It moves the missing CFLAGS from rt/Makefile to time/Makefile missing
from 7b5af2d8f2 (Finish move of clock_* functions to libc. [BZ #24959]).
Checked on powerpc64le-linux-gnu.
* rt/Makefile (CFLAGS-clock_nanosleep.c): Move to ...
* time/Makefile (CFLAGS-clock_nanosleep.c): ... here.
In glibc 2.17, the functions clock_getcpuclockid, clock_getres,
clock_gettime, clock_nanosleep, and clock_settime were moved from
librt.so to libc.so, leaving compatibility stubs behind. Now that the
dynamic linker no longer insists on finding versioned symbols in the
same library that originally defined them, we do not need the stubs
anymore, and this means we don't need GLIBC_PRIVATE __-prefix aliases
for most of the functions anymore either. (clock_gettime still needs
one.) For ports added before 2.17, libc.so needs to provide two
symbol versions for each, the default at GLIBC_2.17 plus a compat
version matching what librt had.
While I'm at it, move the clock_*.c files and their tests from rt/ to
time/.
It doesn't make sense to remove all the internal uses of time.
It's still a standard ISO C function, and its callers don't need
sub-second resolution and would be unnecessarily complicated if
they had to declare a struct timespec instead of just a time_t.
However, a handful of places were using the vestigial "result"
argument instead of the return value, which is slightly less
efficient and also looks strange. Correct this.
* misc/syslog.c (__vsyslog_internal)
* time/getdate.c (__getdate_r)
* time/tst_wcsftime.c (main):
Use return value of time, not its argument.
* string/strfry.c (strfry)
* sysdeps/mach/sleep.c (__sleep):
Remove unnecessary casts of NULL in calls to time.
Keep these functions compatible with Gnulib while adding
__time64_t support. The basic idea is to move private API
declarations from include/time.h to time/mktime-internal.h, since
the former file cannot easily be shared with Gnulib whereas the
latter can.
Also, do some other minor cleanup while in the neighborhood.
* include/time.h: Include stdbool.h, time/mktime-internal.h.
(__mktime_internal): Move this prototype to time/mktime-internal.h,
since Gnulib needs it.
(__localtime64_r, __gmtime64_r) [__TIMESIZE == 64]:
Move these macros to time/mktime-internal.h, since Gnulib needs them.
(__mktime64, __timegm64) [__TIMESIZE != 64]: New prototypes.
(in_time_t_range): New static function.
* posix/bits/types.h (__time64_t) [__TIMESIZE == 64 && !defined __LIBC]:
Do not define as a macro in this case, so that portable code is
less tempted to use __time64_t.
* time/mktime-internal.h: Rewrite so that it does both glibc
and Gnulib work. Include time.h if not _LIBC.
(mktime_offset_t) [!_LIBC]: Define for gnulib.
(__time64_t, __gmtime64_r, __localtime64_r, __mktime64, __timegm64)
[!_LIBC || __TIMESIZE == 64]: New macros, mostly moved here
from include/time.h.
(__gmtime_r, __localtime_r, __mktime_internal) [!_LIBC]:
New macros, taken from GNulib.
(__mktime_internal): New prototype, moved here from include/time.h.
* time/mktime.c (mktime_min, mktime_max, convert_time)
(ranged_convert, __mktime_internal, __mktime64):
* time/timegm.c (__timegm64):
Use __time64_t, not time_t.
* time/mktime.c: Stop worrying about whether time_t is floating-point.
(__mktime64) [! (_LIBC && __TIMESIZE != 64)]:
Rename from mktime.
(mktime) [_LIBC && __TIMESIZE != 64]: New function.
* time/timegm.c [!_LIBC]: Include libc-config.h, not config.h,
for libc_hidden_def.
Include errno.h.
(__timegm64) [! (_LIBC && __TIMESIZE != 64)]:
Rename from timegm.
(timegm) [_LIBC && __TIMESIZE != 64]: New function.
First cut at publicizing __time64_t
snprintf will only truncate the output if the data its given
is corrupted, but a truncated buffer will not match the
"pristine" data's buffer, which is all we need. So just
disable the warning via the DIAG macros.
The Japanese era name will be changed on May 1, 2019. The Japanese
government made a preliminary announcement on April 1, 2019.
