check_gcs is called for each dependency of a DSO, but the GNU property
of the ld.so is not processed so ldso->l_mach.gcs may not be correct.
Just assume ld.so is GCS compatible independently of the ELF marking.
Use the dynamic linker start code to enable GCS in the dynamic linked
case after _dl_start returns and before _dl_start_user which marks
the point after which user code may run.
Like in the static linked case this ensures that GCS is enabled on a
top level stack frame.
Use the ARCH_SETUP_TLS hook to enable GCS in the static linked case.
The system call must be inlined and then GCS is enabled on a top
level stack frame that does not return and has no exception handlers
above it.
This tunable is for controlling the GCS status. It is the argument to
the PR_SET_SHADOW_STACK_STATUS prctl, by default 0, so GCS is disabled.
The status is stored into GL(dl_aarch64_gcs) early and only applied
later, since enabling GCS is tricky: it must happen on a top level
stack frame. (Using GL instead of GLRO because it may need updates
depending on loaded libraries that happen after readonly protection
is applied, however library marking based GCS setting is not yet
implemented.)
Free GCS after a makecontext start func returns and at thread exit, so
assume makecontext cannot outlive the thread where it was created.
This is an attempt to bound the lifetime of the GCS allocated for
makecontext, but it is still possible to have significant GCS leaks,
new GCS aware APIs could solve that, but that would not allow using
GCS with existing code transparently.
Changed the makecontext logic: previously the first setcontext jumped
straight to the user callback function and the return address is set
to __startcontext. This does not work when GCS is enabled as the
integrity of the return address is protected, so instead the context
is setup such that setcontext jumps to __startcontext which calls the
user callback (passed in x20).
The map_shadow_stack syscall is used to allocate a suitably sized GCS
(which includes some reserved area to account for altstack signal
handlers and otherwise supports maximum number of 16 byte aligned
stack frames on the given stack) however the GCS is never freed as
the lifetime of ucontext and related stack is user managed.
Userspace ucontext needs to store GCSPR, it does not have to be
compatible with the kernel ucontext. For now we use the linux
struct gcs_context layout but only use the gcspr field from it.
Similar implementation to the longjmp code, supports switching GCS
if the target GCS is capped, and unwinding a continous GCS to a
previous state.
This implementations ensures that longjmp across different stacks
works: it scans for GCS cap token and switches GCS if necessary
then the target GCSPR is restored with a GCSPOPM loop once the
current GCSPR is on the same GCS.
This makes longjmp linear time in the number of jumped over stack
frames when GCS is enabled.
The target specific internal __longjmp is called with a __jmp_buf
argument which has its size exposed in the ABI. On aarch64 this has
no space left, so GCSPR cannot be restored in longjmp in the usual
way, which is needed for the Guarded Control Stack (GCS) extension.
setjmp is implemented via __sigsetjmp which has a jmp_buf argument
however it is also called with __pthread_unwind_buf_t argument cast
to jmp_buf (in cancellation cleanup code built with -fno-exception).
The two types, jmp_buf and __pthread_unwind_buf_t, have common bits
beyond the __jmp_buf field and there is unused space there which we
can use for saving GCSPR.
For this to work some bits of those two generic types have to be
reserved for target specific use and the generic code in glibc has
to ensure that __longjmp is always called with a __jmp_buf that is
embedded into one of those two types. Morally __longjmp should be
changed to take jmp_buf as argument, but that is an intrusive change
across targets.
Note: longjmp is never called with __pthread_unwind_buf_t from user
code, only the internal __libc_longjmp is called with that type and
thus the two types could have separate longjmp implementations on a
target. We don't rely on this now (but migh in the future given that
cancellation unwind does not need to restore GCSPR).
Given the above this patch finds an unused slot for GCSPR. This
placement is not exposed in the ABI so it may change in the future.
This is also very target ABI specific so the generic types cannot
be easily changed to clearly mark the reserved fields.
The Guarded Control Stack instructions can be present even if the
hardware does not support the extension (runtime checked feature),
so the asm code should be backward compatible with old assemblers.
GCC mainline produces a -Wheader-guard error building for x86_64-gnu.
Fix what seems to be incorrect macro naming in the #ifndef
conditional.
Tested with build-many-glibc.py for x86_64-gnu (GCC mainline).
Message-ID: <fd800046-5ecb-ebd5-4df1-29d4eb3d5433@redhat.com>
The recursive lock used on abort does not synchronize with a new process
creation (either by fork-like interfaces or posix_spawn ones), nor it
is reinitialized after fork().
Also, the SIGABRT unblock before raise() shows another race condition,
where a fork or posix_spawn() call by another thread, just after the
recursive lock release and before the SIGABRT signal, might create
programs with a non-expected signal mask. With the default option
(without POSIX_SPAWN_SETSIGDEF), the process can see SIG_DFL for
SIGABRT, where it should be SIG_IGN.
