/* Map in a shared object's segments from the file. Copyright (C) 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include "dynamic-link.h" #include #include /* On some systems, no flag bits are given to specify file mapping. */ #ifndef MAP_FILE #define MAP_FILE 0 #endif /* The right way to map in the shared library files is MAP_COPY, which makes a virtual copy of the data at the time of the mmap call; this guarantees the mapped pages will be consistent even if the file is overwritten. Some losing VM systems like Linux's lack MAP_COPY. All we get is MAP_PRIVATE, which copies each page when it is modified; this means if the file is overwritten, we may at some point get some pages from the new version after starting with pages from the old version. */ #ifndef MAP_COPY #define MAP_COPY MAP_PRIVATE #endif /* Some systems link their relocatable objects for another base address than 0. We want to know the base address for these such that we can subtract this address from the segment addresses during mapping. This results in a more efficient address space usage. Defaults to zero for almost all systems. */ #ifndef MAP_BASE_ADDR #define MAP_BASE_ADDR(l) 0 #endif #include #if BYTE_ORDER == BIG_ENDIAN #define byteorder ELFDATA2MSB #define byteorder_name "big-endian" #elif BYTE_ORDER == LITTLE_ENDIAN #define byteorder ELFDATA2LSB #define byteorder_name "little-endian" #else #error "Unknown BYTE_ORDER " BYTE_ORDER #define byteorder ELFDATANONE #endif #define STRING(x) __STRING (x) #ifdef MAP_ANON /* The fd is not examined when using MAP_ANON. */ #define ANONFD -1 #else int _dl_zerofd = -1; #define ANONFD _dl_zerofd #endif /* Handle situations where we have a preferred location in memory for the shared objects. */ #ifdef ELF_PREFERRED_ADDRESS_DATA ELF_PREFERRED_ADDRESS_DATA; #endif #ifndef ELF_PREFERRED_ADDRESS #define ELF_PREFERRED_ADDRESS(loader, maplength, mapstartpref) (mapstartpref) #endif #ifndef ELF_FIXED_ADDRESS #define ELF_FIXED_ADDRESS(loader, mapstart) ((void) 0) #endif size_t _dl_pagesize; extern const char *_dl_platform; extern size_t _dl_platformlen; /* This is the decomposed LD_LIBRARY_PATH search path. */ static struct r_search_path_elem **env_path_list; /* List of the hardware capabilities we might end up using. */ static const struct r_strlenpair *capstr; static size_t ncapstr; static size_t max_capstrlen; const unsigned char _dl_pf_to_prot[8] = { [0] = PROT_NONE, [PF_R] = PROT_READ, [PF_W] = PROT_WRITE, [PF_R | PF_W] = PROT_READ | PROT_WRITE, [PF_X] = PROT_EXEC, [PF_R | PF_X] = PROT_READ | PROT_EXEC, [PF_W | PF_X] = PROT_WRITE | PROT_EXEC, [PF_R | PF_W | PF_X] = PROT_READ | PROT_WRITE | PROT_EXEC }; /* Get the generated information about the trusted directories. */ #include "trusted-dirs.h" static const char system_dirs[] = SYSTEM_DIRS; static const size_t system_dirs_len[] = { SYSTEM_DIRS_LEN }; /* This function has no public prototype. */ extern ssize_t __libc_read (int, void *, size_t); /* Local version of `strdup' function. */ static inline char * local_strdup (const char *s) { size_t len = strlen (s) + 1; void *new = malloc (len); if (new == NULL) return NULL; return (char *) memcpy (new, s, len); } /* Return copy of argument with all recognized dynamic string tokens ($ORIGIN and $PLATFORM for now) replaced. On some platforms it might not be possible to determine the path from which the object belonging to the map is loaded. In this case the path element containing $ORIGIN is left out. */ static char * expand_dynamic_string_token (struct link_map *l, const char *s) { /* We make two runs over the string. First we determine how large the resulting string is and then we copy it over. Since this is now frequently executed operation we are looking here not for performance but rather for code size. */ const char *st, *sf; size_t cnt = 0; size_t origin_len; size_t total; char *result, *last_elem, *wp; st = s; sf = strchr (s, '$'); while (sf != NULL) { size_t len = 1; /* $ORIGIN is not expanded for SUID/GUID programs. */ if (((!