From the bug report [1], multiple programs still require to dlopen
shared libraries with either missing PT_GNU_STACK or with the executable
bit set. Although, in some cases, it seems to be a hard-craft assembly
source without the required .note.GNU-stack marking (so the static linker
is forced to set the stack executable if the ABI requires it), other
cases seem that the library uses trampolines [2].
Unfortunately, READ_IMPLIES_EXEC is not an option since on some ABIs
(x86_64), the kernel clears the bit, making it unsupported. To avoid
reinstating the broken code that changes stack permission on dlopen
(0ca8785a28), this patch extends the glibc.rtld.execstack tunable to
allow an option to force an executable stack at the program startup.
The tunable is a security issue because it defeats the PT_GNU_STACK
hardening. It has the slight advantage of making it explicit by the
caller, and, as for other tunables, this is disabled for setuid binaries.
A tunable also allows us to eventually remove it, but from previous
experiences, it would require some time.
Checked on aarch64-linux-gnu, x86_64-linux-gnu, and i686-linux-gnu.
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=32653
[2] https://github.com/conda-forge/ctng-compiler-activation-feedstock/issues/143
Reviewed-by: Sam James <sam@gentoo.org>
(cherry picked from commit 12a497c716f0a06be5946cabb8c3ec22a079771e)
Previously, the initialization code reused the xsave_state_full_size
member of struct cpu_features for the TLSDESC state size. However,
the tunable processing code assumes that this member has the
original XSAVE (non-compact) state size, so that it can use its
value if XSAVEC is disabled via tunable.
This change uses a separate variable and not a struct member because
the value is only needed in ld.so and the static libc, but not in
libc.so. As a result, struct cpu_features layout does not change,
helping a future backport of this change.
Fixes commit 9b7091415af47082664717210ac49d51551456ab ("x86-64:
Update _dl_tlsdesc_dynamic to preserve AMX registers").
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit 145097dff170507fe73190e8e41194f5b5f7e6bf)
The SIGCANCEL signal handler should not issue __syscall_do_cancel,
which calls __do_cancel and __pthread_unwind, if the cancellation
is already in proces (and libgcc unwind is not reentrant). Any
cancellation signal received after is ignored.
Checked on x86_64-linux-gnu and aarch64-linux-gnu.
Tested-by: Aurelien Jarno <aurelien@aurel32.net>
Reviewed-by: Florian Weimer <fweimer@redhat.com>
(cherry picked from commit 360cce0b066f34e85e473c04cdc16e6fa426021b)
The new initializer and struct layout does not initialize the
__g_signals field in the old struct layout before the change in
commit c36fc50781995e6758cae2b6927839d0157f213c ("nptl: Remove
g_refs from condition variables"). Bring back fields at the end
of struct __pthread_cond_s, so that they are again zero-initialized.
Reviewed-by: Sam James <sam@gentoo.org>
(cherry picked from commit dbc5a50d12eff4cb3f782129029d04b8a76f58e7)
In some cases, an IFUNC resolver may need to access the gp pointer to
access global variables. Such an object may have l_relocated == 0 at
this time. In this case, an IFUNC resolver will fail to access a global
variable and cause a SIGSEGV.
This patch fixes this issue by relaxing the check of l_relocated in
elf_machine_runtime_setup, but added a check for SHARED case to avoid
using this code in static-linked executables. Such object have already
set up the gp pointer in load_gp function and l->l_scope will be NULL if
it is a pie object. So if we use these code to set up the gp pointer
again for static-pie, it will causing a SIGSEGV in glibc as original bug
on BZ #31317.
I have also reproduced and checked BZ #31317 using the mold commit
bed5b1731b ("illumos: Treat absolute symbols specially"), this patch can
fix the issue.
Also, we used the wrong gp pointer previously because ref->st_value is
not the relocated address but just the offset from the base address of
ELF. An edge case may happen if we reference gp pointer in a IFUNC
resolver in a PIE object, but it will not happen in compiler-generated
codes since -pie will disable relax to gp. In this case, the GP will be
initialized incorrectly since the ref->st_value is not the address after
relocation. This patch fixes this issue by adding the l->l_addr to
ref->st_value to get the relocated address for the gp pointer. We don't
use SYMBOL_ADDRESS macro here because __global_pointer$ is a special
symbol that has SHN_ABS type, but it will use PC-relative addressing in
the load_gp function using lla.