To fix the AS-safe, raise() does not change the process signal mask,
and an AS-safe lock is used if a SIGABRT is installed or the process
is blocked or ignored. With the signal mask change removal,
there is no need to use a recursive loc. The lock is also taken on
both _Fork() and posix_spawn(), to avoid the spawn process to see the
abort handler as SIG_DFL.
A read-write lock is used to avoid serialize _Fork and posix_spawn
execution. Both sigaction (SIGABRT) and abort() requires to lock
as writer (since both change the disposition).
The fallback is also simplified: there is no need to use a loop of
ABORT_INSTRUCTION after _exit() (if the syscall does not terminate the
process, the system is broken).
The proposed fix changes how setjmp works on a SIGABRT handler, where
glibc does not save the signal mask. So usage like the below will now
always abort.
static volatile int chk_fail_ok;
static jmp_buf chk_fail_buf;
static void
handler (int sig)
{
if (chk_fail_ok)
{
chk_fail_ok = 0;
longjmp (chk_fail_buf, 1);
}
else
_exit (127);
}
[...]
signal (SIGABRT, handler);
[....]
chk_fail_ok = 1;
if (! setjmp (chk_fail_buf))
{
// Something that can calls abort, like a failed fortify function.
chk_fail_ok = 0;
printf ("FAIL\n");
}
Such cases will need to use sigsetjmp instead.
The _dl_start_profile calls sigaction through _profil, and to avoid
pulling abort() on loader the call is replaced with __libc_sigaction.
Checked on x86_64-linux-gnu and aarch64-linux-gnu.
Reviewed-by: DJ Delorie <dj@redhat.com>
The BZ#24967 fix (1bdda52fe92fd01b424c) missed the time for
architectures that define USE_IFUNC_TIME. Although it is not
an issue, since there is no pointer mangling, there is also no need
to call dl_vdso_vsym since the vDSO setup was already done by the
loader.
Checked on x86_64-linux-gnu and i686-linux-gnu.
The BZ#24967 fix (1bdda52fe92fd01b424c) missed the gettimeofday for
architectures that define USE_IFUNC_GETTIMEOFDAY. Although it is not
an issue, since there is no pointer mangling, there is also no need
to call dl_vdso_vsym since the vDSO setup was already done by the
loader.
Checked on x86_64-linux-gnu and i686-linux-gnu.
Building the s390 specific iconv modules - utf16-utf32-z9.c, utf8-utf32-z9.c
and utf8-utf16-z9.c - with -fno-omit-frame-pointer leads to a build error
"error: %r11 cannot be used in 'asm' here" as r11 is needed as frame-pointer.
The cuXY-instructions need two even-odd register pairs. Therefore the register
pinning is used. This patch just uses a different register pair.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
Several copies of the licenses in files contained whitespace related
problems. Two cases are addressed here, the first is two spaces
after a period which appears between "PURPOSE." and "See". The other
is a space after the last forward slash in the URL. Both issues are
corrected and the licenses now match the official textual description
of the license (and the other license in the sources).
Since these whitespaces changes do not alter the paragraph structure of
the license, nor create new sentences, they do not change the license.
The sparc clone mitigation (faeaa3bc9f76030) added the use of
flushw, which is not support by LEON/sparcv8. As discussed on
the libc-alpha, 'ta 3' is a working alternative [1].
[1] https://sourceware.org/pipermail/libc-alpha/2024-August/158905.html
Checked with a build for sparcv8-linux-gnu targetting leon.
Acked-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
LEON2/LEON3 are both sparcv8, which does not support branch hints
(bne,pn) nor the return instruction.
Checked with a build for sparcv8-linux-gnu targetting leon. I also
checked some cancellation tests with qemu-system (targeting LEON3).
Acked-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
GCC aligns global data to 16 bytes if their size is >= 16 bytes. This patch
changes the exp2f_data struct slightly so that the fields are better aligned.
As a result on targets that support them, load-pair instructions accessing
poly_scaled and invln2_scaled are now 16-byte aligned.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The loop should be aligned to 32-bytes so that it can ideally run out
the DSB. This is particularly important on Skylake-Server where
deficiencies in it's DSB implementation make it prone to not being
able to run loops out of the DSB.
For example running strcmp-evex on 200Mb string:
32-byte aligned loop:
- 43,399,578,766 idq.dsb_uops
not 32-byte aligned loop:
- 6,060,139,704 idq.dsb_uops
This results in a 25% performance degradation for the non-aligned
version.
The fix is to just ensure the code layout is such that the loop is
aligned. (Which was previously the case but was accidentally dropped
in 84e7c46df).
NB: The fix was actually 64-byte alignment. This is because 64-byte
alignment generally produces more stable performance than 32-byte
aligned code (cache line crosses can affect perf), so if we are going
past 16-byte alignmnent, might as well go to 64. 64-byte alignment
also matches most other functions we over-align, so it creates a
common point of optimization.
Times are reported as ratio of Time_With_Patch /
Time_Without_Patch. Lower is better.
The values being reported is the geometric mean of the ratio across
all tests in bench-strcmp and bench-strncmp.
