The CORE-MATH implementation is correctly rounded (for any rounding mode),
although it should worse performance than current one. The current
implementation performance comes mainly from the internal usage of
the optimize expf implementation, and shows a maximum ULPs of 2 for
FE_TONEAREST and 3 for other rounding modes.
The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).
Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):
Latency master patched improvement
x86_64 40.6995 49.0737 -20.58%
x86_64v2 40.5841 44.3604 -9.30%
x86_64v3 39.3879 39.7502 -0.92%
i686 112.3380 129.8570 -15.59%
aarch64 (Neoverse) 18.6914 17.0946 8.54%
power10 11.1343 9.3245 16.25%
reciprocal-throughput master patched improvement
x86_64 18.6471 24.1077 -29.28%
x86_64v2 17.7501 20.2946 -14.34%
x86_64v3 17.8262 17.1877 3.58%
i686 64.1454 86.5645 -34.95%
aarch64 (Neoverse) 9.77226 12.2314 -25.16%
power10 4.0200 5.3316 -32.63%
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the atan2pi functions (atan2(y,x)/pi).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the atanpi functions (atan(x)/pi).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the asinpi functions (asin(x)/pi).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the acospi functions (acos(x)/pi).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the tanpi functions (tan(pi*x)).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the sinpi functions (sin(pi*x)).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the cospi functions (cos(pi*x)).
Tested for x86_64 and x86, and with build-many-glibcs.py.
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance to the generic tanf.
The code was adapted to glibc style, to use the definition of
math_config.h, to remove errno handling, and to use a generic
128 bit routine for ABIs that do not support it natively.
Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (neoverse1,
gcc 13.2.1), and powerpc (POWER10, gcc 13.2.1):
latency master patched improvement
x86_64 82.3961 54.8052 33.49%
x86_64v2 82.3415 54.8052 33.44%
x86_64v3 69.3661 50.4864 27.22%
i686 219.271 45.5396 79.23%
aarch64 29.2127 19.1951 34.29%
power10 19.5060 16.2760 16.56%
reciprocal-throughput master patched improvement
x86_64 28.3976 19.7334 30.51%
x86_64v2 28.4568 19.7334 30.65%
x86_64v3 21.1815 16.1811 23.61%
i686 105.016 15.1426 85.58%
aarch64 18.1573 10.7681 40.70%
power10 8.7207 8.7097 0.13%
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance compared to the generic exp2m1f.
The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow). The
only change is to handle FLT_MAX_EXP for FE_DOWNWARD or FE_TOWARDZERO.
The benchmark inputs are based on exp2f ones.
Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):
Latency master patched improvement
x86_64 40.6042 48.7104 -19.96%
x86_64v2 40.7506 35.9032 11.90%
x86_64v3 35.2301 31.7956 9.75%
i686 102.094 94.6657 7.28%
aarch64 18.2704 15.1387 17.14%
power10 11.9444 8.2402 31.01%
reciprocal-throughput master patched improvement
x86_64 20.8683 16.1428 22.64%
x86_64v2 19.5076 10.4474 46.44%
x86_64v3 19.2106 10.4014 45.86%
i686 56.4054 59.3004 -5.13%
aarch64 12.0781 7.3953 38.77%
power10 6.5306 5.9388 9.06%
The generic implementation calls __ieee754_exp2f and x86_64 provides
an optimized ifunc version (built with -mfma -mavx2, not correctly
rounded). This explains the performance difference for x86_64.
Same for i686, where the ABI provides an optimized __ieee754_exp2f
version built with '-msse2 -mfpmath=sse'. When built wth same
flags, the new algorithm shows a better performance:
master patched improvement
latency 102.094 91.2823 10.59%
reciprocal-throughput 56.4054 52.7984 6.39%
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows better performance compared to the generic exp10m1f.
The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow). I mostly
fixed some small issues in corner cases (sNaN handling, -INFINITY,
a specific overflow check).
Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):
Latency master patched improvement
x86_64 45.4690 49.5845 -9.05%
x86_64v2 46.1604 36.2665 21.43%
x86_64v3 37.8442 31.0359 17.99%
i686 121.367 93.0079 23.37%
aarch64 21.1126 15.0165 28.87%
power10 12.7426 8.4929 33.35%
reciprocal-throughput master patched improvement
x86_64 19.6005 17.4005 11.22%
x86_64v2 19.6008 11.1977 42.87%
x86_64v3 17.5427 10.2898 41.34%
i686 59.4215 60.9675 -2.60%
aarch64 13.9814 7.9173 43.37%
power10 6.7814 6.4258 5.24%
The generic implementation calls __ieee754_exp10f which has an
optimized version, although it is not correctly rounded, which is
the main culprit of the the latency difference for x86_64 and
throughp for i686.
