{ISO, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
|
||
@c Just calls random.
|
||
The @code{rand} function returns the next pseudo-random number in the
|
||
series. The value ranges from @code{0} to @code{RAND_MAX}.
|
||
@end deftypefun
|
||
|
||
@deftypefun void srand (unsigned int @var{seed})
|
||
@standards{ISO, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
|
||
@c Alias to srandom.
|
||
This function establishes @var{seed} as the seed for a new series of
|
||
pseudo-random numbers. If you call @code{rand} before a seed has been
|
||
established with @code{srand}, it uses the value @code{1} as a default
|
||
seed.
|
||
|
||
To produce a different pseudo-random series each time your program is
|
||
run, do @code{srand (time (0))}.
|
||
@end deftypefun
|
||
|
||
POSIX.1 extended the C standard functions to support reproducible random
|
||
numbers in multi-threaded programs. However, the extension is badly
|
||
designed and unsuitable for serious work.
|
||
|
||
@deftypefun int rand_r (unsigned int *@var{seed})
|
||
@standards{POSIX.1, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
|
||
This function returns a random number in the range 0 to @code{RAND_MAX}
|
||
just as @code{rand} does. However, all its state is stored in the
|
||
@var{seed} argument. This means the RNG's state can only have as many
|
||
bits as the type @code{unsigned int} has. This is far too few to
|
||
provide a good RNG.
|
||
|
||
If your program requires a reentrant RNG, we recommend you use the
|
||
reentrant GNU extensions to the SVID random number generator. The
|
||
POSIX.1 interface should only be used when the GNU extensions are not
|
||
available.
|
||
@end deftypefun
|
||
|
||
|
||
@node BSD Random
|
||
@subsection BSD Random Number Functions
|
||
|
||
This section describes a set of random number generation functions that
|
||
are derived from BSD. There is no advantage to using these functions
|
||
with @theglibc{}; we support them for BSD compatibility only.
|
||
|
||
The prototypes for these functions are in @file{stdlib.h}.
|
||
@pindex stdlib.h
|
||
|
||
@deftypefun {long int} random (void)
|
||
@standards{BSD, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
|
||
@c Takes a lock and calls random_r with an automatic variable and the
|
||
@c global state, while holding a lock.
|
||
This function returns the next pseudo-random number in the sequence.
|
||
The value returned ranges from @code{0} to @code{2147483647}.
|
||
|
||
@strong{NB:} Temporarily this function was defined to return a
|
||
@code{int32_t} value to indicate that the return value always contains
|
||
32 bits even if @code{long int} is wider. The standard demands it
|
||
differently. Users must always be aware of the 32-bit limitation,
|
||
though.
|
||
@end deftypefun
|
||
|
||
@deftypefun void srandom (unsigned int @var{seed})
|
||
@standards{BSD, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
|
||
@c Takes a lock and calls srandom_r with an automatic variable and a
|
||
@c static buffer. There's no MT-safety issue because the static buffer
|
||
@c is internally protected by a lock, although other threads may modify
|
||
@c the set state before it is used.
|
||
The @code{srandom} function sets the state of the random number
|
||
generator based on the integer @var{seed}. If you supply a @var{seed} value
|
||
of @code{1}, this will cause @code{random} to reproduce the default set
|
||
of random numbers.
|
||
|
||
To produce a different set of pseudo-random numbers each time your
|
||
program runs, do @code{srandom (time (0))}.
|
||
@end deftypefun
|
||
|
||
@deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size})
|
||
@standards{BSD, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
|
||
The @code{initstate} function is used to initialize the random number
|
||
generator state. The argument @var{state} is an array of @var{size}
|
||
bytes, used to hold the state information. It is initialized based on
|
||
@var{seed}. The size must be between 8 and 256 bytes, and should be a
|
||
power of two. The bigger the @var{state} array, the better.
|
||
|
||
The return value is the previous value of the state information array.
|
||
You can use this value later as an argument to @code{setstate} to
|
||
restore that state.
|
||
@end deftypefun
|
||
|
||
@deftypefun {char *} setstate (char *@var{state})
|
||
@standards{BSD, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
|
||
The @code{setstate} function restores the random number state
|
||
information @var{state}. The argument must have been the result of
|
||
a previous call to @var{initstate} or @var{setstate}.
|
||
|
||
The return value is the previous value of the state information array.
|
||
You can use this value later as an argument to @code{setstate} to
|
||
restore that state.