Closes: BZ #32269
Fixes: 96d1b9ac23 ("RISC-V: Fix the static-PIE non-relocated object check")
Co-authored-by: Vivian Wang <dramforever@live.com>
Signed-off-by: Yangyu Chen <cyy@cyyself.name>
(cherry picked from commit 3fd2ff7685e3ee85c8cd2896f28ad62f67d7c483)
The new tunable can be used to control whether executable stacks are
allowed from either the main program or dependencies. The default is
to allow executable stacks.
The executable stacks default permission is checked agains the one
provided by the PT_GNU_STACK from program headers (if present). The
tunable also disables the stack permission change if any dependency
requires an executable stack at loading time.
Checked on x86_64-linux-gnu, i686-linux-gnu, and aarch64-linux-gnu.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
If some shared library loaded with dlopen/dlmopen requires an executable
stack, either implicitly because of a missing GNU_STACK ELF header
(where the ABI default flags implies in the executable bit) or explicitly
because of the executable bit from GNU_STACK; the loader will try to set
the both the main thread and all thread stacks (from the pthread cache)
as executable.
Besides the issue where any __nptl_change_stack_perm failure does not
undo the previous executable transition (meaning that if the library
fails to load, there can be thread stacks with executable stacks), this
behavior was used on a CVE [1] as a vector for RCE.
This patch changes that if a shared library requires an executable
stack, and the current stack is not executable, dlopen fails. The
change is done only for dynamically loaded modules, if the program
or any dependency requires an executable stack, the loader will still
change the main thread before program execution and any thread created
with default stack configuration.
[1] https://www.qualys.com/2023/07/19/cve-2023-38408/rce-openssh-forwarded-ssh-agent.txt
Checked on x86_64-linux-gnu and i686-linux-gnu.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
Also document C and C++ compilers used to test glibc should come from
the same set of compilers.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Reviewed-by: Sam James <sam@gentoo.org>
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the atan2pi functions (atan2(y,x)/pi).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the atanpi functions (atan(x)/pi).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the asinpi functions (asin(x)/pi).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the acospi functions (acos(x)/pi).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the tanpi functions (tan(pi*x)).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the sinpi functions (sin(pi*x)).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the cospi functions (cos(pi*x)).
Tested for x86_64 and x86, and with build-many-glibcs.py.
GCC 15 (e876acab6cdd84bb2b32c98fc69fb0ba29c81153) and binutils
(e7a16d9fd65098045ef5959bf98d990f12314111) both removed all Nios II
support, and the architecture has been EOL'ed by the vendor. The
kernel still has support, but without a proper compiler there
is no much sense in keep it on glibc.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
Linux 6.11 has getrandom() in vDSO. It operates on a thread-local opaque
state allocated with mmap using flags specified by the vDSO.
Multiple states are allocated at once, as many as fit into a page, and
these are held in an array of available states to be doled out to each
thread upon first use, and recycled when a thread terminates. As these
states run low, more are allocated.
To make this procedure async-signal-safe, a simple guard is used in the
LSB of the opaque state address, falling back to the syscall if there's
reentrancy contention.
Also, _Fork() is handled by blocking signals on opaque state allocation
(so _Fork() always sees a consistent state even if it interrupts a
getrandom() call) and by iterating over the thread stack cache on
reclaim_stack. Each opaque state will be in the free states list
(grnd_alloc.states) or allocated to a running thread.
The cancellation is handled by always using GRND_NONBLOCK flags while
calling the vDSO, and falling back to the cancellable syscall if the
kernel returns EAGAIN (would block). Since getrandom is not defined by
POSIX and cancellation is supported as an extension, the cancellation is
handled as 'may occur' instead of 'shall occur' [1], meaning that if
vDSO does not block (the expected behavior) getrandom will not act as a
cancellation entrypoint. It avoids a pthread_testcancel call on the fast
path (different than 'shall occur' functions, like sem_wait()).
It is currently enabled for x86_64, which is available in Linux 6.11,
and aarch64, powerpc32, powerpc64, loongarch64, and s390x, which are
available in Linux 6.12.
Link: https://pubs.opengroup.org/onlinepubs/9799919799/nframe.html [1]
Co-developed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Tested-by: Jason A. Donenfeld <Jason@zx2c4.com> # x86_64
Tested-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> # x86_64, aarch64
Tested-by: Xi Ruoyao <xry111@xry111.site> # x86_64, aarch64, loongarch64
Tested-by: Stefan Liebler <stli@linux.ibm.com> # s390x
This patch starts preparation for C2Y support in glibc headers by
adding a feature test macro _ISOC2Y_SOURCE and corresponding
__GLIBC_USE (ISOC2Y). (I mostly copied the work of Joseph Myers
for C2X). As with other such macros, C2Y features are also
enabled by compiling for a standard newer than C23, or by using
_GNU_SOURCE.
