Add new exp and exp2 implementations

Optimized exp and exp2 implementations using a lookup table for
fractional powers of 2.  There are several variants, see e_exp_data.c,
they can be selected by modifying math_config.h allowing different
tradeoffs.

The default selection should be acceptable as generic libm code.
Worst case error is 0.509 ULP for exp and 0.507 ULP for exp2, on
aarch64 the rodata size is 2160 bytes, shared between exp and exp2.
On aarch64 .text + .rodata size decreased by 24912 bytes.

The non-nearest rounding error is less than 1 ULP even on targets
without efficient round implementation (although the error rate is
higher in that case).  Targets with single instruction, rounding mode
independent, to nearest integer rounding and conversion can use them
by setting TOINT_INTRINSICS and adding the necessary code to their
math_private.h.

The __exp1 code uses the same algorithm, so the error bound of pow
increased a bit.

New double precision error handling code was added following the
style of the single precision error handling code.

Improvements on Cortex-A72 compared to current glibc master:
exp thruput: 1.61x in [-9.9 9.9]
exp latency: 1.53x in [-9.9 9.9]
exp thruput: 1.13x in [0.5 1]
exp latency: 1.30x in [0.5 1]
exp2 thruput: 2.03x in [-9.9 9.9]
exp2 latency: 1.64x in [-9.9 9.9]

For small (< 1) inputs the current exp code uses a separate algorithm
so the speed up there is less.

Was tested on
aarch64-linux-gnu (TOINT_INTRINSICS, fma contraction) and
arm-linux-gnueabihf (!TOINT_INTRINSICS, no fma contraction) and
x86_64-linux-gnu (!TOINT_INTRINSICS, no fma contraction) and
powerpc64le-linux-gnu (!TOINT_INTRINSICS, fma contraction) targets,
only non-nearest rounding ulp errors increase and they are within
acceptable bounds (ulp updates are in separate patches).

	* NEWS: Mention exp and exp2 improvements.
	* math/Makefile (libm-support): Remove t_exp.
	(type-double-routines): Add math_err and e_exp_data.
	* sysdeps/aarch64/libm-test-ulps: Update.
	* sysdeps/arm/libm-test-ulps: Update.
	* sysdeps/i386/fpu/e_exp_data.c: New file.
	* sysdeps/i386/fpu/math_err.c: New file.
	* sysdeps/i386/fpu/t_exp.c: Remove.
	* sysdeps/ia64/fpu/e_exp_data.c: New file.
	* sysdeps/ia64/fpu/math_err.c: New file.
	* sysdeps/ia64/fpu/t_exp.c: Remove.
	* sysdeps/ieee754/dbl-64/e_exp.c: Rewrite.
	* sysdeps/ieee754/dbl-64/e_exp2.c: Rewrite.
	* sysdeps/ieee754/dbl-64/e_exp_data.c: New file.
	* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Update error bound.
	* sysdeps/ieee754/dbl-64/eexp.tbl: Remove.
	* sysdeps/ieee754/dbl-64/math_config.h: New file.
	* sysdeps/ieee754/dbl-64/math_err.c: New file.
	* sysdeps/ieee754/dbl-64/t_exp.c: Remove.
	* sysdeps/ieee754/dbl-64/t_exp2.h: Remove.
	* sysdeps/ieee754/dbl-64/uexp.h: Remove.
	* sysdeps/ieee754/dbl-64/uexp.tbl: Remove.
	* sysdeps/m68k/m680x0/fpu/e_exp_data.c: New file.
	* sysdeps/m68k/m680x0/fpu/math_err.c: New file.
	* sysdeps/m68k/m680x0/fpu/t_exp.c: Remove.
	* sysdeps/powerpc/fpu/libm-test-ulps: Update.
	* sysdeps/x86_64/fpu/libm-test-ulps: Update.
This commit is contained in:
Szabolcs Nagy 2018-02-12 18:16:03 +00:00
parent b7cdc2aeb1
commit e70c176825
26 changed files with 886 additions and 3673 deletions

2
NEWS
View File

@ -16,7 +16,7 @@ Major new features:
to set the install root if you wish to install into a non-default
configured location.
* Optimized generic sinf, cosf, sincosf and tanf.
* Optimized generic exp, exp2, sinf, cosf, sincosf and tanf.
* The reallocarray function is now declared under _DEFAULT_SOURCE, not just
for _GNU_SOURCE, to match BSD environments.