|
||
|
||
If the function fails the return value is @code{NULL}.
|
||
@end deftypefun
|
||
|
||
The four functions described so far in this section all work on a state
|
||
which is shared by all threads. The state is not directly accessible to
|
||
the user and can only be modified by these functions. This makes it
|
||
hard to deal with situations where each thread should have its own
|
||
pseudo-random number generator.
|
||
|
||
@Theglibc{} contains four additional functions which contain the
|
||
state as an explicit parameter and therefore make it possible to handle
|
||
thread-local PRNGs. Besides this there is no difference. In fact, the
|
||
four functions already discussed are implemented internally using the
|
||
following interfaces.
|
||
|
||
The @file{stdlib.h} header contains a definition of the following type:
|
||
|
||
@deftp {Data Type} {struct random_data}
|
||
@standards{GNU, stdlib.h}
|
||
|
||
Objects of type @code{struct random_data} contain the information
|
||
necessary to represent the state of the PRNG. Although a complete
|
||
definition of the type is present the type should be treated as opaque.
|
||
@end deftp
|
||
|
||
The functions modifying the state follow exactly the already described
|
||
functions.
|
||
|
||
@deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{random_r} function behaves exactly like the @code{random}
|
||
function except that it uses and modifies the state in the object
|
||
pointed to by the first parameter instead of the global state.
|
||
@end deftypefun
|
||
|
||
@deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{srandom_r} function behaves exactly like the @code{srandom}
|
||
function except that it uses and modifies the state in the object
|
||
pointed to by the second parameter instead of the global state.
|
||
@end deftypefun
|
||
|
||
@deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{initstate_r} function behaves exactly like the @code{initstate}
|
||
function except that it uses and modifies the state in the object
|
||
pointed to by the fourth parameter instead of the global state.
|
||
@end deftypefun
|
||
|
||
@deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{setstate_r} function behaves exactly like the @code{setstate}
|
||
function except that it uses and modifies the state in the object
|
||
pointed to by the first parameter instead of the global state.
|
||
@end deftypefun
|
||
|
||
@node SVID Random
|
||
@subsection SVID Random Number Function
|
||
|
||
The C library on SVID systems contains yet another kind of random number
|
||
generator functions. They use a state of 48 bits of data. The user can
|
||
choose among a collection of functions which return the random bits
|
||
in different forms.
|
||
|
||
Generally there are two kinds of function. The first uses a state of
|
||
the random number generator which is shared among several functions and
|
||
by all threads of the process. The second requires the user to handle
|
||
the state.
|
||
|
||
All functions have in common that they use the same congruential
|
||
formula with the same constants. The formula is
|
||
|
||
@smallexample
|
||
Y = (a * X + c) mod m
|
||
@end smallexample
|
||
|
||
@noindent
|
||
where @var{X} is the state of the generator at the beginning and
|
||
@var{Y} the state at the end. @code{a} and @code{c} are constants
|
||
determining the way the generator works. By default they are
|
||
|
||
@smallexample
|
||
a = 0x5DEECE66D = 25214903917
|
||
c = 0xb = 11
|
||
@end smallexample
|
||
|
||
@noindent
|
||
but they can also be changed by the user. @code{m} is of course 2^48
|
||
since the state consists of a 48-bit array.
|
||
|
||
The prototypes for these functions are in @file{stdlib.h}.
|
||
@pindex stdlib.h
|
||
|
||
|
||
@deftypefun double drand48 (void)
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
@c Uses of the static state buffer are not guarded by a lock (thus
|
||
@c @mtasurace:drand48), so they may be found or left at a
|
||
@c partially-updated state in case of calls from within signal handlers
|
||
@c or cancellation. None of this will break safety rules or invoke
|
||
@c undefined behavior, but it may affect randomness.
|
||
This function returns a @code{double} value in the range of @code{0.0}
|
||
to @code{1.0} (exclusive). The random bits are determined by the global
|
||
state of the random number generator in the C library.
|
||
|
||
Since the @code{double} type according to @w{IEEE 754} has a 52-bit
|
||
mantissa this means 4 bits are not initialized by the random number
|
||
generator. These are (of course) chosen to be the least significant
|
||
bits and they are initialized to @code{0}.
|
||
@end deftypefun
|
||
|
||
@deftypefun double erand48 (unsigned short int @var{xsubi}[3])
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
@c The static buffer is just initialized with default parameters, which
|
||
@c are later read to advance the state held in xsubi.