This patch does not itself enable anything new in the headers for C2Y;
that is to be done in followup patches. (For example an implementation
of WG14 N3349.)
Once C2Y becomes an actual standard we'll presumably move to using the
actual year in the feature test macro and __GLIBC_USE, with some
period when both macro spellings are accepted, as was done with
_ISOC2X_SOURCE.
Tested for x86_64.
Signed-off-by: Lenard Mollenkopf <glibc@lenardmollenkopf.de>
The recursive lock used on abort does not synchronize with a new process
creation (either by fork-like interfaces or posix_spawn ones), nor it
is reinitialized after fork().
Also, the SIGABRT unblock before raise() shows another race condition,
where a fork or posix_spawn() call by another thread, just after the
recursive lock release and before the SIGABRT signal, might create
programs with a non-expected signal mask. With the default option
(without POSIX_SPAWN_SETSIGDEF), the process can see SIG_DFL for
SIGABRT, where it should be SIG_IGN.
To fix the AS-safe, raise() does not change the process signal mask,
and an AS-safe lock is used if a SIGABRT is installed or the process
is blocked or ignored. With the signal mask change removal,
there is no need to use a recursive loc. The lock is also taken on
both _Fork() and posix_spawn(), to avoid the spawn process to see the
abort handler as SIG_DFL.
A read-write lock is used to avoid serialize _Fork and posix_spawn
execution. Both sigaction (SIGABRT) and abort() requires to lock
as writer (since both change the disposition).
The fallback is also simplified: there is no need to use a loop of
ABORT_INSTRUCTION after _exit() (if the syscall does not terminate the
process, the system is broken).
The proposed fix changes how setjmp works on a SIGABRT handler, where
glibc does not save the signal mask. So usage like the below will now
always abort.
static volatile int chk_fail_ok;
static jmp_buf chk_fail_buf;
static void
handler (int sig)
{
if (chk_fail_ok)
{
chk_fail_ok = 0;
longjmp (chk_fail_buf, 1);
}
else
_exit (127);
}
[...]
signal (SIGABRT, handler);
[....]
chk_fail_ok = 1;
if (! setjmp (chk_fail_buf))
{
// Something that can calls abort, like a failed fortify function.
chk_fail_ok = 0;
printf ("FAIL\n");
}
Such cases will need to use sigsetjmp instead.
The _dl_start_profile calls sigaction through _profil, and to avoid
pulling abort() on loader the call is replaced with __libc_sigaction.
Checked on x86_64-linux-gnu and aarch64-linux-gnu.
Reviewed-by: DJ Delorie <dj@redhat.com>
Check if any of the input files overlaps with the output file, and use
a temporary file in this case, so that the input is no clobbered
before it is read. This fixes bug 10460. It allows to use iconv
more easily as a functional replacement for GNU recode.
The updated output buffer management truncates the output file
if there is no input, fixing bug 32033.
Reviewed-by: DJ Delorie <dj@redhat.com>
And struct sched_attr.
In sysdeps/unix/sysv/linux/bits/sched.h, the hack that defines
sched_param around the inclusion of <linux/sched/types.h> is quite
ugly, but the definition of struct sched_param has already been
dropped by the kernel, so there is nothing else we can do and maintain
compatibility of <sched.h> with a wide range of kernel header
versions. (An alternative would involve introducing a separate header
for this functionality, but this seems unnecessary.)
The existing sched_* functions that change scheduler parameters
are already incompatible with PTHREAD_PRIO_PROTECT mutexes, so
there is no harm in adding more functionality in this area.
The documentation mostly defers to the Linux manual pages.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
For now, do not enable this mode by default due to the potential
impact on compatibility with existing deployments.
Reviewed-by: DJ Delorie <dj@redhat.com>
The __rseq_size value is now the active area of struct rseq
(so 20 initially), not the full struct size including padding
at the end (32 initially).
Update misc/tst-rseq to print some additional diagnostics.
Reviewed-by: Michael Jeanson <mjeanson@efficios.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the exp2m1 and exp10m1 functions (exp2(x)-1 and
exp10(x)-1, like expm1).