View File

@ -42,7 +42,7 @@ extra-libs-others = $(extra-libs)
libm-support = s_lib_version s_matherr s_signgam \
fclrexcpt fgetexcptflg fraiseexcpt fsetexcptflg \
ftestexcept fegetround fesetround fegetenv feholdexcpt \
fesetenv feupdateenv t_exp fedisblxcpt feenablxcpt \
fesetenv feupdateenv fedisblxcpt feenablxcpt \
fegetexcept fesetexcept fetestexceptflag fegetmode \
fesetmode
@ -127,7 +127,7 @@ type-ldouble-yes := ldouble
type-double-suffix :=
type-double-routines := branred doasin dosincos mpa mpatan2 \
k_rem_pio2 mpatan mpsqrt mptan sincos32 \
sincostab
sincostab math_err e_exp_data
# float support
type-float-suffix := f

View File

@ -716,9 +716,9 @@ ildouble: 2
ldouble: 2
Function: Imaginary part of "ccos_downward":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
@ -732,9 +732,9 @@ ildouble: 2
ldouble: 2
Function: Imaginary part of "ccos_towardzero":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
@ -772,33 +772,33 @@ ildouble: 1
ldouble: 1
Function: Real part of "ccosh_downward":
double: 1
double: 2
float: 3
idouble: 1
idouble: 2
ifloat: 3
ildouble: 2
ldouble: 2
Function: Imaginary part of "ccosh_downward":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
Function: Real part of "ccosh_towardzero":
double: 1
double: 2
float: 3
idouble: 1
idouble: 2
ifloat: 3
ildouble: 2
ldouble: 2
Function: Imaginary part of "ccosh_towardzero":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
@ -836,33 +836,33 @@ ildouble: 1
ldouble: 1
Function: Real part of "cexp_downward":
double: 1
double: 2
float: 2
idouble: 1
idouble: 2
ifloat: 2
ildouble: 2
ldouble: 2
Function: Imaginary part of "cexp_downward":
double: 1
double: 3
float: 3
idouble: 1
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
Function: Real part of "cexp_towardzero":
double: 1
double: 2
float: 2
idouble: 1
idouble: 2
ifloat: 2
ildouble: 2
ldouble: 2
Function: Imaginary part of "cexp_towardzero":
double: 1
double: 3
float: 3
idouble: 1
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
@ -876,9 +876,9 @@ ildouble: 3
ldouble: 3
Function: Imaginary part of "cexp_upward":
double: 1
double: 3
float: 2
idouble: 1
idouble: 3
ifloat: 2
ildouble: 3
ldouble: 3
@ -1052,25 +1052,25 @@ ildouble: 1
ldouble: 1
Function: "cosh_downward":
double: 1
double: 2
float: 1
idouble: 1
idouble: 2
ifloat: 1
ildouble: 1
ldouble: 2
Function: "cosh_towardzero":
double: 1
double: 2
float: 1
idouble: 1
idouble: 2
ifloat: 1
ildouble: 1
ldouble: 2
Function: "cosh_upward":
double: 1
double: 2
float: 2
idouble: 1
idouble: 2
ifloat: 2
ildouble: 1
ldouble: 3
@ -1090,9 +1090,9 @@ ildouble: 1
ldouble: 1
Function: Real part of "cpow_downward":
double: 4
double: 5
float: 8
idouble: 4
idouble: 5
ifloat: 8
ildouble: 6
ldouble: 6
@ -1106,9 +1106,9 @@ ildouble: 2
ldouble: 2
Function: Real part of "cpow_towardzero":
double: 4
double: 5
float: 8
idouble: 4
idouble: 5
ifloat: 8
ildouble: 6
ldouble: 6
@ -1150,9 +1150,9 @@ ildouble: 1
ldouble: 1
Function: Real part of "csin_downward":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
@ -1166,9 +1166,9 @@ ildouble: 2
ldouble: 2
Function: Real part of "csin_towardzero":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
@ -1220,9 +1220,9 @@ ildouble: 2
ldouble: 2
Function: Imaginary part of "csinh_downward":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
@ -1236,9 +1236,9 @@ ildouble: 2
ldouble: 2
Function: Imaginary part of "csinh_towardzero":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
ildouble: 2
ldouble: 2
@ -1492,9 +1492,9 @@ ildouble: 2
ldouble: 2
Function: "erfc_downward":
double: 3
double: 4
float: 4
idouble: 3
idouble: 4
ifloat: 4
ildouble: 5
ldouble: 5
@ -1508,9 +1508,9 @@ ildouble: 4
ldouble: 4
Function: "erfc_upward":
double: 3
double: 4
float: 4
idouble: 3
idouble: 4
ifloat: 4
ildouble: 5
ldouble: 5