The glibc ja_JP locale must be updated to include the new era name for
strftime's alternative year format support.
Checked on x86_64-linux-gnu.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
ChangeLog:
[BZ #22964]
* localedata/locales/ja_JP (LC_TIME): Add entry for the new Japanese
era.
* time/tst-strftime2.c (dates): Add 2019-04-30 and 2019-05-01.
(mkreftable): Add rules for the new Japanese era and the new dates.
Co-authored-by: Rafal Luzynski <digitalfreak@lingonborough.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
ChangeLog:
[BZ #24293]
* time/Makefile (LOCALES): Add zh_TW.UTF-8, cmn_TW.UTF-8,
hak_TW.UTF-8, nan_TW.UTF-8, and lzh_TW.UTF-8.
* time/tst-strftime2.c (locales): Likewise.
(dates): Add 1910-04-01, 1911-12-31, 1912-01-01, 1913-04-01,
2010-04-01, and 2011-04-01.
(mkreftable): Add rules for the new locales and the new dates.
Express the years as full Gregorian years (e.g., 1988 instead of 88)
and months with natural numbers (1-12 rather than 0-11).
Compare actual dates rather than indexes when selecting the era name.
Declare the local variable era as a string character pointer rather
than an array of chars where the actual string is copied which might
lead to potential buffer overflows in future.
Co-authored-by: Rafal Luzynski <digitalfreak@lingonborough.com>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
ChangeLog:
* time/tst-strftime2.c (date_t): Explicitly define the type.
(dates): Use natural month and year numbers to express a date.
(is_before): New function to compare dates.
(mkreftable): Minor improvements to simplify maintenance.
(do_test): Reflect the changes in dates array.
Test the transition points between all the currently listed Japanese
era name changes. This includes testing the transition between the
first year date and the second year date. This test will help test
the upcoming Japanese era name change.
Also fixes a fencepost error where the era name isn't properly parsed
by strptime in the last (partial) year of the era.
Example: if an era change happens in Feb 1990, and again in Aug 1995,
that's 5.5 years long, but the 0.5 year wasn't accounted for.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Having checked the arrangement of whitespace in time/strftime_l.c
using "unexpand" and "unexpand -a" command, three inconsistencies are
detected. So fix them for consistency.
ChangeLog:
* time/strftime_l.c: Fix a few whitespace arrangement inconsistencies.
By ordering the suballocations by decreasing alignment, alignment
gaps can be avoided.
Also use __glibc_unlikely for reading the transitions and type
indexes. In the 8-byte case, two reads are now needed because the
transitions and type indexes are no longer adjacent. The separate
call to __fread_unlocked does not matter from a performance point of
view because __tzfile_read is only invoked rarely.
The computation of tzspec_len is moved in front of the total_size
computation, so that the allocation size computation and the
suballocations are next to each other. Also add an assert that
tzspec_len is positive when it is actually used later.
The GMT offset can be outside the range of a 16-bit int type, which
is presumably the reason why long int was used in struct tm. We
cannot change struct tm, but we can change the internal type for
the offset.
The full representation of the alternative calendar year (%EY)
typically includes an internal use of "%Ey". As a GNU extension,
apply any flags on "%EY" (e.g. "%_EY", "%-EY") to the internal "%Ey",
allowing users of "%EY" to control how the year is padded.
Reviewed-by: Rafal Luzynski <digitalfreak@lingonborough.com>
Reviewed-by: Zack Weinberg <zackw@panix.com>
ChangeLog:
[BZ #24096]
* manual/time.texi (strftime): Document "%EC" and "%EY".
* time/Makefile (tests): Add tst-strftime2.
(LOCALES): Add ja_JP.UTF-8, lo_LA.UTF-8, and th_TH.UTF-8.
* time/strftime_l.c (__strftime_internal): Add argument yr_spec to
override padding for "%Ey".
If an optional flag ('_' or '-') is specified to "%EY", interpret the
"%Ey" in the subformat as if decorated with that flag.
* time/tst-strftime2.c: New file.
In Japanese locales, strftime's alternative year format (%Ey) produces
a year numbered within a time period called an _era_. A new era
typically begins when a new emperor is enthroned. The result of "%Ey"
is therefore usually a one- or two-digit number.