__libc_enable_secure && strncmp (&sf[1], "ORIGIN", 6) == 0 && (len = 7) != 0) || (strncmp (&sf[1], "PLATFORM", 8) == 0 && (len = 9) != 0)) && (s[len] == '\0' || s[len] == '/' || s[len] == ':')) ++cnt; st = sf + len; sf = strchr (st, '$'); } /* If we do not have to replace anything simply copy the string. */ if (cnt == 0) return local_strdup (s); /* Now we make a guess how many extra characters on top of the length of S we need to represent the result. We know that we have CNT replacements. Each at most can use MAX (strlen (ORIGIN), strlen (_dl_platform)) minus 7 (which is the length of "$ORIGIN"). First get the origin string if it is not available yet. This can only happen for the map of the executable. */ if (l->l_origin == NULL) { assert (l->l_name[0] == '\0'); l->l_origin = get_origin (); origin_len = (l->l_origin && l->l_origin != (char *) -1 ? strlen (l->l_origin) : 0); } else origin_len = l->l_origin == (char *) -1 ? 0 : strlen (l->l_origin); total = strlen (s) + cnt * (MAX (origin_len, _dl_platformlen) - 7); result = (char *) malloc (total + 1); if (result == NULL) return NULL; /* Now fill the result path. While copying over the string we keep track of the start of the last path element. When we come accross a DST we copy over the value or (if the value is not available) leave the entire path element out. */ last_elem = wp = result; do { if (*s == '$') { const char *repl; size_t len; if (((!__libc_enable_secure && strncmp (&s[1], "ORIGIN", 6) == 0 && (len = 7) != 0) || (strncmp (&s[1], "PLATFORM", 8) == 0 && (len = 9) != 0)) && (s[len] == '\0' || s[len] == '/' || s[len] == ':')) { if ((repl = len == 7 ? l->l_origin : _dl_platform) != NULL && repl != (const char *) -1) { wp = __stpcpy (wp, repl); s += len; } else { /* We cannot use this path element, the value of the replacement is unknown. */ wp = last_elem; s += len; while (*s != '\0' && *s != ':') ++s; } } else /* No SDK we recognize. */ *wp++ = *s++; } else if (*s == ':') { *wp++ = *s++; last_elem = wp; } else *wp++ = *s++; } while (*s != '\0'); *wp = '\0'; return result; } /* Add `name' to the list of names for a particular shared object. `name' is expected to have been allocated with malloc and will be freed if the shared object already has this name. Returns false if the object already had this name. */ static void internal_function add_name_to_object (struct link_map *l, const char *name) { struct libname_list *lnp, *lastp; struct libname_list *newname; size_t name_len; lastp = NULL; for (lnp = l->l_libname; lnp != NULL; lastp = lnp, lnp = lnp->next) if (strcmp (name, lnp->name) == 0) return; name_len = strlen (name) + 1; newname = malloc (sizeof *newname + name_len); if (newname == NULL) { /* No more memory. */ _dl_signal_error (ENOMEM, name, "cannot allocate name record"); return; } /* The object should have a libname set from _dl_new_object. */ assert (lastp != NULL); newname->name = memcpy (newname + 1, name, name_len); newname->next = NULL; lastp->next = newname; } /* All known directories in sorted order. */ static struct r_search_path_elem *all_dirs; /* Standard search directories. */ static struct r_search_path_elem **rtld_search_dirs; static size_t max_dirnamelen; static inline struct r_search_path_elem ** fillin_rpath (char *rpath, struct r_search_path_elem **result, const char *sep, int check_trusted, const char *what, const char *where) { char *cp; size_t nelems = 0; while ((cp = __strsep (&rpath, sep)) != NULL) { struct r_search_path_elem *dirp; size_t len = strlen (cp); /* `strsep' can pass an empty string. This has to be interpreted as `use the current directory'. */ if (len == 0) { static const char curwd[] = "./"; cp = (char *) curwd; } /* Remove trailing slashes (except for "/"). */ while (len > 1 && cp[len - 1] == '/') --len; /* Now add one if there is none so far. */ if (len > 0 && cp[len - 1] != '/') cp[len++] = '/'; /* Make sure we don't use untrusted directories if we run SUID. */ if (check_trusted) { const char *trun = system_dirs; size_t idx; /* All trusted directories must be complete names. */ if (cp[0] != '/') continue; for (idx = 0; idx < sizeof (system_dirs_len) / sizeof (system_dirs_len[0]); ++idx) { if (len == system_dirs_len[idx] && memcmp (trun, cp, len) == 0) /* Found it. */ break; trun += system_dirs_len[idx] + 1; } if (idx == sizeof (system_dirs_len) / sizeof (system_dirs_len[0])) /* It's no trusted directory, skip it. */ continue; } /* See if this directory is already known. */ for (dirp = all_dirs; dirp != NULL; dirp = dirp->next) if (dirp->dirnamelen == len && memcmp (cp, dirp->dirname, len) == 0) break; if (dirp != NULL) { /* It is available, see whether it's on our own list. */ size_t cnt; for (cnt = 0; cnt < nelems; ++cnt) if (result[cnt] == dirp) break; if (cnt == nelems) result[nelems++] = dirp; } else { size_t cnt; /* It's a new directory. Create an entry and add it. */ dirp = (struct r_search_path_elem *) malloc (sizeof (*dirp) + ncapstr * sizeof (enum r_dir_status)); if (dirp == NULL) _dl_signal_error (ENOMEM, NULL, "cannot create cache for search path"); dirp->dirname = cp; dirp->dirnamelen = len; if (len > max_dirnamelen) max_dirnamelen = len; /* We have to make sure all the relative directories are never ignored. The current directory might change and all our saved information would be void. */ if (cp[0] != '/') for (cnt = 0; cnt < ncapstr; ++cnt) dirp->status[cnt] = existing; else for (cnt = 0; cnt < ncapstr; ++cnt) dirp->status[cnt] = unknown; dirp->what = what; dirp->where = where; dirp->next = all_dirs; all_dirs = dirp; /* Put it in the result array. */ result[nelems++] = dirp; } } /* Terminate the array. */ result[nelems] = NULL; return result; } static struct r_search_path_elem ** internal_function decompose_rpath (const char *rpath, struct link_map *l) { /* Make a copy we can work with. */ const char *where = l->l_name; char *copy; char *cp; struct r_search_path_elem **result; size_t nelems; /* First see whether we must forget the RPATH from this object. */ if (_dl_inhibit_rpath != NULL && !__libc_enable_secure) { const char *found = strstr (_dl_inhibit_rpath, where); if (found != NULL) { size_t len = strlen (where); if ((found == _dl_inhibit_rpath || found[-1] == ':') && (found[len] == '\0' || found[len] == ':')) { /* This object is on the list of objects for which the RPATH must not be used. */ result = (struct r_search_path_elem **) malloc (sizeof (*result)); if (result == NULL) _dl_signal_error (ENOMEM, NULL, "cannot create cache for search path"); result[0] = NULL; return result; } } } /* Make a writable copy. At the same time expand possible dynamic string tokens. */ copy = expand_dynamic_string_token (l, rpath); if (copy == NULL) _dl_signal_error (ENOMEM, NULL, "cannot create RPATH copy"); /* Count the number of necessary elements in the result array. */ nelems = 0; for (cp = copy; *cp != '\0'; ++cp) if (*cp == ':') ++nelems; /* Allocate room for the result. NELEMS + 1 is an upper limit for the number of necessary entries. */ result = (struct r_search_path_elem **) malloc ((nelems + 1 + 1) * sizeof (*result)); if (result == NULL) _dl_signal_error (ENOMEM, NULL, "cannot create cache for search path"); return fillin_rpath (copy, result, ":", 0, "RPATH", where); } void internal_function _dl_init_paths (const char *llp) { size_t idx; const char *strp; struct r_search_path_elem *pelem, **aelem; size_t round_size; #ifdef PIC struct link_map *l; #endif /* Fill in the information about the application's RPATH and the directories addressed by the LD_LIBRARY_PATH environment variable. */ /* Get the capabilities. */ capstr = _dl_important_hwcaps (_dl_platform, _dl_platformlen, &ncapstr, &max_capstrlen); /* First set up the rest of the default search directory entries. */ aelem = rtld_search_dirs = (struct r_search_path_elem **) malloc ((sizeof (system_dirs_len) / sizeof (system_dirs_len[0])) * sizeof (struct r_search_path_elem *)); if (rtld_search_dirs == NULL) _dl_signal_error (ENOMEM, NULL, "cannot create search path array"); round_size = ((2 * sizeof (struct r_search_path_elem) - 1 + ncapstr * sizeof (enum r_dir_status)) / sizeof (struct r_search_path_elem)); rtld_search_dirs[0] = (struct r_search_path_elem *) malloc ((sizeof (system_dirs) / sizeof (system_dirs[0]) - 1) * round_size * sizeof (struct r_search_path_elem)); if (rtld_search_dirs[0] == NULL) _dl_signal_error (ENOMEM, NULL, "cannot create cache for search path"); pelem = all_dirs = rtld_search_dirs[0]; strp = system_dirs; idx = 0; do { size_t cnt; *aelem++ = pelem; pelem->what = "system search path"; pelem->where = NULL; pelem->dirname = strp; pelem->dirnamelen = system_dirs_len[idx]; strp += system_dirs_len[idx] + 1; if (pelem->dirname[0] != '/') for (cnt = 0; cnt < ncapstr; ++cnt) pelem->status[cnt] = existing; else for (cnt = 0; cnt < ncapstr; ++cnt) pelem->status[cnt] = unknown; pelem->next = (++idx == (sizeof (system_dirs_len) / sizeof (system_dirs_len[0])) ? NULL : (pelem + round_size)); pelem += round_size; } while (idx < sizeof (system_dirs_len) / sizeof (system_dirs_len[0])); max_dirnamelen = SYSTEM_DIRS_MAX_LEN; *aelem = NULL; #ifdef PIC /* This points to the map