Note this patch is only attempting to improve the Skylake-Server
strcmp for long strings. The rest of the numbers are only to test for
regressions.
Tigerlake Results Strings <= 512:
strcmp : 1.026
strncmp: 0.949
Tigerlake Results Strings > 512:
strcmp : 0.994
strncmp: 0.998
Skylake-Server Results Strings <= 512:
strcmp : 0.945
strncmp: 0.943
Skylake-Server Results Strings > 512:
strcmp : 0.778
strncmp: 1.000
The 2.6% regression on TGL-strcmp is due to slowdowns caused by
changes in alignment of code handling small sizes (most on the
page-cross logic). These should be safe to ignore because 1) We
previously only 16-byte aligned the function so this behavior is not
new and was essentially up to chance before this patch and 2) this
type of alignment related regression on small sizes really only comes
up in tight micro-benchmark loops and is unlikely to have any affect
on realworld performance.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
This hides the inconsistent TCB state (missing robust mutex list) from
signal handlers.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
In Linux 6.11, fstat and newfstatat are added back. To avoid the messy
usage of the fstat, newfstatat, and statx system calls, we will continue
using statx only in glibc, maintaining consistency with previous versions of
the LoongArch-specific glibc implementation.
Signed-off-by: caiyinyu <caiyinyu@loongson.cn>
Reviewed-by: Xi Ruoyao <xry111@xry111.site>
Suggested-by: Florian Weimer <fweimer@redhat.com>
This operation can be simplified to use simpler multiply-round-convert
sequence, which uses fewer instructions and constants.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Rearrange operations so MOV is not necessary in reduction or around
the special-case handler. Reduce memory access by using more indexed
MLAs in polynomial.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
log1pf is quite register-intensive - use fewer registers for the
polynomial, and make various changes to shorten dependency chains in
parent routines. There is now no spilling with GCC 14. Accuracy moves
around a little - comments adjusted accordingly but does not require
regen-ulps.
Use the helper in log1pf as well, instead of having separate
implementations. The more accurate polynomial means special-casing can
be simplified, and the shorter dependency chain avoids the usual dance
around v0, which is otherwise difficult.
There is a small duplication of vectors containing 1.0f (or 0x3f800000) -
GCC is not currently able to efficiently handle values which fit in FMOV
but not MOVI, and are reinterpreted to integer. There may be potential
for more optimisation if this is fixed.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Reduce MOVPRFXs by using unpredicated (non-destructive) instructions
where possible. Similar to the recent change to AdvSIMD F32 logs,
adjust special-case arguments and bounds to allow for more optimal
register usage. For all 3 routines one MOVPRFX remains in the
reduction, which cannot be avoided as immediate AND and ASR are both
destructive.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Reduce MOV and MOVPRFX by improving special-case handling. Use inline
helper to duplicate the entire computation between the special- and
non-special case branches, removing the contention for z0 between x
and the return value.
Also rearrange some MLAs and MLSs - by making the multiplicand the
destination we can avoid a MOVPRFX in several cases. Also change which
constants go in the vector used for lanewise ops - the last lane is no
longer wasted.
Spotted that shift was incorrect in exp2f and exp10f, w.r.t. to the
comment that explains it. Fixed - worst-case ULP for exp2f moves
around but it doesn't change significantly for either routine.
Worst-case error for coshf increases due to passing x to exp rather
than abs(x) - updated the comment, but does not require regen-ulps.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
It is not necessary to do the conversion at the getdents64
layer for readdir64_r. Doing it piecewise for readdir64
is slightly simpler and allows deleting __old_getdents64.
This fixes bug 32128 because readdir64_r handles the length
check correctly.
Reviewed-by: DJ Delorie <dj@redhat.com>
This enables vectorisation of C23 logp1, which is an alias for log1p.
There are no new tests or ulp entries because the new symbols are simply
aliases.
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
A common use case of access () / faccessat () is checking for file
existence, not any specific access permissions. In that case, we can
avoid doing the file_check_access () RPC; whether the given path had
been successfully resolved to a file is all we need to know to answer.
This is prompted by GLib switching to use faccessat (F_OK) to implement
g_file_query_exists () for local files.
https://gitlab.gnome.org/GNOME/glib/-/merge_requests/4272
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-ID: <20240919101439.179663-1-bugaevc@gmail.com>
And struct sched_attr.
In sysdeps/unix/sysv/linux/bits/sched.h, the hack that defines
sched_param around the inclusion of <linux/sched/types.h> is quite
ugly, but the definition of struct sched_param has already been
dropped by the kernel, so there is nothing else we can do and maintain
compatibility of <sched.h> with a wide range of kernel header
versions. (An alternative would involve introducing a separate header
for this functionality, but this seems unnecessary.)
The existing sched_* functions that change scheduler parameters
are already incompatible with PTHREAD_PRIO_PROTECT mutexes, so
there is no harm in adding more functionality in this area.
The documentation mostly defers to the Linux manual pages.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>