As described in bug 28358, the round-to-odd computations used in the
libm functions that round their results to a narrower format can yield
spurious underflow exceptions in the following circumstances: the
narrowing only narrows the precision of the type and not the exponent
range (i.e., it's narrowing _Float128 to _Float64x on x86_64, x86 or
ia64), the architecture does after-rounding tininess detection (which
applies to all those architectures), the result is inexact, tiny
before rounding but not tiny after rounding (with the chosen rounding
mode) for _Float64x (which is possible for narrowing mul, div and fma,
not for narrowing add, sub or sqrt), so the underflow exception
resulting from the toward-zero computation in _Float128 is spurious
for _Float64x.
Fixed by making ROUND_TO_ODD call feclearexcept (FE_UNDERFLOW) in the
problem cases (as indicated by an extra argument to the macro); there
is never any need to preserve underflow exceptions from this part of
the computation, because the conversion of the round-to-odd value to
the narrower type will underflow in exactly the cases in which the
function should raise that exception, but it may be more efficient to
avoid the extra manipulation of the floating-point environment when
not needed.
Tested for x86_64 and x86, and with build-many-glibcs.py.
include/math.h has a mechanism to redirect internal calls to various
libm functions, that can often be inlined by the compiler, to call
non-exported __* names for those functions in the case when the calls
aren't inlined, with the redirection being disabled when
NO_MATH_REDIRECT. Add fma to the functions to which this mechanism is
applied.
At present, libm-internal fma calls (generally to __builtin_fma*
functions) are only done when it's known the call will be inlined,
with alternative code not relying on an fma operation being used in
the caller otherwise. This patch is in preparation for adding the TS
18661 / C2X narrowing fma functions to glibc; it will be natural for
the narrowing function implementations to call the underlying fma
functions unconditionally, with this either being inlined or resulting
in an __fma* call. (Using two levels of round-to-odd computation like
that, in the case where there isn't an fma hardware instruction, isn't
optimal but is certainly a lot simpler for the initial implementation
than writing different narrowing fma implementations for all the
various pairs of formats.)
Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by the patch (using
<https://sourceware.org/pipermail/libc-alpha/2021-September/130991.html>
to fix installed library stripping in build-many-glibcs.py). Also
tested for x86_64.
This patch adds the narrowing square root functions from TS 18661-1 /
TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64,
f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x,
f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128,
f64xsqrtf128 for configurations with _Float64x and _Float128;
__f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case
(for calls to fsqrtl and dsqrtl when long double is IEEE binary128).
Corresponding tgmath.h macro support is also added.
The changes are mostly similar to those for the other narrowing
functions previously added, so the description of those generally
applies to this patch as well. However, the not-actually-narrowing
cases (where the two types involved in the function have the same
floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather
than needing a separately built not-actually-narrowing function such
as was needed for add / sub / mul / div. Thus, there is no
__nldbl_dsqrtl name for ldbl-opt because no such name was needed
(whereas the other functions needed such a name since the only other
name for that entry point was e.g. f32xaddf64, not reserved by TS
18661-1); the headers are made to arrange for sqrt to be called in
that case instead.
The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because
they were observed to be needed in GCC 7 testing of
riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/
files added didn't need such DIAG_* in any configuration I tested with
build-many-glibcs.py, but if they do turn out to be needed in more
files with some other configuration / GCC version, they can always be
added there.
I reused the same test inputs in auto-libm-test-in as for
non-narrowing sqrt rather than adding extra or separate inputs for
narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow
those for non-narrowing sqrt.
Tested as followed: natively with the full glibc testsuite for x86_64
(GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC
11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32
hard float, mips64 (all three ABIs, both hard and soft float). The
different GCC versions are to cover the different cases in tgmath.h
and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in
glibc headers, GCC 7 has proper _Float* support, GCC 8 adds
__builtin_tgmath).
We stopped adding "Contributed by" or similar lines in sources in 2012
in favour of git logs and keeping the Contributors section of the
glibc manual up to date. Removing these lines makes the license
header a bit more consistent across files and also removes the
possibility of error in attribution when license blocks or files are
copied across since the contributed-by lines don't actually reflect
reality in those cases.
Move all "Contributed by" and similar lines (Written by, Test by,
etc.) into a new file CONTRIBUTED-BY to retain record of these
contributions. These contributors are also mentioned in
manual/contrib.texi, so we just maintain this additional record as a
courtesy to the earlier developers.