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
The CORE-MATH implementation is correctly rounded (for any rounding mode).
This can be checked by exhaustive tests in a few minutes since there are
less than 2^32 values to check against for example GNU MPFR.
This patch also adds some bench values for tgammaf.
Tested on x86_64 and x86 (cfarm26).
With the initial GNU libc code it gave on an Intel(R) Core(TM) i7-8700:
"tgammaf": {
"": {
"duration": 3.50188e+09,
"iterations": 2e+07,
"max": 602.891,
"min": 65.1415,
"mean": 175.094
}
}
With the new code:
"tgammaf": {
"": {
"duration": 3.30825e+09,
"iterations": 5e+07,
"max": 211.592,
"min": 32.0325,
"mean": 66.1649
}
}
With the initial GNU libc code it gave on cfarm26 (i686):
"tgammaf": {
"": {
"duration": 3.70505e+09,
"iterations": 6e+06,
"max": 2420.23,
"min": 243.154,
"mean": 617.509
}
}
With the new code:
"tgammaf": {
"": {
"duration": 3.24497e+09,
"iterations": 1.8e+07,
"max": 1238.15,
"min": 101.155,
"mean": 180.276
}
}
Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Changes in v2:
- include <math.h> (fix the linknamespace failures)
- restored original benchtests/strcoll-inputs/filelist#en_US.UTF-8 file
- restored original wrapper code (math/w_tgammaf_compat.c),
except for the dealing with the sign
- removed the tgammaf/float entries in all libm-test-ulps files
- address other comments from Joseph Myers
(https://sourceware.org/pipermail/libc-alpha/2024-July/158736.html)
Changes in v3:
- pass NULL argument for signgam from w_tgammaf_compat.c
- use of math_narrow_eval
- added more comments
Changes in v4:
- initialize local_signgam to 0 in math/w_tgamma_template.c
- replace sysdeps/ieee754/dbl-64/gamma_productf.c by dummy file
Changes in v5:
- do not mention local_signgam any more in math/w_tgammaf_compat.c
- initialize local_signgam to 1 instead of 0 in w_tgamma_template.c
and added comment
Changes in v6:
- pass NULL as 2nd argument of __ieee754_gammaf_r in
w_tgammaf_compat.c, and check for NULL in e_gammaf_r.c
Changes in v7:
- added Signed-off-by line for Alexei Sibidanov (author of the code)
Changes in v8:
- added Signed-off-by line for Paul Zimmermann (submitted of the patch)
Changes in v9:
- address comments from review by Adhemerval Zanella
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the log10p1 functions (log10(1+x): like log1p, but for
base-10 logarithms).
This is directly analogous to the log2p1 implementation (except that
whereas log2p1 has a smaller underflow range than log1p, log10p1 has a
larger underflow range). The test inputs are copied from those for
log1p and log2p1, plus a few more inputs in that wider underflow
range.
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the logp1 functions (aliases for log1p functions - the
name is intended to be more consistent with the new log2p1 and
log10p1, where clearly it would have been very confusing to name those
functions log21p and log101p). As aliases rather than new functions,
the content of this patch is somewhat different from those actually
adding new functions.
Tests are shared with log1p, so this patch *does* mechanically update
all affected libm-test-ulps files to expect the same errors for both
functions.
The vector versions of log1p on aarch64 and x86_64 are *not* updated
to have logp1 aliases (and thus there are no corresponding header,
tests, abilist or ulps changes for vector functions either). It would
be reasonable for such vector aliases and corresponding changes to
other files to be made separately. For now, the log1p tests instead
avoid testing logp1 in the vector case (a Makefile change is needed to
avoid problems with grep, used in generating the .c files for vector
function tests, matching more than one ALL_RM_TEST line in a file
testing multiple functions with the same inputs, when it assumes that
the .inc file only has a single such line).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the log2p1 functions (log2(1+x): like log1p, but for
base-2 logarithms).
This illustrates the intended structure of implementations of all
these function families: define them initially with a type-generic
template implementation. If someone wishes to add type-specific
implementations, it is likely such implementations can be both faster
and more accurate than the type-generic one and can then override it
for types for which they are implemented (adding benchmarks would be
desirable in such cases to demonstrate that a new implementation is
indeed faster).
The test inputs are copied from those for log1p. Note that these
changes make gen-auto-libm-tests depend on MPFR 4.2 (or later).
The bulk of the changes are fairly generic for any such new function.
(sysdeps/powerpc/nofpu/Makefile only needs changing for those
type-generic templates that use fabs.)