of the main object. */ l = _dl_loaded; if (l != NULL) { assert (l->l_type != lt_loaded); if (l->l_info[DT_RPATH]) /* Allocate room for the search path and fill in information from RPATH. */ l->l_rpath_dirs = decompose_rpath ((const void *) (l->l_info[DT_STRTAB]->d_un.d_ptr + l->l_info[DT_RPATH]->d_un.d_val), l); else l->l_rpath_dirs = NULL; } #endif /* PIC */ if (llp != NULL && *llp != '\0') { size_t nllp; const char *cp = llp; /* Decompose the LD_LIBRARY_PATH contents. First determine how many elements it has. */ nllp = 1; while (*cp) { if (*cp == ':' || *cp == ';') ++nllp; ++cp; } env_path_list = (struct r_search_path_elem **) malloc ((nllp + 1) * sizeof (struct r_search_path_elem *)); if (env_path_list == NULL) _dl_signal_error (ENOMEM, NULL, "cannot create cache for search path"); (void) fillin_rpath (local_strdup (llp), env_path_list, ":;", __libc_enable_secure, "LD_LIBRARY_PATH", NULL); } } /* Think twice before changing anything in this function. It is placed here and prepared using the `alloca' magic to prevent it from being inlined. The function is only called in case of an error. But then performance does not count. The function used to be "inlinable" and the compiled did so all the time. This increased the code size for absolutely no good reason. */ #define LOSE(code, s) lose (code, fd, name, realname, l, s) static void __attribute__ ((noreturn)) lose (int code, int fd, const char *name, char *realname, struct link_map *l, const char *msg) { /* The use of `alloca' here looks ridiculous but it helps. The goal is to avoid the function from being inlined. There is no official way to do this so we use this trick. gcc never inlines functions which use `alloca'. */ int *a = alloca (sizeof (int)); a[0] = fd; (void) __close (a[0]); if (l != NULL) { /* Remove the stillborn object from the list and free it. */ if (l->l_prev) l->l_prev->l_next = l->l_next; if (l->l_next) l->l_next->l_prev = l->l_prev; free (l); } free (realname); _dl_signal_error (code, name, msg); } /* Map in the shared object NAME, actually located in REALNAME, and already opened on FD. */ #ifndef EXTERNAL_MAP_FROM_FD static #endif struct link_map * _dl_map_object_from_fd (const char *name, int fd, char *realname, struct link_map *loader, int l_type) { /* This is the expected ELF header. */ #define ELF32_CLASS ELFCLASS32 #define ELF64_CLASS ELFCLASS64 static const unsigned char expected[EI_PAD] = { [EI_MAG0] = ELFMAG0, [EI_MAG1] = ELFMAG1, [EI_MAG2] = ELFMAG2, [EI_MAG3] = ELFMAG3, [EI_CLASS] = ELFW(CLASS), [EI_DATA] = byteorder, [EI_VERSION] = EV_CURRENT, [EI_OSABI] = ELFOSABI_SYSV, [EI_ABIVERSION] = 0 }; struct link_map *l = NULL; inline caddr_t map_segment (ElfW(Addr) mapstart, size_t len, int prot, int fixed, off_t offset) { caddr_t mapat = __mmap ((caddr_t) mapstart, len, prot, fixed|MAP_COPY|MAP_FILE, fd, offset); if (mapat == MAP_FAILED) LOSE (errno, "failed to map segment from shared object"); return mapat; } const ElfW(Ehdr) *header; const ElfW(Phdr) *phdr; const ElfW(Phdr) *ph; size_t maplength; int type; char *readbuf; ssize_t readlength; struct stat st; /* Get file information. */ if (__fxstat (_STAT_VER, fd, &st) < 0) LOSE (errno, "cannot stat shared object"); /* Look again to see if the real name matched another already loaded. */ for (l = _dl_loaded; l; l = l->l_next) if (l->l_ino == st.st_ino && l->l_dev == st.st_dev) { /* The object is already loaded. Just bump its reference count and return it. */ __close (fd); /* If the name is not in the list of names for this object add it. */ free (realname); add_name_to_object (l, name); ++l->l_opencount; return l; } /* Print debugging message. */ if (_dl_debug_files) _dl_debug_message (1, "file=", name, "; generating link map\n", NULL); /* Read the header directly. */ readbuf = alloca (_dl_pagesize); readlength = __libc_read (fd, readbuf, _dl_pagesize); if (readlength < (ssize_t) sizeof (*header)) LOSE (errno, "cannot read file data"); header = (void *) readbuf; /* Check the header for basic validity. */ if (memcmp (header->e_ident, expected, EI_PAD) != 0) { /* Something is wrong. */ if (*(Elf32_Word *) &header->e_ident != #if BYTE_ORDER == LITTLE_ENDIAN ((ELFMAG0 << (EI_MAG0 * 8)) | (ELFMAG1 << (EI_MAG1 * 8)) | (ELFMAG2 << (EI_MAG2 * 8)) | (ELFMAG3 << (EI_MAG3 * 8))) #else ((ELFMAG0 << (EI_MAG3 * 8)) | (ELFMAG1 << (EI_MAG2 * 8)) | (ELFMAG2 << (EI_MAG1 * 8)) | (ELFMAG3 << (EI_MAG0 * 8))) #endif ) LOSE (0, "invalid ELF header"); if (header->e_ident[EI_CLASS] != ELFW(CLASS)) LOSE (0, "ELF file class not " STRING(__ELF_NATIVE_CLASS) "-bit"); if (header->e_ident[EI_DATA] != byteorder) LOSE (0, "ELF file data encoding not " byteorder_name); if (header->e_ident[EI_VERSION] != EV_CURRENT) LOSE (0, "ELF file version ident not " STRING(EV_CURRENT)); /* XXX We should be able so set system specific versions which are allowed here. */ if (header->e_ident[EI_OSABI] != ELFOSABI_SYSV) LOSE (0, "ELF file OS ABI not " STRING(ELFOSABI_SYSV)); if (header->e_ident[EI_ABIVERSION] != 0) LOSE (0, "ELF file ABI version not 0"); LOSE (0, "internal error"); } if (header->e_version != EV_CURRENT) LOSE (0, "ELF file version not " STRING(EV_CURRENT)); if (! elf_machine_matches_host (header->e_machine)) LOSE (0, "ELF file machine architecture not " ELF_MACHINE_NAME); if (header->e_phentsize != sizeof (ElfW(Phdr))) LOSE (0, "ELF file's phentsize not the expected size"); #ifndef MAP_ANON # define MAP_ANON 0 if (_dl_zerofd == -1) { _dl_zerofd = _dl_sysdep_open_zero_fill (); if (_dl_zerofd == -1) { __close (fd); _dl_signal_error (errno, NULL, "cannot open zero fill device"); } } #endif /* Enter the new object in the list of loaded objects. */ l = _dl_new_object (realname, name, l_type, loader); if (! l) LOSE (ENOMEM, "cannot create shared object descriptor"); l->l_opencount = 1; /* Extract the remaining details we need from the ELF header and then read in the program header table. */ l->l_entry = header->e_entry; type = header->e_type; l->l_phnum = header->e_phnum; maplength = header->e_phnum * sizeof (ElfW(Phdr)); if (header->e_phoff + maplength <= readlength) phdr = (void *) (readbuf + header->e_phoff); else { phdr = alloca (maplength); __lseek (fd, SEEK_SET, header->e_phoff); if (__libc_read (fd, (void *) phdr, maplength) != maplength) LOSE (errno, "cannot read file data"); } { /* Scan the program header table, collecting its load commands. */ struct loadcmd { ElfW(Addr) mapstart, mapend, dataend, allocend; off_t mapoff; int prot; } loadcmds[l->l_phnum], *c; size_t nloadcmds = 0; /* The struct is initialized to zero so this is not necessary: l->l_ld = 0; l->l_phdr = 0; l->l_addr = 0; */ for (ph = phdr; ph < &phdr[l->l_phnum]; ++ph) switch (ph->p_type) { /* These entries tell us where to find things once the file's segments are mapped in. We record the addresses it says verbatim, and later correct for the run-time load address. */ case PT_DYNAMIC: l->l_ld = (void *) ph->p_vaddr; break; case PT_PHDR: l->l_phdr = (void *) ph->p_vaddr; break; case PT_LOAD: /* A load command tells us to map in part of the file. We record the load commands and process them all later. */ if (ph->p_align % _dl_pagesize != 0) LOSE (0, "ELF load command alignment not page-aligned"); if ((ph->p_vaddr - ph->p_offset) % ph->p_align) LOSE (0, "ELF load command address/offset not properly aligned"); { struct loadcmd *c = &loadcmds[nloadcmds++]; c->mapstart = ph->p_vaddr & ~(ph->p_align - 1); c->mapend = ((ph->p_vaddr + ph->p_filesz + _dl_pagesize - 1) & ~(_dl_pagesize - 1)); c->dataend = ph->p_vaddr + ph->p_filesz; c->allocend = ph->p_vaddr + ph->p_memsz; c->mapoff = ph->p_offset & ~(ph->p_align - 1); /* Optimize a common case. */ if ((PF_R | PF_W | PF_X) == 7 && (PROT_READ | PROT_WRITE | PROT_EXEC) == 7) c->prot = _dl_pf_to_prot[ph->p_flags & (PF_R | PF_W | PF_X)]; else { c->prot = 0; if (ph->p_flags & PF_R) c->prot |= PROT_READ; if (ph->p_flags & PF_W) c->prot |= PROT_WRITE; if (ph->p_flags & PF_X) c->prot |= PROT_EXEC; } break; } } /* Now process the load commands and map segments into memory. */ c = loadcmds; /* Length of the sections to be loaded. */ maplength = loadcmds[nloadcmds - 1].allocend - c->mapstart; if (type == ET_DYN || type == ET_REL) { /* This is a position-independent shared object. We can let the kernel map it anywhere it likes, but we must have space for all the segments in their specified positions relative to the first. So we map the first segment without MAP_FIXED, but with its extent increased to cover all the segments. Then we remove access from excess portion, and there is known sufficient space there to remap from the later segments. As a refinement, sometimes we have an address that we would prefer to map such objects at; but this is only a preference, the OS can do whatever it likes. */ caddr_t