The following scripts were used to filter a list of files to edit in
place and to clean up the CONTRIBUTED-BY file respectively. These
were not added to the glibc sources because they're not expected to be
of any use in future given that this is a one time task:
https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dchttps://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
This patch is using the corresponding GCC builtin for roundevenf,
roundeven and roundevenl if the USE_FUNCTION_BUILTIN macros are defined
to one in math-use-builtins.h.
These builtin functions is supported since GCC 10.
The code of the generic implementation is not changed.
Signed-off-by: Shen-Ta Hsieh <ibmibmibm.tw@gmail.com>
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
This patch redirect roundeven function for futhermore changes.
Signed-off-by: Shen-Ta Hsieh <ibmibmibm.tw@gmail.com>
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
With this patch, the maximal known error for tgamma is now reduced to 9 ulps
for dbl-64, for all rounding modes. Since exhaustive testing is not possible
for dbl-64, it might be that there are still cases with an error larger than
9 ulps, but all known cases are fixed (intensive tests were done to find cases
with large errors).
Tested on x86_64 and powerpc (and by Adhemerval Zanella on aarch64, arm,
s390x, sparc, and i686).
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Previous commit was missing deleted files in sysdeps/ieee754/dbl-64.
Finally remove all mpa related files, headers, declarations, probes, unused
tables and update makefiles.
Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Finally remove all mpa related files, headers, declarations, probes, unused
tables and update makefiles.
Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Remove slow paths in tan. Add ULP annotations. Merge 'number' into 'mynumber'.
Remove unused entries from tan constants.
Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
This patch series removes all remaining slow paths and related code.
First asin/acos, tan, atan, atan2 implementations are updated, and the final
patch removes the unused mpa files, headers and probes. Passes buildmanyglibc.
Remove slow paths from asin/acos. Add ULP annotations based on previous slow
path checks (which are approximate). Update AArch64 and x86_64 libm-test-ulps.
Reviewed-By: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Remove the wordsize-64 implementations by merging them into the main dbl-64
directory. The second patch just moves all wordsize-64 files and removes a
few wordsize-64 uses in comments and Implies files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Remove the wordsize-64 implementations by merging them into the main dbl-64
directory. The first patch adds special cases needed for 32-bit targets
(FIX_INT_FP_CONVERT_ZERO and FIX_DBL_LONG_CONVERT_OVERFLOW) to the
wordsize-64 versions. This has no effect on 64-bit targets since they don't
define these macros.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
asin and acos have slow paths for rounding the last bit that cause some
calls to be 500-1500x slower than average calls.
These slow paths are rare, a test of a trillion (1.000.000.000.000)
random inputs between -1 and 1 showed 32870 slow calls for acos and 4473
for asin, with most occurrences between -1.0 .. -0.9 and 0.9 .. 1.0.
The slow paths claim correct rounding and use __sin32() and __cos32()
(which compare two result candidates and return the closest one) as the
final step, with the second result candidate (res1) having a small offset
applied from res. This suggests that res and res1 are intended to be 1
ULP apart (which makes sense for rounding), barring bugs, allowing us to
pick either one and still remain within 1 ULP of the exact result.
Remove the slow paths as the accuracy is better than 1 ULP even without
them, which is enough for glibc.
Also remove code comments claiming correctly rounded results.
After slow path removal, checking the accuracy of 14.400.000.000 random
asin() and acos() inputs showed only three incorrectly rounded
(error > 0.5 ULP) results:
- asin(-0x1.ee2b43286db75p-1) (0.500002 ULP, same as before)
- asin(-0x1.f692ba202abcp-4) (0.500003 ULP, same as before)
- asin(-0x1.9915e876fc062p-1) (0.50000000001 ULP, previously exact)
The first two had the same error even before this commit, and they did
not use the slow path at all.
Checking 4934 known randomly found previously-slow-path asin inputs
shows 25 calls with incorrectly rounded results, with a maximum error of
0.500000002 ULP (for 0x1.fcd5742999ab8p-1). The previous slow-path code
rounded all these inputs correctly (error < 0.5 ULP).
The observed average speed increase was 130x.