Many programs that display Japanese era dates assume that the era year
is two digits wide. To improve how these programs display dates
during the first nine years of a new era, change "%Ey" to pad one-
digit numbers on the left with a zero. This change applies to all
locales. It is expected to be harmless for other locales that use the
alternative year format (e.g. lo_LA and th_TH, in which "%Ey" produces
the year of the Buddhist calendar) as those calendars' year numbers
are already more than two digits wide, and this is not expected to
change.
This change needs to be in place before 2019-05-01 CE, as a new era is
scheduled to begin on that date.
Reviewed-by: Zack Weinberg <zackw@panix.com>
Reviewed-by: Rafal Luzynski <digitalfreak@lingonborough.com>
ChangeLog:
[BZ #23758]
* manual/time.texi (strftime): Document "%Ey".
* time/strftime_l.c (__strftime_internal): Set the default width
padding with zero of "%Ey" to 2.
Provide a 64-bit-time version of __difftime (but do not assume
__time64_t is a signed int so that Gnulib can reuse the code)
and make the 32-bit version a wrapper of it.
Current difftime expects two time_t arguments and returns a
double. To preserve source-code compatibility, its 64-bit-time
equivalent expects two __time64_t arguments but still returns
a double.
This patch was tested by running 'make check' on branch
master then applying this patch and its two predecessors and
running 'make check' again, and checking that both 'make check'
yield identical results. This was done on x86_64-linux-gnu and
i686-linux-gnu.
This patch was also functionally tested with an ad hoc userland
C program which checks the result of difftime for various pairs
of 32-bit and, for 64-bit builds, of 64-bit time_t values too.
The program was built and run against a glibc with and without
the patch, and the results compared to ensure the patch does
not change the behavior of difftime.
* include/time.h (__difftime64): Add.
* time/difftime.c (subtract): convert to 64-bit time.
* time/difftime.c (__difftime64): Add.
* time/difftime.c (__difftime): Wrap around __difftime64.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__ctime64_r): Add.
* time/ctime_r.c
(__ctime64_r): Add.
[__TIMESIZE != 64] (__ctime_r): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__ctime64): Add.
* time/gmtime.c
(__ctime64): Add.
[__TIMESIZE != 64] (ctime): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__gmtime64_r): Add.
* time/gmtime.c
(__gmtime64_r): Add.
[__TIMESIZE != 64] (__gmtime): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__gmtime64): Add.
* time/gmtime.c
(__gmtime64): Add.
[__TIMESIZE != 64] (__gmtime): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__localtime64_r): Add.
* time/localtime.c
(__localtime64_r): Add.
[__TIMESIZE != 64] (__localtime_r): Turn into a wrapper.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__localtime64): Add.
* manual/maint.texi: Document Y2038 symbol handling.
* time/localtime.c
(__localtime64): Add.
[__TIMERSIZE != 64] (__localtime): Turn into a wrapper.
Now that __time64_t exists, we can switch internal function
__tz_convert from 32-bit to 64-bit time. This involves switching
some other internal functions as well, namely __tz_compute and
__offtime.
Tested with 'make check' on x86_64-linux-gnu and i686-linux.gnu.
* include/time.h
(__tz_compute): Replace time_t with __time64_t.
(__tz_convert): Replace time_t* with __time64_t.
(__offtime): Replace time_t* with __time64_t.
* time/gmtime.c
(__gmtime_r): Adjust call to __tz_convert.
(gmtime): Likewise.
* time/localtime.c
(__localtime_r): Likewise.
(localtime): Likewise.
* time/offtime.c: Replace time_t with __time64_t.
* time/tzset.c: Likewise.
The DEBUG_MKTIME code no longer works in glibc or in Gnulib.
And it’s no longer needed now that glibc and Gnulib both have
their own testing mechanisms for mktime.
* time/mktime.c (DEBUG_MKTIME): Remove. All uses removed.
[BZ#23789]
mktime was not properly reporting failures when the underlying
localtime_r fails with errno != EOVERFLOW; it incorrectly treated
them like EOVERFLOW failures, and set errno to EOVERFLOW.
The problem could happen on non-glibc platforms, with Gnulib.
* time/mktime.c (guess_time_tm): Remove, replacing with ...
(tm_diff): ... this simpler function, which does not change errno.
All callers changed to deal with errno themselves.