As with other such functions, these use type-generic templates that
could be replaced with faster and more accurate type-specific
implementations in future. Test inputs are copied from those for
expm1, plus some additions close to the overflow threshold (copied
from exp2 and exp10) and also some near the underflow threshold.
exp2m1 has the unusual property of having an input (M_MAX_EXP) where
whether the function overflows (under IEEE semantics) depends on the
rounding mode. Although these could reasonably be XFAILed in the
testsuite (as we do in some cases for arguments very close to a
function's overflow threshold when an error of a few ulps in the
implementation can result in the implementation not agreeing with an
ideal one on whether overflow takes place - the testsuite isn't smart
enough to handle this automatically), since these functions aren't
required to be correctly rounding, I made the implementation check for
and handle this case specially.
The Makefile ordering expected by lint-makefiles for the new functions
is a bit peculiar, but I implemented it in this patch so that the test
passes; I don't know why log2 also needed moving in one Makefile
variable setting when it didn't in my previous patches, but the
failure showed a different place was expected for that function as
well.
The powerpc64le IFUNC setup seems not to be as self-contained as one
might hope; it shouldn't be necessary to add IFUNCs for new functions
such as these simply to get them building, but without setting up
IFUNCs for the new functions, there were undefined references to
__GI___expm1f128 (that IFUNC machinery results in no such function
being defined, but doesn't stop include/math.h from doing the
redirection resulting in the exp2m1f128 and exp10m1f128
implementations expecting to call it).
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the log10p1 functions (log10(1+x): like log1p, but for
base-10 logarithms).
This is directly analogous to the log2p1 implementation (except that
whereas log2p1 has a smaller underflow range than log1p, log10p1 has a
larger underflow range). The test inputs are copied from those for
log1p and log2p1, plus a few more inputs in that wider underflow
range.
Tested for x86_64 and x86, and with build-many-glibcs.py.
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the logp1 functions (aliases for log1p functions - the
name is intended to be more consistent with the new log2p1 and
log10p1, where clearly it would have been very confusing to name those
functions log21p and log101p). As aliases rather than new functions,
the content of this patch is somewhat different from those actually
adding new functions.
Tests are shared with log1p, so this patch *does* mechanically update
all affected libm-test-ulps files to expect the same errors for both
functions.
The vector versions of log1p on aarch64 and x86_64 are *not* updated
to have logp1 aliases (and thus there are no corresponding header,
tests, abilist or ulps changes for vector functions either). It would
be reasonable for such vector aliases and corresponding changes to
other files to be made separately. For now, the log1p tests instead
avoid testing logp1 in the vector case (a Makefile change is needed to
avoid problems with grep, used in generating the .c files for vector
function tests, matching more than one ALL_RM_TEST line in a file
testing multiple functions with the same inputs, when it assumes that
the .inc file only has a single such line).
Tested for x86_64 and x86, and with build-many-glibcs.py.
As of Linux kernel 6.9, some ioctls and a parameters structure have been
introduced which allow user programs to control whether a particular
epoll context will busy poll.
Update the headers to include these for the convenience of user apps.
The ioctls were added in Linux kernel 6.9 commit 18e2bf0edf4dd
("eventpoll: Add epoll ioctl for epoll_params") [1] to
include/uapi/linux/eventpoll.h.
[1]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/diff/?h=v6.9&id=18e2bf0edf4dd
Signed-off-by: Joe Damato <jdamato@fastly.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
C23 adds various <math.h> function families originally defined in TS
18661-4. Add the log2p1 functions (log2(1+x): like log1p, but for
base-2 logarithms).
This illustrates the intended structure of implementations of all
these function families: define them initially with a type-generic
template implementation. If someone wishes to add type-specific
implementations, it is likely such implementations can be both faster
and more accurate than the type-generic one and can then override it
for types for which they are implemented (adding benchmarks would be
desirable in such cases to demonstrate that a new implementation is
indeed faster).
The test inputs are copied from those for log1p. Note that these
changes make gen-auto-libm-tests depend on MPFR 4.2 (or later).
The bulk of the changes are fairly generic for any such new function.
(sysdeps/powerpc/nofpu/Makefile only needs changing for those
type-generic templates that use fabs.)
Tested for x86_64 and x86, and with build-many-glibcs.py.
These fields store timestamps when the system was running. No Linux
systems existed before 1970, so these values are unused. Switching
to unsigned types allows continued use of the existing struct layouts
beyond the year 2038.
The intent is to give distributions more time to switch to improved
interfaces that also avoid locking/data corruption issues.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>