Checking 36240 known randomly found previously-slow-path acos inputs
shows 42 calls with incorrectly rounded results, with a maximum error of
0.500000008 ULP (for 0x1.f63845056f35ep-1). The previous "exact"
slow-path code showed 34 calls with incorrectly rounded results, with the
same maximum error of 0.500000008 ULP (for 0x1.f63845056f35ep-1).
The observed average speed increase was 130x.
The functions could likely be trimmed more while keeping acceptable
accuracy, but this at least gets rid of the egregiously slow cases.
Tested on x86_64.
In TS 18661-1, getpayload had an unspecified return value for a
non-NaN argument, while C2x requires the return value -1 in that case.
This patch implements the return value of -1. I don't think this is
worth having a new symbol version that's an alias of the old one,
although occasionally we do that in such cases where the new function
semantics are a refinement of the old ones (to avoid programs relying
on the new semantics running on older glibc versions but not behaving
as intended).
Tested for x86_64 and x86; also ran math/ tests for aarch64 and
powerpc.
This came to light when adding hard-flaot support to ARC glibc port
without hardware sqrt support causing glibc build to fail:
| ../sysdeps/ieee754/dbl-64/e_sqrt.c: In function '__ieee754_sqrt':
| ../sysdeps/ieee754/dbl-64/e_sqrt.c:58:54: error: unused variable 'ty' [-Werror=unused-variable]
| double y, t, del, res, res1, hy, z, zz, p, hx, tx, ty, s;
The reason being EMULV() macro uses the hardware provided
__builtin_fma() variant, leaving temporary variables 'p, hx, tx, hy, ty'
unused hence compiler warning and ensuing error.
The intent of the patch was to fix that error, but EMULV is pervasive
and used fair bit indirectly via othe rmacros, hence this patch.
Functionally it should not result in code gen changes and if at all
those would be better since the scope of those temporaries is greatly
reduced now
Built tested with aarch64-linux-gnu arm-linux-gnueabi arm-linux-gnueabihf hppa-linux-gnu x86_64-linux-gnu arm-linux-gnueabihf riscv64-linux-gnu-rv64imac-lp64 riscv64-linux-gnu-rv64imafdc-lp64 powerpc-linux-gnu microblaze-linux-gnu nios2-linux-gnu hppa-linux-gnu
Also as suggested by Joseph [1] used --strip and compared the libs with
and w/o patch and they are byte-for-byte unchanged (with gcc 9).
| for i in `find . -name libm-2.31.9000.so`;
| do
| echo $i; diff $i /SCRATCH/vgupta/gnu2/install/glibcs/$i ; echo $?;
| done
| ./aarch64-linux-gnu/lib64/libm-2.31.9000.so
| 0
| ./arm-linux-gnueabi/lib/libm-2.31.9000.so
| 0
| ./x86_64-linux-gnu/lib64/libm-2.31.9000.so
| 0
| ./arm-linux-gnueabihf/lib/libm-2.31.9000.so
| 0
| ./riscv64-linux-gnu-rv64imac-lp64/lib64/lp64/libm-2.31.9000.so
| 0
| ./riscv64-linux-gnu-rv64imafdc-lp64/lib64/lp64/libm-2.31.9000.so
| 0
| ./powerpc-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./microblaze-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./nios2-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./hppa-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./s390x-linux-gnu/lib64/libm-2.31.9000.so
[1] https://sourceware.org/pipermail/libc-alpha/2019-November/108267.html
The build has been failing on powerpc64le-linux-gnu with GCC 10
due to a maybe-uninitialized error:
../sysdeps/ieee754/dbl-64/mpa.c:875:6: error: ‘w.e’ may be used
uninitialized in this function [-Werror=maybe-uninitialized]
875 | EY -= EX;
| ^~
The warning is thrown because when __inv is called by __dvd *y is not
initialized and if t == 0 before calling __dbl_mp, EY will stay
uninitialized, as the function does not touch it in this case.
However, since t will be set to 1/t before calling __dbl_mp, t == 0 will
never happen, so we can instruct the compiler to ignore this case, which
suppresses the warning.
Tested on powerpc64le.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
This patch adds a new macro, libm_alias_finite, to define all _finite
symbol. It sets all _finite symbol as compat symbol based on its first
version (obtained from the definition at built generated first-versions.h).
The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need
special treatment in code that is shared between long double and float128.
