AArch64: Improve strlen_asimd performance (bug 25824)

Optimize strlen using a mix of scalar and SIMD code.  On modern micro
architectures large strings are 2.6 times faster than existing
strlen_asimd and 35% faster than the new MTE version of strlen.

On a random strlen benchmark using small sizes the speedup is 7% vs
strlen_asimd and 40% vs the MTE strlen.  This fixes the main strlen
regressions on Cortex-A53 and other cores with a simple Neon unit.

Rename __strlen_generic to __strlen_mte, and select strlen_asimd when
MTE is not enabled (this is waiting on support for a HWCAP_MTE bit).

This fixes big-endian bug 25824. Passes GLIBC regression tests.

Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
This commit is contained in:
Wilco Dijkstra 2020-07-17 14:09:36 +01:00
parent 76b8442db5
commit f46ef33ad1
5 changed files with 157 additions and 122 deletions

View File

@ -3,5 +3,5 @@ sysdep_routines += memcpy_generic memcpy_advsimd memcpy_thunderx memcpy_thunderx
memcpy_falkor \
memset_generic memset_falkor memset_emag memset_kunpeng \
memchr_generic memchr_nosimd \
strlen_generic strlen_asimd
strlen_mte strlen_asimd
endif

View File

@ -63,7 +63,7 @@ __libc_ifunc_impl_list (const char *name, struct libc_ifunc_impl *array,
IFUNC_IMPL (i, name, strlen,
IFUNC_IMPL_ADD (array, i, strlen, 1, __strlen_asimd)
IFUNC_IMPL_ADD (array, i, strlen, 1, __strlen_generic))
IFUNC_IMPL_ADD (array, i, strlen, 1, __strlen_mte))
return i;
}

View File

@ -26,17 +26,15 @@
# include <string.h>
# include <init-arch.h>
#define USE_ASIMD_STRLEN() IS_FALKOR (midr)
/* This should check HWCAP_MTE when it is available. */
#define MTE_ENABLED() (false)
extern __typeof (__redirect_strlen) __strlen;
extern __typeof (__redirect_strlen) __strlen_generic attribute_hidden;
extern __typeof (__redirect_strlen) __strlen_mte attribute_hidden;
extern __typeof (__redirect_strlen) __strlen_asimd attribute_hidden;
libc_ifunc (__strlen,
(USE_ASIMD_STRLEN () || IS_KUNPENG920 (midr)
? __strlen_asimd
:__strlen_generic));
libc_ifunc (__strlen, (MTE_ENABLED () ? __strlen_mte : __strlen_asimd));
# undef strlen
strong_alias (__strlen, strlen);