|
||
This function returns a @code{double} value in the range of @code{0.0}
|
||
to @code{1.0} (exclusive), similarly to @code{drand48}. The argument is
|
||
an array describing the state of the random number generator.
|
||
|
||
This function can be called subsequently since it updates the array to
|
||
guarantee random numbers. The array should have been initialized before
|
||
initial use to obtain reproducible results.
|
||
@end deftypefun
|
||
|
||
@deftypefun {long int} lrand48 (void)
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{lrand48} function returns an integer value in the range of
|
||
@code{0} to @code{2^31} (exclusive). Even if the size of the @code{long
|
||
int} type can take more than 32 bits, no higher numbers are returned.
|
||
The random bits are determined by the global state of the random number
|
||
generator in the C library.
|
||
@end deftypefun
|
||
|
||
@deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3])
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
This function is similar to the @code{lrand48} function in that it
|
||
returns a number in the range of @code{0} to @code{2^31} (exclusive) but
|
||
the state of the random number generator used to produce the random bits
|
||
is determined by the array provided as the parameter to the function.
|
||
|
||
The numbers in the array are updated afterwards so that subsequent calls
|
||
to this function yield different results (as is expected of a random
|
||
number generator). The array should have been initialized before the
|
||
first call to obtain reproducible results.
|
||
@end deftypefun
|
||
|
||
@deftypefun {long int} mrand48 (void)
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{mrand48} function is similar to @code{lrand48}. The only
|
||
difference is that the numbers returned are in the range @code{-2^31} to
|
||
@code{2^31} (exclusive).
|
||
@end deftypefun
|
||
|
||
@deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3])
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{jrand48} function is similar to @code{nrand48}. The only
|
||
difference is that the numbers returned are in the range @code{-2^31} to
|
||
@code{2^31} (exclusive). For the @code{xsubi} parameter the same
|
||
requirements are necessary.
|
||
@end deftypefun
|
||
|
||
The internal state of the random number generator can be initialized in
|
||
several ways. The methods differ in the completeness of the
|
||
information provided.
|
||
|
||
@deftypefun void srand48 (long int @var{seedval})
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{srand48} function sets the most significant 32 bits of the
|
||
internal state of the random number generator to the least
|
||
significant 32 bits of the @var{seedval} parameter. The lower 16 bits
|
||
are initialized to the value @code{0x330E}. Even if the @code{long
|
||
int} type contains more than 32 bits only the lower 32 bits are used.
|
||
|
||
Owing to this limitation, initialization of the state of this
|
||
function is not very useful. But it makes it easy to use a construct
|
||
like @code{srand48 (time (0))}.
|
||
|
||
A side-effect of this function is that the values @code{a} and @code{c}
|
||
from the internal state, which are used in the congruential formula,
|
||
are reset to the default values given above. This is of importance once
|
||
the user has called the @code{lcong48} function (see below).
|
||
@end deftypefun
|
||
|
||
@deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3])
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{seed48} function initializes all 48 bits of the state of the
|
||
internal random number generator from the contents of the parameter
|
||
@var{seed16v}. Here the lower 16 bits of the first element of
|
||
@var{seed16v} initialize the least significant 16 bits of the internal
|
||
state, the lower 16 bits of @code{@var{seed16v}[1]} initialize the mid-order
|
||
16 bits of the state and the 16 lower bits of @code{@var{seed16v}[2]}
|
||
initialize the most significant 16 bits of the state.
|
||
|
||
Unlike @code{srand48} this function lets the user initialize all 48 bits
|
||
of the state.
|
||
|
||
The value returned by @code{seed48} is a pointer to an array containing
|
||
the values of the internal state before the change. This might be
|
||
useful to restart the random number generator at a certain state.
|
||
Otherwise the value can simply be ignored.
|
||
|
||
As for @code{srand48}, the values @code{a} and @code{c} from the
|
||
congruential formula are reset to the default values.
|
||
@end deftypefun
|
||
|
||
There is one more function to initialize the random number generator
|
||
which enables you to specify even more information by allowing you to
|
||
change the parameters in the congruential formula.
|
||
|
||
@deftypefun void lcong48 (unsigned short int @var{param}[7])
|
||
@standards{SVID, stdlib.h}
|
||
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{lcong48} function allows the user to change the complete state
|
||
of the random number generator. Unlike @code{srand48} and
|
||
@code{seed48}, this function also changes the constants in the
|
||
congruential formula.