It is done by adding a list, similar to internal symbol redifinition,
on sysdeps/ieee754/float128/float128_private.h.
Alpha also needs some tricky changes to ensure we still emit 2 compat
symbols for sqrt(f).
Passes buildmanyglibc.
Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
This patch is always using the corresponding GCC builtin for copysignf, copysign,
and is using the builtin for copysignl, copysignf128 if the USE_FUNCTION_BUILTIN
macros are defined to one in math-use-builtins.h.
Altough the long double version is enabled by default we still need
the macro and the alternative implementation as the _Float128 version
of the builtin is not available with all supported GCC versions.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for roundf, round,
roundl and roundf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for truncf, trunc,
truncl and truncf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for ceilf, ceil,
ceill and ceilf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for floorf, floor,
floorl and floorf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for rintf, rint,
rintl and rintf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch is using the corresponding GCC builtin for nearbyintf, nearbyint,
nearbintl and nearbyintf128 if the USE_FUNCTION_BUILTIN macros are defined to one
in math-use-builtins.h.
This is the case for s390 if build with at least --march=z196 --mzarch.
Otherwise the generic implementation is used. The code of the generic
implementation is not changed.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_round.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_trunc.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 and sparc64 files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_ceil.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 and sparc64 files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_floor.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 and sparc64 files.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_rint.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 file.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch replaces s_nearbyint.c in sysdeps/dbl-64 with the one in
sysdeps/dbl-64/wordsize-64 and removes the latter one.
The code is not changed except changes in code style.
Also adjusted the include path in x86_64 file.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The resolution of C floating-point Clarification Request 25
<http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2397.htm#dr_25> is
that the totalorder and totalordermag functions should take pointer
arguments, and this has been adopted in C2X (with const added; note
that the integration of this change into C2X is present in the C
standard git repository but postdates the most recent public PDF
draft).
This patch updates glibc accordingly. As a defect resolution, the API
is changed unconditionally rather than supporting any sort of TS
18661-1 mode for compilation with the old version of the API. There
are compat symbols for existing binaries that pass floating-point
arguments directly. As a consequence of changing to pointer
arguments, there are no longer type-generic macros in tgmath.h for
these functions.
Because of the fairly complicated logic for creating libm function
aliases and determining the set of aliases to create in a given glibc
configuration, rather than duplicating all that in individual source
files to create the versioned and compat symbols, the source files for
the various versions of totalorder functions are set up to redefine
weak_alias before using libm_alias_* macros to create the symbols
required. In turn, this requires creating a separate alias for each
symbol version pointing to the same implementation (see binutils bug
<https://sourceware.org/bugzilla/show_bug.cgi?id=23840>), which is
done automatically using __COUNTER__. (As I noted in
<https://sourceware.org/ml/libc-alpha/2018-10/msg00631.html>, it might
well make sense for glibc's symbol versioning macros to do that alias
creation with __COUNTER__ themselves, which would somewhat simplify
the logic in the totalorder source files.)
It is of course desirable to test the compat symbols. I did this with
the generic libm-test machinery, but didn't wish to duplicate the
actual tables of test inputs and outputs, and thought it risky to
attempt to have a single object file refer to both default and compat
versions of the same function in order to test them together. Thus, I
created libm-test-compat_totalorder.inc and
libm-test-compat_totalordermag.inc which include the generated .c
files (with the processed version of those tables of inputs) from the
non-compat tests, and added appropriate dependencies. I think this
provides sufficient test coverage for the compat symbols without also
needing to make the special ldbl-96 and ldbl-128ibm tests (of
peculiarities relating to the representations of those formats that
can't be covered in the generic tests) run for the compat symbols.
Tests of compat symbols need to be internal tests, meaning _ISOMAC is
not defined. Making some libm-test tests into internal tests showed
up two other issues. GCC diagnoses duplicate macro definitions of
__STDC_* macros, including __STDC_WANT_IEC_60559_TYPES_EXT__; I added
an appropriate conditional and filed
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91451> for this issue.
On ia64, include/setjmp.h ends up getting included indirectly from
libm-symbols.h, resulting in conflicting definitions of the STR macro
(also defined in libm-test-driver.c); I renamed the macros in
include/setjmp.h. (It's arguable that we should have common internal
headers used everywhere for stringizing and concatenation macros.)
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/bits/mathcalls.h
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalorder): Take pointer arguments.