mapat; ElfW(Addr) mappref; mappref = (ELF_PREFERRED_ADDRESS (loader, maplength, c->mapstart) - MAP_BASE_ADDR (l)); mapat = map_segment (mappref, maplength, c->prot, 0, c->mapoff); l->l_addr = (ElfW(Addr)) mapat - c->mapstart; /* Change protection on the excess portion to disallow all access; the portions we do not remap later will be inaccessible as if unallocated. Then jump into the normal segment-mapping loop to handle the portion of the segment past the end of the file mapping. */ __mprotect ((caddr_t) (l->l_addr + c->mapend), loadcmds[nloadcmds - 1].allocend - c->mapend, 0); /* Remember which part of the address space this object uses. */ l->l_map_start = c->mapstart + l->l_addr; l->l_map_end = l->l_map_start + maplength; goto postmap; } else { /* Notify ELF_PREFERRED_ADDRESS that we have to load this one fixed. */ ELF_FIXED_ADDRESS (loader, c->mapstart); } /* Remember which part of the address space this object uses. */ l->l_map_start = c->mapstart + l->l_addr; l->l_map_end = l->l_map_start + maplength; while (c < &loadcmds[nloadcmds]) { if (c->mapend > c->mapstart) /* Map the segment contents from the file. */ map_segment (l->l_addr + c->mapstart, c->mapend - c->mapstart, c->prot, MAP_FIXED, c->mapoff); postmap: if (c->allocend > c->dataend) { /* Extra zero pages should appear at the end of this segment, after the data mapped from the file. */ ElfW(Addr) zero, zeroend, zeropage; zero = l->l_addr + c->dataend; zeroend = l->l_addr + c->allocend; zeropage = (zero + _dl_pagesize - 1) & ~(_dl_pagesize - 1); if (zeroend < zeropage) /* All the extra data is in the last page of the segment. We can just zero it. */ zeropage = zeroend; if (zeropage > zero) { /* Zero the final part of the last page of the segment. */ if ((c->prot & PROT_WRITE) == 0) { /* Dag nab it. */ if (__mprotect ((caddr_t) (zero & ~(_dl_pagesize - 1)), _dl_pagesize, c->prot|PROT_WRITE) < 0) LOSE (errno, "cannot change memory protections"); } memset ((void *) zero, 0, zeropage - zero); if ((c->prot & PROT_WRITE) == 0) __mprotect ((caddr_t) (zero & ~(_dl_pagesize - 1)), _dl_pagesize, c->prot); } if (zeroend > zeropage) { /* Map the remaining zero pages in from the zero fill FD. */ caddr_t mapat; mapat = __mmap ((caddr_t) zeropage, zeroend - zeropage, c->prot, MAP_ANON|MAP_PRIVATE|MAP_FIXED, ANONFD, 0); if (mapat == MAP_FAILED) LOSE (errno, "cannot map zero-fill pages"); } } ++c; } if (l->l_phdr == 0) { /* There was no PT_PHDR specified. We need to find the phdr in the load image ourselves. We assume it is in fact in the load image somewhere. */ for (c = loadcmds; c < &loadcmds[nloadcmds]; c++) if (c->mapoff <= header->e_phoff && (c->mapend - c->mapstart + c->mapoff >= header->e_phoff + header->e_phnum * sizeof (ElfW(Phdr)))) { ElfW(Addr) bof = l->l_addr + c->mapstart; l->l_phdr = (void *) (bof + header->e_phoff - c->mapoff); break; } if (l->l_phdr == 0) LOSE (0, "program headers not contained in any loaded segment"); } else /* Adjust the PT_PHDR value by the runtime load address. */ (ElfW(Addr)) l->l_phdr += l->l_addr; } /* We are done mapping in the file. We no longer need the descriptor. */ __close (fd); if (l->l_type == lt_library && type == ET_EXEC) l->l_type = lt_executable; if (l->l_ld == 0) { if (type == ET_DYN) LOSE (0, "object file has no dynamic section"); } else (ElfW(Addr)) l->l_ld += l->l_addr; l->l_entry += l->l_addr; if (_dl_debug_files) { const size_t nibbles = sizeof (void *) * 2; char buf1[nibbles + 1]; char buf2[nibbles + 1]; char buf3[nibbles + 1]; buf1[nibbles] = '\0'; buf2[nibbles] = '\0'; buf3[nibbles] = '\0'; memset (buf1, '0', nibbles); memset (buf2, '0', nibbles); memset (buf3, '0', nibbles); _itoa_word ((unsigned long int) l->l_ld, &buf1[nibbles], 16, 0); _itoa_word ((unsigned long int) l->l_addr, &buf2[nibbles], 16, 0); _itoa_word (maplength, &buf3[nibbles], 16, 0); _dl_debug_message (1, " dynamic: 0x", buf1, " base: 0x", buf2, " size: 0x", buf3, "\n", NULL); memset (buf1, '0', nibbles); memset (buf2, '0', nibbles); memset (buf3, ' ', nibbles); _itoa_word ((unsigned long int) l->l_entry, &buf1[nibbles], 16, 0); _itoa_word ((unsigned long int) l->l_phdr, &buf2[nibbles], 16, 0); _itoa_word (l->l_phnum, &buf3[nibbles], 10, 0); _dl_debug_message (1, " entry: 0x", buf1, " phdr: 0x", buf2, " phnum: ", buf3, "\n\n", NULL); } elf_get_dynamic_info (l->l_ld, l->l_addr, l->l_info); if (l->l_info[DT_HASH]) _dl_setup_hash (l); /* If this object has DT_SYMBOLIC set modify now its scope. We don't have to do this for the main map. */ if (l->l_info[DT_SYMBOLIC] && &l->l_searchlist != l->l_scope[0]) { /* Create an appropriate searchlist. It contains only this map. XXX This is the definition of DT_SYMBOLIC in SysVr4. The old GNU ld.so implementation had a different interpretation which is more reasonable. We are prepared to add this possibility back as part of a GNU extension of the ELF format. */ l->l_symbolic_searchlist.r_list = (struct link_map **) malloc (sizeof (struct link_map *)); if (l->l_symbolic_searchlist.r_list == NULL) LOSE (ENOMEM, "cannot create searchlist"); l->l_symbolic_searchlist.r_list[0] = l; l->l_symbolic_searchlist.r_nlist = 1; l->l_symbolic_searchlist.r_duplist = l->l_symbolic_searchlist.r_list; l->l_symbolic_searchlist.r_nduplist = 1; /* Now move the existing entries one back. */ memmove (&l->l_scope[1], &l->l_scope[0], sizeof (l->l_scope) - sizeof (l->l_scope[0])); /* Now add the new entry. */ l->l_scope[0] = &l->l_symbolic_searchlist; } /* Finally the file information. */ l->l_dev = st.st_dev; l->l_ino = st.st_ino; return l; } /* Print search path. */ static void print_search_path (struct r_search_path_elem **list, const char *what, const char *name) { char buf[max_dirnamelen + max_capstrlen]; int first = 1; _dl_debug_message (1, " search path=", NULL); while (*list != NULL && (*list)->what == what) /* Yes, ==. */ { char *endp = __mempcpy (buf, (*list)->dirname, (*list)->dirnamelen); size_t cnt; for (cnt = 0; cnt < ncapstr; ++cnt) if ((*list)->status[cnt] != nonexisting) { char *cp = __mempcpy (endp, capstr[cnt].str, capstr[cnt].len); if (cp == buf || (cp == buf + 1 && buf[0] == '/')) cp[0] = '\0'; else cp[-1] = '\0'; _dl_debug_message (0, first ? "" : ":", buf, NULL); first = 0; } ++list; } if (name != NULL) _dl_debug_message (0, "\t\t(", what, " from file ", name[0] ? name : _dl_argv[0], ")\n", NULL); else _dl_debug_message (0, "\t\t(", what, ")\n", NULL); } /* Try to open NAME in one of the directories in DIRS. Return the fd, or -1. If successful, fill in *REALNAME with the malloc'd full directory name. */ static int open_path (const char *name, size_t namelen, int preloaded, struct r_search_path_elem **dirs, char **realname) { char *buf; int fd = -1; const char *current_what = NULL; if (dirs == NULL || *dirs == NULL) { __set_errno (ENOENT); return -1; } buf = alloca (max_dirnamelen + max_capstrlen + namelen); do { struct r_search_path_elem *this_dir = *dirs; size_t buflen = 0; size_t cnt; char *edp; /* If we are debugging the search for libraries print the path now if it hasn't happened now. */ if (_dl_debug_libs && current_what != this_dir->what) { current_what = this_dir->what; print_search_path (dirs, current_what, this_dir->where); } edp = (char *) __mempcpy (buf, this_dir->dirname, this_dir->dirnamelen); for (cnt = 0; fd == -1 && cnt < ncapstr; ++cnt) { /* Skip this directory if we know it does not exist. */ if (this_dir->status[cnt] == nonexisting) continue; buflen = ((char *) __mempcpy (__mempcpy (edp, capstr[cnt].str, capstr[cnt].len), name, namelen) - buf); /* Print name we try if this is wanted. */ if (_dl_debug_libs) _dl_debug_message (1, " trying file=", buf, "\n", NULL); fd = __open (buf, O_RDONLY); if (this_dir->status[cnt] == unknown) { if (fd != -1) this_dir->status[cnt] = existing; else { /* We failed to open machine dependent library. Let's test whether there is any directory at all. */ struct stat st; buf[buflen - namelen - 1] = '\0'; if (__xstat (_STAT_VER, buf, &st) != 0 || ! S_ISDIR (st.st_mode)) /* The directory does not exist or it is no directory. */ this_dir->status[cnt] = nonexisting; else this_dir->status[cnt] = existing; } } if (fd != -1 && preloaded && __libc_enable_secure) { /* This is an extra security effort to make sure nobody can preload broken shared objects which are in the trusted directories and so exploit the bugs. */ struct stat st; if (__fxstat (_STAT_VER, fd, &st) != 0 || (st.st_mode & S_ISUID) == 0) { /* The shared object cannot be tested for being SUID or this bit is not set. In this case we must not use this object. */ __close (fd); fd = -1; /* We simply ignore the file, signal this by setting the error value which would have been set by `open'. */ errno = ENOENT; } } } if (fd != -1) { *realname = malloc (buflen); if (*realname != NULL) { memcpy (*realname, buf, buflen); return fd; } else { /* No memory for the name, we certainly won't be able to load and link it. */ __close (fd); return -1; } } if (errno != ENOENT && errno != EACCES) /* The file exists and is readable, but something went wrong. */ return -1; } while (*++dirs != NULL); return -1; } /* Map in the shared object file NAME. */ struct link_map * internal_function _dl_map_object (struct link_map *loader, const char *name, int preloaded, int type, int trace_mode) { int fd; char *realname; char *name_copy; struct link_map *l; /* Look for this name among those already loaded. */ for (l = _dl_loaded; l; l = l->l_next) { /* If the requested name matches the soname of a loaded object, use that object. Elide this check for names that have not yet been opened. */ if (l->l_opencount <= 0) continue; if (!_dl_name_match_p (name, l)) { const char *soname; if (l->l_info[DT_SONAME] == NULL) continue; soname = (const void *) (l->l_info[DT_STRTAB]->d_un.d_ptr + l->l_info[DT_SONAME]->d_un.d_val); if (strcmp (name, soname) != 0) continue; /* We have a match on a new name -- cache it. */ add_name_to_object (l, soname); } /* We have a match -- bump the reference count and return it. */ ++l->l_opencount; return l; } /* Display information if we are debugging. */ if (_dl_debug_files && loader != NULL) _dl_debug_message (1, "\nfile=", name, "; needed by ", loader->l_name[0] ? loader->l_name : _dl_argv[0], "\n", NULL); if (strchr (name, '/') == NULL) { /* Search for NAME in several places. */ size_t namelen = strlen (name) + 1; if (_dl_debug_libs) _dl_debug_message (1, "find library=", name, "; searching\n", NULL); fd = -1; /* First try the DT_RPATH of the dependent object that caused NAME to be loaded. Then that object's dependent, and on up. */ for (l = loader; fd == -1 && l; l = l->l_loader) if (l->l_info[DT_RPATH]) { /* Make sure the cache information is available. */ if (l->l_rpath_dirs == NULL) { size_t ptrval = (l->l_info[DT_STRTAB]->d_un.d_ptr + l->l_info[DT_RPATH]->d_un.d_val); l->l_rpath_dirs = decompose_rpath ((const char *) ptrval, l); } if (l->l_rpath_dirs != NULL) fd = open_path (name, namelen, preloaded, l->l_rpath_dirs, &realname); } /* If dynamically linked, try the DT_RPATH of the executable itself. */ l = _dl_loaded; if (fd == -1 && l && l->l_type != lt_loaded && l != loader && l->l_rpath_dirs != NULL) fd = open_path (name, namelen, preloaded, l->l_rpath_dirs, &realname); /* Try the LD_LIBRARY_PATH environment variable. */ if (fd == -1 && env_path_list != NULL) fd = open_path (name, namelen, preloaded, env_path_list, &realname); if (fd == -1) { /* Check the list of libraries in the file /etc/ld.so.cache, for compatibility with Linux's ldconfig program. */ extern const char *_dl_load_cache_lookup (const char *name); const char *cached = _dl_load_cache_lookup (name); if (cached) { fd = __open (cached, O_RDONLY); if (fd != -1) { realname = local_strdup (cached); if (realname == NULL) { __close (fd); fd = -1; } } } } /* Finally, try the default path. */ if (fd == -1) fd = open_path (name, namelen, preloaded, rtld_search_dirs, &realname); /* Add another newline when we a tracing the library loading. */ if (_dl_debug_libs) _dl_debug_message (1, "\n", NULL); } else { /* The path may contain dynamic string tokens. */ realname = (loader ? expand_dynamic_string_token (loader, name) : local_strdup (name)); if (realname == NULL) fd = -1; else { fd = __open (realname, O_RDONLY); if (fd == -1) free (realname); } } if (fd == -1) { if (trace_mode) { /* We haven't found an appropriate library. But since we are only interested in the list of libraries this isn't so severe. Fake an entry with all the information we have. */ static const ElfW(Symndx) dummy_bucket = STN_UNDEF; /* Enter the new object in the list of loaded objects. */ if ((name_copy = local_strdup (name)) == NULL || (l = _dl_new_object (name_copy, name, type, loader)) == NULL) _dl_signal_error (ENOMEM, name, "cannot create shared object descriptor"); /* We use an opencount of 0 as a sign for the faked entry. Since the descriptor is initialized with zero we do not have do this here. l->l_opencount = 0; l->l_reserved = 0; */ l->l_buckets = &dummy_bucket; l->l_nbuckets = 1; l->l_relocated = 1; return l; } else _dl_signal_error (errno, name, "cannot open shared object file"); } return _dl_map_object_from_fd (name, fd, realname, loader, type); }