View File

@ -1,4 +1,4 @@
/* Strlen implementation that uses ASIMD instructions for load and NULL checks.
/* Optimized strlen implementation using SIMD.
Copyright (C) 2018-2020 Free Software Foundation, Inc.
This file is part of the GNU C Library.
@ -20,80 +20,90 @@
#include <sysdep.h>
/* Assumptions:
*
* ARMv8-a, AArch64, Advanced SIMD, unaligned accesses.
* Not MTE compatible.
*/
ARMv8-a, AArch64, ASIMD, unaligned accesses, min page size 4k. */
#define srcin x0
#define len x0
#define src x1
#define data1 x2
#define data2 x3
#define has_nul1 x4
#define has_nul2 x5
#define tmp1 x4
#define tmp2 x5
#define tmp3 x6
#define tmp4 x7
#define zeroones x8
#define maskv v0
#define maskd d0
#define dataq1 q1
#define dataq2 q2
#define datav1 v1
#define datav2 v2
#define tmp x2
#define tmpw w2
#define synd x3
#define shift x4
/* For the first 32 bytes, NUL detection works on the principle that
(X - 1) & (~X) & 0x80 (=> (X - 1) & ~(X | 0x7f)) is non-zero if a
byte is zero, and can be done in parallel across the entire word. */
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
/* To test the page crossing code path more thoroughly, compile with
-DTEST_PAGE_CROSS - this will force all calls through the slower
entry path. This option is not intended for production use. */
/* Arguments and results. */
#define srcin x0
#define len x0
/* Locals and temporaries. */
#define src x1
#define data1 x2
#define data2 x3
#define has_nul1 x4
#define has_nul2 x5
#define tmp1 x4
#define tmp2 x5
#define tmp3 x6
#define tmp4 x7
#define zeroones x8
#define dataq q2
#define datav v2
#define datab2 b3
#define dataq2 q3
#define datav2 v3
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#ifdef TEST_PAGE_CROSS
# define MIN_PAGE_SIZE 16
# define MIN_PAGE_SIZE 32
#else
# define MIN_PAGE_SIZE 4096
#endif
/* Since strings are short on average, we check the first 16 bytes
of the string for a NUL character. In order to do an unaligned load
safely we have to do a page cross check first. If there is a NUL
byte we calculate the length from the 2 8-byte words using
conditional select to reduce branch mispredictions (it is unlikely
strlen_asimd will be repeatedly called on strings with the same
length).
/* Core algorithm:
If the string is longer than 16 bytes, we align src so don't need
further page cross checks, and process 16 bytes per iteration.
Since strings are short on average, we check the first 32 bytes of the
string for a NUL character without aligning the string. In order to use
unaligned loads safely we must do a page cross check first.
If the page cross check fails, we read 16 bytes from an aligned
address, remove any characters before the string, and continue
in the main loop using aligned loads. Since strings crossing a
page in the first 16 bytes are rare (probability of
16/MIN_PAGE_SIZE ~= 0.4%), this case does not need to be optimized.
If there is a NUL byte we calculate the length from the 2 8-byte words
using conditional select to reduce branch mispredictions (it is unlikely
strlen will be repeatedly called on strings with the same length).
AArch64 systems have a minimum page size of 4k. We don't bother
checking for larger page sizes - the cost of setting up the correct
page size is just not worth the extra gain from a small reduction in
the cases taking the slow path. Note that we only care about
whether the first fetch, which may be misaligned, crosses a page
boundary. */
If the string is longer than 32 bytes, align src so we don't need further
page cross checks, and process 32 bytes per iteration using a fast SIMD
loop.
If the page cross check fails, we read 32 bytes from an aligned address,
and ignore any characters before the string. If it contains a NUL
character, return the length, if not, continue in the main loop. */
ENTRY (__strlen_asimd)
DELOUSE (0)
ENTRY_ALIGN (__strlen_asimd, 6)
DELOUSE (0)
DELOUSE (1)
and tmp1, srcin, MIN_PAGE_SIZE - 1
mov zeroones, REP8_01
cmp tmp1, MIN_PAGE_SIZE - 16
b.gt L(page_cross)
cmp tmp1, MIN_PAGE_SIZE - 32
b.hi L(page_cross)
/* Look for a NUL byte in the first 16 bytes. */
ldp data1, data2, [srcin]
mov zeroones, REP8_01
#ifdef __AARCH64EB__
/* For big-endian, carry propagation (if the final byte in the
string is 0x01) means we cannot use has_nul1/2 directly.
Since we expect strings to be small and early-exit,
byte-swap the data now so has_null1/2 will be correct. */
rev data1, data1
rev data2, data2
#endif
sub tmp1, data1, zeroones
orr tmp2, data1, REP8_7f
sub tmp3, data2, zeroones