[__GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN]
(totalordermag): Likewise.
* manual/arith.texi (totalorder): Likewise.
(totalorderf): Likewise.
(totalorderl): Likewise.
(totalorderfN): Likewise.
(totalorderfNx): Likewise.
(totalordermag): Likewise.
(totalordermagf): Likewise.
(totalordermagl): Likewise.
(totalordermagfN): Likewise.
(totalordermagfNx): Likewise.
* math/tgmath.h (__TGMATH_BINARY_REAL_RET_ONLY): Remove macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (totalordermag): Likewise.
* math/Versions (GLIBC_2.31): Add totalorder, totalorderf,
totalorderl, totalordermag, totalordermagf, totalordermagl,
totalorderf32, totalorderf64, totalorderf32x, totalordermagf32,
totalordermagf64, totalordermagf32x, totalorderf64x,
totalordermagf64x, totalorderf128 and totalordermagf128.
* math/Makefile (libm-test-funcs-noauto): Add compat_totalorder
and compat_totalordermag.
(libm-test-funcs-compat): New variable.
(libm-tests-compat): Likewise.
(tests): Do not include compat tests.
(tests-internal): Add compat tests.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalorder.o)): Depend
on $(objpfx)libm-test-totalorder.c.
($(foreach t,$(libm-tests-base),
$(objpfx)$(t)-compat_totalordermag.o): Depend on
$(objpfx)libm-test-totalordermag.c.
(tgmath3-macros): Remove totalorder and totalordermag.
* math/libm-test-compat_totalorder.inc: New file.
* math/libm-test-compat_totalordermag.inc: Likewise.
* math/libm-test-driver.c (struct test_ff_i_data): Update comment.
(RUN_TEST_fpfp_b): New macro.
(RUN_TEST_LOOP_fpfp_b): Likewise.
* math/libm-test-totalorder.inc (totalorder_test_data): Use
TEST_fpfp_b.
(totalorder_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/libm-test-totalordermag.inc (totalordermag_test_data): Use
TEST_fpfp_b.
(totalordermag_test): Condition on [!COMPAT_TEST].
(do_test): Likewise.
* math/gen-tgmath-tests.py (Tests.add_all_tests): Remove
totalorder and totalordermag.
* math/test-tgmath.c (NCALLS): Change to 132.
(F(compile_test)): Do not call totalorder or totalordermag.
(F(totalorder)): Remove.
(F(totalordermag)): Likewise.
* include/float.h (__STDC_WANT_IEC_60559_TYPES_EXT__): Do not
define if [__STDC_WANT_IEC_60559_TYPES_EXT__].
* include/setjmp.h [!_ISOMAC] (STR_HELPER): Rename to
SJSTR_HELPER.
[!_ISOMAC] (STR): Rename to SJSTR. Update call to STR_HELPER.
[!_ISOMAC] (TEST_SIZE): Update call to STR.
[!_ISOMAC] (TEST_ALIGN): Likewise.
[!_ISOMAC] (TEST_OFFSET): Likewise.
* sysdeps/ieee754/dbl-64/s_totalorder.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorder): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermag): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/float128/float128_private.h
(__totalorder_compatl): New macro.
(__totalordermag_compatl): Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Include <shlib-compat.h>
and <first-versions.h>.
(__totalorderf): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagf): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Include
<shlib-compat.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Include
<shlib-compat.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalorderl): Take pointer arguments. Add symbol versions and
compat symbols.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Include
<shlib-compat.h> and <first-versions.h>.
(__totalordermagl): Take pointer arguments. Add symbol versions
and compat symbols.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c (totalorderl): Take
pointer arguments.
* sysdeps/ieee754/ldbl-opt/nldbl-totalordermag.c (totalordermagl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c
(do_test): Update calls to totalorderl and totalordermagl.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c (do_test):
Update calls to totalorderl and totalordermagl.
* sysdeps/mach/hurd/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/csky/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
- The resulting binary difference on 32 bits architecture is
minimum. On i686-linux-gnu (with architecture optimization
routine removed) there is no different using logb benchtests
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_logb.c: Move to ...
* sysdeps/ieee754/dbl-64/s_logb.c: ... here. Add work around for
powerpc32 integer 0 converting to -0.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra finite
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_finite.c: Move to ...