|
||
|
||
From the seven elements in the array @var{param} the least significant
|
||
16 bits of the entries @code{@var{param}[0]} to @code{@var{param}[2]}
|
||
determine the initial state, the least significant 16 bits of
|
||
@code{@var{param}[3]} to @code{@var{param}[5]} determine the 48 bit
|
||
constant @code{a} and @code{@var{param}[6]} determines the 16-bit value
|
||
@code{c}.
|
||
@end deftypefun
|
||
|
||
All the above functions have in common that they use the global
|
||
parameters for the congruential formula. In multi-threaded programs it
|
||
might sometimes be useful to have different parameters in different
|
||
threads. For this reason all the above functions have a counterpart
|
||
which works on a description of the random number generator in the
|
||
user-supplied buffer instead of the global state.
|
||
|
||
Please note that it is no problem if several threads use the global
|
||
state if all threads use the functions which take a pointer to an array
|
||
containing the state. The random numbers are computed following the
|
||
same loop but if the state in the array is different all threads will
|
||
obtain an individual random number generator.
|
||
|
||
The user-supplied buffer must be of type @code{struct drand48_data}.
|
||
This type should be regarded as opaque and not manipulated directly.
|
||
|
||
@deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
This function is equivalent to the @code{drand48} function with the
|
||
difference that it does not modify the global random number generator
|
||
parameters but instead the parameters in the buffer supplied through the
|
||
pointer @var{buffer}. The random number is returned in the variable
|
||
pointed to by @var{result}.
|
||
|
||
The return value of the function indicates whether the call succeeded.
|
||
If the value is less than @code{0} an error occurred and @code{errno} is
|
||
set to indicate the problem.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
@deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{erand48_r} function works like @code{erand48}, but in addition
|
||
it takes an argument @var{buffer} which describes the random number
|
||
generator. The state of the random number generator is taken from the
|
||
@code{xsubi} array, the parameters for the congruential formula from the
|
||
global random number generator data. The random number is returned in
|
||
the variable pointed to by @var{result}.
|
||
|
||
The return value is non-negative if the call succeeded.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
@deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
This function is similar to @code{lrand48}, but in addition it takes a
|
||
pointer to a buffer describing the state of the random number generator
|
||
just like @code{drand48}.
|
||
|
||
If the return value of the function is non-negative the variable pointed
|
||
to by @var{result} contains the result. Otherwise an error occurred.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
@deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{nrand48_r} function works like @code{nrand48} in that it
|
||
produces a random number in the range @code{0} to @code{2^31}. But instead
|
||
of using the global parameters for the congruential formula it uses the
|
||
information from the buffer pointed to by @var{buffer}. The state is
|
||
described by the values in @var{xsubi}.
|
||
|
||
If the return value is non-negative the variable pointed to by
|
||
@var{result} contains the result.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
@deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
This function is similar to @code{mrand48} but like the other reentrant
|
||
functions it uses the random number generator described by the value in
|
||
the buffer pointed to by @var{buffer}.
|
||
|
||
If the return value is non-negative the variable pointed to by
|
||
@var{result} contains the result.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
@deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
The @code{jrand48_r} function is similar to @code{jrand48}. Like the
|
||
other reentrant functions of this function family it uses the
|
||
congruential formula parameters from the buffer pointed to by
|
||
@var{buffer}.
|
||
|
||
If the return value is non-negative the variable pointed to by
|
||
@var{result} contains the result.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
Before any of the above functions are used the buffer of type
|
||
@code{struct drand48_data} should be initialized. The easiest way to do
|
||
this is to fill the whole buffer with null bytes, e.g. by
|
||
|
||
@smallexample
|
||
memset (buffer, '\0', sizeof (struct drand48_data));
|
||
@end smallexample
|
||
|
||
@noindent
|
||
Using any of the reentrant functions of this family now will
|
||
automatically initialize the random number generator to the default
|
||
values for the state and the parameters of the congruential formula.
|
||
|
||
The other possibility is to use any of the functions which explicitly
|
||
initialize the buffer. Though it might be obvious how to initialize the
|
||
buffer from looking at the parameter to the function, it is highly
|
||
recommended to use these functions since the result might not always be
|
||
what you expect.
|
||
|
||
@deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
The description of the random number generator represented by the
|
||
information in @var{buffer} is initialized similarly to what the function
|
||
@code{srand48} does. The state is initialized from the parameter
|
||
@var{seedval} and the parameters for the congruential formula are
|
||
initialized to their default values.