(ranged_convert, __mktime_internal): Return failure immediately if
the underlying function reports any failure other than EOVERFLOW.
(__mktime_internal): Set errno to EOVERFLOW if the spring-forward
gap code fails.
[BZ#23789]
* time/mktime.c (ranged_convert): On 32-bit platforms, don’t
mishandle a DST transition that jumps over the Y2038 boundary.
No such DST transitions are known so this is only a theoretical
bug, but we might as well do things right.
[BZ#23789]
* time/mktime.c (long_int): Now 4⨯ int, not just 3⨯.
This is so that we can add tm_diff results to a previous guess,
which will be useful in a later patch.
[BZ#23789]
* time/mktime.c [!_LIBC && !DEBUG_MKTIME]:
Include libc-config.h, not config.h, for __set_errno.
(guess_time_tm, __mktime_internal): Set errno to EOVERFLOW on overflow.
glibc support for 64-bit time_t on 32-bit architectures
will involve:
- Using 64-bit times inside glibc, with conversions
to and from 32-bit times taking place as necessary
for interfaces using such times.
- Adding 64-bit-time support in the glibc public API.
This support should be dynamic, i.e. glibc should
provide both 32-bit and 64-bit implementations and
let user code choose at compile time whether to use
the 32-bit or 64-bit interfaces.
This requires a glibc-internal name for a type for times
that are always 64-bit.
Based on __TIMESIZE, a new macro is defined, __TIME64_T_TYPE,
which is always the right __*_T_TYPE to hold a 64-bit-time.
__TIME64_T_TYPE equals __TIME_T_TYPE if __TIMESIZE equals 64
and equals __SQUAD_T_TYPE otherwise.
__time64_t can then replace uses of internal_time_t.
This patch was tested by running 'make check' on branch
master then applying this patch and its predecessor and
running 'make check' again, and checking that both 'make
check' yield identical results. This was done on
x86_64-linux-gnu and i686-linux-gnu.
* bits/time64.h: New file.
* include/time.h: Replace internal_time_t with __time64_t.
* posix/bits/types (__time64_t): Add.
* stdlib/Makefile: Add bits/time64.h to includes.
* time/tzfile.c: Replace internal_time_t with __time64_t.
[BZ#23745]
This fix affects only Gnulib. Problem discovered when
mktime.c was used as part of Gnulib in bleeding-edge Coreutils.
* time/mktime.c:
(my_tzset) [!_LIBC && !NEED_MKTIME_WORKING && !NEED_MKTIME_WINDOWS]:
Do not define since it is not used. Defining an unused static
function prompts a warning from GCC when Coreutils is configured
with --enable-gcc-warnings.
[BZ #23603]
* include/time.h (__mktime_internal): The localtime offset is now
of type long int instead of time_t. This is the longstanding type
in glibc, and it is more than enough to represent difference
between localtime and gmtime even if it is 32 bits and time_t is
64. Changing it now will let us avoid an unnecessary change when
time_t is widened to 64 bits on 32-bit platforms.
* time/mktime-internal.h (mktime_offset_t): Now long int.
[BZ #23603][BZ #16346]
This fixes some obscure problems with integer overflow.
Although it looks scary, it is almost all a byte-for-byte copy
from Gnulib, and the Gnulib code has been tested reasonably well.
* include/intprops.h: New file, copied from Gnulib.
* include/verify.h, time/mktime-internal.h:
New tiny files, simplified from Gnulib.
* time/mktime.c: Copy from Gnulib. This has the following changes:
Do not include config.h if DEBUG_MKTIME is nonzero.
Include stdbool.h, intprops.h, verify.h.
Include string.h only if needed.
Include stdlib.h on MS-Windows.
Include mktime-internal.h.
(DEBUG_MKTIME): Default to 0, and simplify later uses.
(NEED_MKTIME_INTERNAL, NEED_MKTIME_WINDOWS)
(NEED_MKTIME_WORKING): Give default values to pacify -Wundef,
which glibc uses. Default NEED_MKTIME_WORKING to DEBUG_MKTIME, to
simplify later conditionals; default the others to zero. Use
these conditionals to express only the code needed on the current
platform. In uses of these conditionals, explicitly spell out how
_LIBC affects things, so it’s easier to review from a glibc
viewpoint.