* sysdeps/ieee754/dbl-64/s_finite.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra isinf
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_isinf.c: Move to ...
* sysdeps/ieee754/dbl-64/s_isinf.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
- math.h will use compiler builtin for gcc 4.4 when built without
-fsignaling-nans and the builtin is expanded inline for all
support architectures. As an example, there is no intra isnan
call on libm for the architecture I checked, x86, arm, aarch64,
and powerpc.
- The resulting binary difference on 32 bits architecture is minimum
for the non hotspot symbol.
- It helps wordsize-64 architectures that use ldbl-opt.
- It add some code simplification with reduction of duplicated
implementations.
Checked on powerpc-linux-gnu (built without --with-cpu, with
--with-cpu=power4 and with --with-cpu=power5+ and --disable-multi-arch),
powerpc64-linux-gnu (built without --with-cp and with --with-cpu=power5+
and --disable-multi-arch).
* sysdeps/ieee754/dbl-64/wordsize-64/s_isnan.c: Move to ...
* sysdeps/ieee754/dbl-64/s_isnan.c: ... here and format code.
Reviewed-by: Gabriel F. T. Gomes <gabrielftg@linux.ibm.com>
One group of warnings seen with -Wextra is warnings for static or
inline not at the start of a declaration (-Wold-style-declaration).
This patch fixes various such cases for inline, ensuring it comes at
the start of the declaration (after any static). A common case of the
fix is "static inline <type> __always_inline"; the definition of
__always_inline starts with __inline, so the natural change is to
"static __always_inline <type>". Other cases of the warning may be
harder to fix (one pattern is a function definition that gets
rewritten to be static by an including file, "#define funcname static
wrapped_funcname" or similar), but it seems worth fixing these cases
with inline anyway.
Tested for x86_64.
* elf/dl-load.h (_dl_postprocess_loadcmd): Use __always_inline
before return type, without separate inline.
* elf/dl-tunables.c (maybe_enable_malloc_check): Likewise.
* elf/dl-tunables.h (tunable_is_name): Likewise.
* malloc/malloc.c (do_set_trim_threshold): Likewise.
(do_set_top_pad): Likewise.
(do_set_mmap_threshold): Likewise.
(do_set_mmaps_max): Likewise.
(do_set_mallopt_check): Likewise.
(do_set_perturb_byte): Likewise.
(do_set_arena_test): Likewise.
(do_set_arena_max): Likewise.
(do_set_tcache_max): Likewise.
(do_set_tcache_count): Likewise.
(do_set_tcache_unsorted_limit): Likewise.
* nis/nis_subr.c (count_dots): Likewise.
* nptl/allocatestack.c (advise_stack_range): Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c (do_cos): Likewise.
(do_sin): Likewise.
(reduce_sincos): Likewise.
(do_sincos): Likewise.
* sysdeps/unix/sysv/linux/x86/elision-conf.c
(do_set_elision_enable): Likewise.
(TUNABLE_CALLBACK_FNDECL): Likewise.
With -O included in CFLAGS it fails to build with:
../sysdeps/ieee754/ldbl-96/e_jnl.c: In function '__ieee754_jnl':
../sysdeps/ieee754/ldbl-96/e_jnl.c:146:20: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrtl (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/ldbl-96/e_jnl.c: In function '__ieee754_ynl':
../sysdeps/ieee754/ldbl-96/e_jnl.c:375:16: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrtl (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/dbl-64/e_jn.c: In function '__ieee754_jn':
../sysdeps/ieee754/dbl-64/e_jn.c:113:20: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrt (x);
~~~~~~~~~~^~~~~~
../sysdeps/ieee754/dbl-64/e_jn.c: In function '__ieee754_yn':
../sysdeps/ieee754/dbl-64/e_jn.c:320:16: error: 'temp' may be used uninitialized in this function [-Werror=maybe-uninitialized]
b = invsqrtpi * temp / sqrt (x);
~~~~~~~~~~^~~~~~
Build tested with Yocto for ARM, AARCH64, X86, X86_64, PPC, MIPS, MIPS64
with -O, -O1, -Os.
For AARCH64 it needs one more fix in locale for -Os:
https://sourceware.org/ml/libc-alpha/2018-09/msg00539.html
[BZ #19444]
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Use
__builtin_unreachable for default case in switch.
(__ieee754_yn): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.