@ -101,78 +111,105 @@ ENTRY_ALIGN (__strlen_asimd, 6)
bics has_nul1, tmp1, tmp2
bic has_nul2, tmp3, tmp4
ccmp has_nul2, 0, 0, eq
beq L(main_loop_entry)
b.eq L(bytes16_31)
/* Find the exact offset of the first NUL byte in the first 16 bytes
from the string start. Enter with C = has_nul1 == 0. */
csel has_nul1, has_nul1, has_nul2, cc
mov len, 8
rev has_nul1, has_nul1
clz tmp1, has_nul1
csel len, xzr, len, cc
clz tmp1, has_nul1
add len, len, tmp1, lsr 3
ret
L(main_loop_entry):
bic src, srcin, 15
sub src, src, 16
L(main_loop):
ldr dataq, [src, 32]!
L(page_cross_entry):
/* Get the minimum value and keep going if it is not zero. */
uminv datab2, datav.16b
mov tmp1, datav2.d[0]
cbz tmp1, L(tail)
ldr dataq, [src, 16]
uminv datab2, datav.16b
mov tmp1, datav2.d[0]
cbnz tmp1, L(main_loop)
add src, src, 16
L(tail):
.p2align 3
/* Look for a NUL byte at offset 16..31 in the string. */
L(bytes16_31):
ldp data1, data2, [srcin, 16]
#ifdef __AARCH64EB__
rev64 datav.16b, datav.16b
#endif
/* Set te NULL byte as 0xff and the rest as 0x00, move the data into a
pair of scalars and then compute the length from the earliest NULL
byte. */
cmeq datav.16b, datav.16b, #0
mov data1, datav.d[0]
mov data2, datav.d[1]
cmp data1, 0
csel data1, data1, data2, ne
sub len, src, srcin
rev data1, data1
add tmp2, len, 8
clz tmp1, data1
csel len, len, tmp2, ne
rev data2, data2
#endif
sub tmp1, data1, zeroones
orr tmp2, data1, REP8_7f
sub tmp3, data2, zeroones
orr tmp4, data2, REP8_7f
bics has_nul1, tmp1, tmp2
bic has_nul2, tmp3, tmp4
ccmp has_nul2, 0, 0, eq
b.eq L(loop_entry)
/* Find the exact offset of the first NUL byte at offset 16..31 from
the string start. Enter with C = has_nul1 == 0. */
csel has_nul1, has_nul1, has_nul2, cc
mov len, 24
rev has_nul1, has_nul1
mov tmp3, 16
clz tmp1, has_nul1
csel len, tmp3, len, cc
add len, len, tmp1, lsr 3
ret
/* Load 16 bytes from [srcin & ~15] and force the bytes that precede
srcin to 0xff, so we ignore any NUL bytes before the string.
Then continue in the aligned loop. */
L(page_cross):
mov tmp3, 63
bic src, srcin, 15
and tmp1, srcin, 7
ands tmp2, srcin, 8
ldr dataq, [src]
lsl tmp1, tmp1, 3
csel tmp2, tmp2, tmp1, eq
csel tmp1, tmp1, tmp3, eq
mov tmp4, -1
L(loop_entry):
bic src, srcin, 31
.p2align 5
L(loop):
ldp dataq1, dataq2, [src, 32]!
uminp maskv.16b, datav1.16b, datav2.16b
uminp maskv.16b, maskv.16b, maskv.16b
cmeq maskv.8b, maskv.8b, 0
fmov synd, maskd
cbz synd, L(loop)
/* Low 32 bits of synd are non-zero if a NUL was found in datav1. */
cmeq maskv.16b, datav1.16b, 0
sub len, src, srcin
tst synd, 0xffffffff
b.ne 1f
cmeq maskv.16b, datav2.16b, 0
add len, len, 16
1:
/* Generate a bitmask and compute correct byte offset. */
#ifdef __AARCH64EB__
/* Big-endian. Early bytes are at MSB. */
lsr tmp1, tmp4, tmp1
lsr tmp2, tmp4, tmp2
bic maskv.8h, 0xf0
#else
/* Little-endian. Early bytes are at LSB. */
lsl tmp1, tmp4, tmp1
lsl tmp2, tmp4, tmp2
bic maskv.8h, 0x0f, lsl 8
#endif
mov datav2.d[0], tmp1
mov datav2.d[1], tmp2
orn datav.16b, datav.16b, datav2.16b
b L(page_cross_entry)
umaxp maskv.16b, maskv.16b, maskv.16b
fmov synd, maskd
#ifndef __AARCH64EB__
rbit synd, synd
#endif
clz tmp, synd
add len, len, tmp, lsr 2
ret
.p2align 4
L(page_cross):
bic src, srcin, 31
mov tmpw, 0x0c03
movk tmpw, 0xc030, lsl 16
ld1 {datav1.16b, datav2.16b}, [src]
dup maskv.4s, tmpw
cmeq datav1.16b, datav1.16b, 0
cmeq datav2.16b, datav2.16b, 0
and datav1.16b, datav1.16b, maskv.16b
and datav2.16b, datav2.16b, maskv.16b
addp maskv.16b, datav1.16b, datav2.16b
addp maskv.16b, maskv.16b, maskv.16b
fmov synd, maskd
lsl shift, srcin, 1
lsr synd, synd, shift
cbz synd, L(loop)
rbit synd, synd
clz len, synd
lsr len, len, 1
ret
END (__strlen_asimd)
weak_alias (__strlen_asimd, strlen_asimd)
libc_hidden_builtin_def (strlen_asimd)

View File

@ -17,14 +17,14 @@
<https://www.gnu.org/licenses/>. */
/* The actual strlen code is in ../strlen.S. If we are building libc this file
defines __strlen_generic. Otherwise the include of ../strlen.S will define
defines __strlen_mte. Otherwise the include of ../strlen.S will define
the normal __strlen entry points. */
#include <sysdep.h>
#if IS_IN (libc)
# define STRLEN __strlen_generic
# define STRLEN __strlen_mte
/* Do not hide the generic version of strlen, we use it internally. */
# undef libc_hidden_builtin_def
@ -32,7 +32,7 @@
# ifdef SHARED
/* It doesn't make sense to send libc-internal strlen calls through a PLT. */
.globl __GI_strlen; __GI_strlen = __strlen_generic
.globl __GI_strlen; __GI_strlen = __strlen_mte
# endif
#endif