|
||
|
||
If the return value is non-negative the function call succeeded.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
@deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
This function is similar to @code{srand48_r} but like @code{seed48} it
|
||
initializes all 48 bits of the state from the parameter @var{seed16v}.
|
||
|
||
If the return value is non-negative the function call succeeded. It
|
||
does not return a pointer to the previous state of the random number
|
||
generator like the @code{seed48} function does. If the user wants to
|
||
preserve the state for a later re-run s/he can copy the whole buffer
|
||
pointed to by @var{buffer}.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
@deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer})
|
||
@standards{GNU, stdlib.h}
|
||
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
|
||
This function initializes all aspects of the random number generator
|
||
described in @var{buffer} with the data in @var{param}. Here it is
|
||
especially true that the function does more than just copying the
|
||
contents of @var{param} and @var{buffer}. More work is required and
|
||
therefore it is important to use this function rather than initializing
|
||
the random number generator directly.
|
||
|
||
If the return value is non-negative the function call succeeded.
|
||
|
||
This function is a GNU extension and should not be used in portable
|
||
programs.
|
||
@end deftypefun
|
||
|
||
@node High Quality Random
|
||
@subsection High Quality Random Number Functions
|
||
|
||
This section describes the random number functions provided as a GNU
|
||
extension, based on OpenBSD interfaces.
|
||
|
||
@Theglibc{} uses kernel entropy obtained either through @code{getrandom}
|
||
or by reading @file{/dev/urandom} to seed.
|
||
|
||
These functions provide higher random quality than ISO, BSD, and SVID
|
||
functions, and may be used in cryptographic contexts.
|
||
|
||
The prototypes for these functions are in @file{stdlib.h}.
|
||
@pindex stdlib.h
|
||
|
||
@deftypefun uint32_t arc4random (void)
|
||
@standards{BSD, stdlib.h}
|
||
@safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
|
||
This function returns a single 32-bit value in the range of @code{0} to
|
||
@code{2^32−1} (inclusive), which is twice the range of @code{rand} and
|
||
@code{random}.
|
||
@end deftypefun
|
||
|
||
@deftypefun void arc4random_buf (void *@var{buffer}, size_t @var{length})
|
||
@standards{BSD, stdlib.h}
|
||
@safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
|
||
This function fills the region @var{buffer} of length @var{length} bytes
|
||
with random data.
|
||
@end deftypefun
|
||
|
||
@deftypefun uint32_t arc4random_uniform (uint32_t @var{upper_bound})
|
||
@standards{BSD, stdlib.h}
|
||
@safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
|
||
This function returns a single 32-bit value, uniformly distributed but
|
||
less than the @var{upper_bound}. It avoids the @w{modulo bias} when the
|
||
upper bound is not a power of two.
|
||
@end deftypefun
|
||
|
||
@node FP Function Optimizations
|
||
@section Is Fast Code or Small Code preferred?
|
||
@cindex Optimization
|
||
|
||
If an application uses many floating point functions it is often the case
|
||
that the cost of the function calls themselves is not negligible.
|
||
Modern processors can often execute the operations themselves
|
||
very fast, but the function call disrupts the instruction pipeline.
|
||
|
||
For this reason @theglibc{} provides optimizations for many of the
|
||
frequently-used math functions. When GNU CC is used and the user
|
||
activates the optimizer, several new inline functions and macros are
|
||
defined. These new functions and macros have the same names as the
|
||
library functions and so are used instead of the latter. In the case of
|
||
inline functions the compiler will decide whether it is reasonable to
|
||
use them, and this decision is usually correct.
|
||
|
||
This means that no calls to the library functions may be necessary, and
|
||
can increase the speed of generated code significantly. The drawback is
|
||
that code size will increase, and the increase is not always negligible.
|
||
|
||
There are two kinds of inline functions: those that give the same result
|
||
as the library functions and others that might not set @code{errno} and
|
||
might have a reduced precision and/or argument range in comparison with
|
||
the library functions. The latter inline functions are only available
|
||
if the flag @code{-ffast-math} is given to GNU CC.
|
||
|
||
Not all hardware implements the entire @w{IEEE 754} standard, and even
|
||
if it does there may be a substantial performance penalty for using some
|
||
of its features. For example, enabling traps on some processors forces
|
||
the FPU to run un-pipelined, which can more than double calculation time.
|
||
@c ***Add explanation of -lieee, -mieee.
|