Tested for x86_64 and x86, and with build-many-glibcs.py.
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 7061 files FOO.
I then removed trailing white space from math/tgmath.h,
support/tst-support-open-dev-null-range.c, and
sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following
obscure pre-commit check failure diagnostics from Savannah. I don't
know why I run into these diagnostics whereas others evidently do not.
remote: *** 912-#endif
remote: *** 913:
remote: *** 914-
remote: *** error: lines with trailing whitespace found
...
remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
C2X adds new <math.h> functions for floating-point maximum and
minimum, corresponding to the new operations that were added in IEEE
754-2019 because of concerns about the old operations not being
associative in the presence of signaling NaNs. fmaximum and fminimum
handle NaNs like most <math.h> functions (any NaN argument means the
result is a quiet NaN). fmaximum_num and fminimum_num handle both
quiet and signaling NaNs the way fmax and fmin handle quiet NaNs (if
one argument is a number and the other is a NaN, return the number),
but still raise "invalid" for a signaling NaN argument, making them
exceptions to the normal rule that a function with a floating-point
result raising "invalid" also returns a quiet NaN. fmaximum_mag,
fminimum_mag, fmaximum_mag_num and fminimum_mag_num are corresponding
functions returning the argument with greatest or least absolute
value. All these functions also treat +0 as greater than -0. There
are also corresponding <tgmath.h> type-generic macros.
Add these functions to glibc. The implementations use type-generic
templates based on those for fmax, fmin, fmaxmag and fminmag, and test
inputs are based on those for those functions with appropriate
adjustments to the expected results. The RISC-V maintainers might
wish to add optimized versions of fmaximum_num and fminimum_num (for
float and double), since RISC-V (F extension version 2.2 and later)
provides instructions corresponding to those functions - though it
might be at least as useful to add architecture-independent built-in
functions to GCC and teach the RISC-V back end to expand those
functions inline, which is what you generally want for functions that
can be implemented with a single instruction.
Tested for x86_64 and x86, and with build-many-glibcs.py.
We stopped adding "Contributed by" or similar lines in sources in 2012
in favour of git logs and keeping the Contributors section of the
glibc manual up to date. Removing these lines makes the license
header a bit more consistent across files and also removes the
possibility of error in attribution when license blocks or files are
copied across since the contributed-by lines don't actually reflect
reality in those cases.
Move all "Contributed by" and similar lines (Written by, Test by,
etc.) into a new file CONTRIBUTED-BY to retain record of these
contributions. These contributors are also mentioned in
manual/contrib.texi, so we just maintain this additional record as a
courtesy to the earlier developers.
The following scripts were used to filter a list of files to edit in
place and to clean up the CONTRIBUTED-BY file respectively. These
were not added to the glibc sources because they're not expected to be
of any use in future given that this is a one time task:
https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dchttps://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
As a result, is not necessary to specify __attribute__ ((nocommon))
on individual definitions.
GCC 10 defaults to -fno-common on all architectures except ARC,
but this change is compatible with older GCC versions and ARC, too.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
Similar to string2.h (18b10de7ce) and string3.h (09a596cc2c) this
patch removes the fenvinline.h on all architectures. Currently
only powerpc implements some optimizations. This kind of optimization
is better implemented by the compiler (which handles the architecture
ISA transparently).
Also, for the specific optimized powerpc implementation the code is
becoming convoluted and these micro-optimization are hardly wildly
used, even more being a possible hotspot in realword cases
(non-default rounding are used only on specific cases and exception
handling are done most likely only on errors path). Only x86
implements similar optimization (on fenv.h) also indicates that
these should no be on libc.
The math/test-fenv already covers all math/test-fenvinline tests,
so it is safe to remove it.
The powerpc fegetround optimization is moved to internal
fenv_libc.h.
The BZ#94193 [1] the corresponding GCC bug for adding replacements
for these on powerpc.
Checked on x86_64-linux-gnu and powerpc64le-linux-gnu.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94193
With mathinline removal there is no need to keep building and testing
inline math tests.
The gen-libm-tests.py support to generate ULP_I_* is removed and all
libm-test-ulps files are updated to longer have the
i{float,double,ldouble} entries. The support for no-test-inline is
also removed from both gen-auto-libm-tests and the
auto-libm-test-out-* were regenerated.
Checked on x86_64-linux-gnu and i686-linux-gnu.
With all Linux ABIs using the expected Linux kABI to indicate
syscalls errors, the INTERNAL_SYSCALL_DECL is an empty declaration
on all ports.
This patch removes the 'err' argument on INTERNAL_SYSCALL* macro
and remove the INTERNAL_SYSCALL_DECL usage.
Checked with a build against all affected ABIs.