(WRAPV): Remove; no longer needed now that we have
systematic overflow checking.
(my_tzset, __tzset) [!_LIBC]: New function and macro, to better
compartmentalize tzset issues. Move system-dependent tzsettish
code here from mktime.
(verify): Remove; now done by verify.h. All uses changed.
(long_int): Use a more-conservative definition, to avoid
integer overflow.
(SHR): Remove, replacing with ...
(shr): New function, which means we needn’t worry about side
effects in args, and conversion analysis is simpler.
(TYPE_IS_INTEGER, TYPE_TWOS_COMPLEMENT, TYPE_SIGNED, TYPE_MINIMUM)
(TYPE_MAXIMUM, TIME_T_MIN, TIME_T_MAX, TIME_T_MIDPOINT)
(time_t_avg, time_t_add_ok): Remove.
(mktime_min, mktime_max): New constants.
(leapyear, isdst_differ): Use bool for booleans.
(ydhms_diff, guess_time_tm, ranged_convert, __mktime_internal):
Use long_int, not time_t, for mktime differences.
(long_int_avg): New function, replacing time_t_avg.
INT_ADD_WRAPV replaces time_t_add_ok.
(guess_time_tm): 6th arg is now long_int, not time_t const *.
All uses changed.
(convert_time): New function.
(ranged_convert): Use it.
(__mktime_internal): Last arg now points to mktime_offset_t, not
time_t. All uses changed. This is a no-op on glibc, where
mktime_offset_t is always time_t. Use int, not time_t, for UTC
offset guess. Directly check for integer overflow instead of
using a heuristic that works only 99.9...% of the time.
Access *OFFSET only once, to avoid an unlikely race if the
compiler delays a load and if this cascades into a signed integer
overflow.
(mktime): Move tzsettish code to my_tzset, and move
localtime_offset to within mktime so that it doesn’t
need a separate ifdef.
(main) [DEBUG_MKTIME]: Speed up by using localtime_r
instead of localtime.
* time/timegm.c: Copy from Gnulib. This has the following changes:
Include mktime-internal.h.
[!_LIBC]: Include config.h and time.h. Do not include
timegm.h or time_r.h. Make __mktime_internal a macro,
and include mktime-internal.h to get its declaration.
(timegm): Temporary is now mktime_offset_t, not time_t.
This affects only Gnulib.
After commit d76d370355 ("Fix missing
timespec definition for sys/stat.h (BZ #21371)") in combination with
kernel UAPI changes, GCC sanitizer builds start to fail due to a
conflicting definition of struct timespec in <linux/time.h>. Use
_STRUCT_TIMESPEC as the header file inclusion guard, which is already
checked in the kernel header, to support including <linux/time.h> and
<sys/stat.h> in the same translation unit.
Bug 22639 reports localtime failing to handle time offset transitions
correctly in 2039 and later on platforms with 64-bit time_t.
The problem is the use of SECSPERDAY (constant 86400) in calculations
such as
t = ((year - 1970) * 365
+ /* Compute the number of leapdays between 1970 and YEAR
(exclusive). There is a leapday every 4th year ... */
+ ((year - 1) / 4 - 1970 / 4)
/* ... except every 100th year ... */
- ((year - 1) / 100 - 1970 / 100)
/* ... but still every 400th year. */
+ ((year - 1) / 400 - 1970 / 400)) * SECSPERDAY;
where t is of type time_t and year is of type int. Before my commit
92bd70fb85 (an update from tzcode,
included in 2.26 and later releases), SECSPERDAY was obtained from a
file imported from tzcode, where the value included a cast to
int_fast32_t. On 64-bit platforms, glibc defines int_fast32_t to be
long int, so 64-bit, but my patch resulted in it changing to int.
(The bug would probably have existed even before my patch for x32,
which has 64-bit time_t but 32-bit int_fast32_t, but I haven't
verified that.)
This patch fixes the problem by including a cast to time_t in the
definition of SECSPERDAY. (64-bit time support for 32-bit systems
should move such code that isn't a public interface to using the
internal 64-bit version of time_t throughout.)
Tested for x86_64 and x86.
[BZ #22639]
* time/tzset.c (SECSPERDAY): Cast to time_t.
* time/tst-y2039.c: New file.
* time/Makefile (tests): Add tst-y2039.