View File

@ -530,9 +530,9 @@ idouble: 1
ifloat: 1
Function: Imaginary part of "ccos_downward":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
Function: Real part of "ccos_towardzero":
@ -542,9 +542,9 @@ idouble: 1
ifloat: 2
Function: Imaginary part of "ccos_towardzero":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
Function: Real part of "ccos_upward":
@ -572,29 +572,29 @@ idouble: 1
ifloat: 1
Function: Real part of "ccosh_downward":
double: 1
double: 2
float: 3
idouble: 1
idouble: 2
ifloat: 3
Function: Imaginary part of "ccosh_downward":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
Function: Real part of "ccosh_towardzero":
double: 1
float: 3
idouble: 1
ifloat: 3
Function: Imaginary part of "ccosh_towardzero":
double: 2
float: 3
idouble: 2
ifloat: 3
Function: Imaginary part of "ccosh_towardzero":
double: 3
float: 3
idouble: 3
ifloat: 3
Function: Real part of "ccosh_upward":
double: 1
float: 2
@ -620,27 +620,27 @@ idouble: 1
ifloat: 2
Function: Real part of "cexp_downward":
double: 1
double: 2
float: 2
idouble: 1
idouble: 2
ifloat: 2
Function: Imaginary part of "cexp_downward":
double: 1
double: 3
float: 3
idouble: 1
idouble: 3
ifloat: 3
Function: Real part of "cexp_towardzero":
double: 1
double: 2
float: 2
idouble: 1
idouble: 2
ifloat: 2
Function: Imaginary part of "cexp_towardzero":
double: 1
double: 3
float: 3
idouble: 1
idouble: 3
ifloat: 3
Function: Real part of "cexp_upward":
@ -650,9 +650,9 @@ idouble: 1
ifloat: 2
Function: Imaginary part of "cexp_upward":
double: 1
double: 3
float: 2
idouble: 1
idouble: 3
ifloat: 2
Function: Real part of "clog":
@ -780,21 +780,21 @@ idouble: 1
ifloat: 1
Function: "cosh_downward":
double: 1
double: 2
float: 1
idouble: 1
idouble: 2
ifloat: 1
Function: "cosh_towardzero":
double: 1
double: 2
float: 1
idouble: 1
idouble: 2
ifloat: 1
Function: "cosh_upward":
double: 1
double: 2
float: 2
idouble: 1
idouble: 2
ifloat: 2
Function: Real part of "cpow":
@ -808,9 +808,9 @@ float: 2
ifloat: 2
Function: Real part of "cpow_downward":
double: 4
double: 5
float: 8
idouble: 4
idouble: 5
ifloat: 8
Function: Imaginary part of "cpow_downward":
@ -820,9 +820,9 @@ idouble: 1
ifloat: 2
Function: Real part of "cpow_towardzero":
double: 4
double: 5
float: 8
idouble: 4
idouble: 5
ifloat: 8
Function: Imaginary part of "cpow_towardzero":
@ -850,9 +850,9 @@ idouble: 1
ifloat: 1
Function: Real part of "csin_downward":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
Function: Imaginary part of "csin_downward":
@ -862,9 +862,9 @@ idouble: 1
ifloat: 1
Function: Real part of "csin_towardzero":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
Function: Imaginary part of "csin_towardzero":
@ -902,9 +902,9 @@ idouble: 2
ifloat: 2
Function: Imaginary part of "csinh_downward":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
Function: Real part of "csinh_towardzero":
@ -914,9 +914,9 @@ idouble: 2
ifloat: 2
Function: Imaginary part of "csinh_towardzero":
double: 2
double: 3
float: 3
idouble: 2
idouble: 3
ifloat: 3
Function: Real part of "csinh_upward":
@ -1132,15 +1132,15 @@ double: 2
idouble: 2
Function: "exp10_downward":
double: 2
double: 3
float: 1
idouble: 2
idouble: 3
ifloat: 1
Function: "exp10_towardzero":
double: 2
double: 3
float: 1
idouble: 2
idouble: 3
ifloat: 1
Function: "exp10_upward":

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -1 +0,0 @@
/* Empty. Not needed. */

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -1 +0,0 @@
/* Not needed. */

View File

@ -1,48 +1,158 @@
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2018 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/***************************************************************************/
/* MODULE_NAME:uexp.c */
/* */
/* FUNCTION:uexp */
/* exp1 */
/* */
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */
/* */
/* An ultimate exp routine. Given an IEEE double machine number x */
/* it computes an almost correctly rounded (to nearest) value of e^x */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/***************************************************************************/
/* Double-precision e^x function.
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include "endian.h"
#include "uexp.h"
#include "mydefs.h"
#include "MathLib.h"
#include "uexp.tbl"
#include <stdint.h>
#include <math-barriers.h>
#include <math_private.h>
#include <fenv_private.h>
#include <fenv.h>
#include <float.h>
#include "eexp.tbl"
#include <math-narrow-eval.h>
#include "math_config.h"
#define N (1 << EXP_TABLE_BITS)
#define InvLn2N __exp_data.invln2N
#define NegLn2hiN __exp_data.negln2hiN
#define NegLn2loN __exp_data.negln2loN
#define Shift __exp_data.shift
#define T __exp_data.tab
#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by <= 460. */
sbits -= 1009ull << 52;
scale = asdouble (sbits);
y = 0x1p1009 * (scale + scale * tmp);
return check_oflow (y);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble (sbits);
y = scale + scale * tmp;
if (y < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = math_narrow_eval (hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (y);
}
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t
top12 (double x)
{
return asuint64 (x) >> 52;
}
/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
If hastail is 0 then xtail is assumed to be 0 too. */
static inline double
exp_inline (double x, double xtail, int hastail)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, z, r, r2, scale, tail, tmp;
abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop - top12 (0x1p-54)
>= top12 (512.0) - top12 (0x1p-54)))
{
if (abstop - top12 (0x1p-54) >= 0x80000000)
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return WANT_ROUNDING ? 1.0 + x : 1.0;
if (abstop >= top12 (1024.0))
{
if (asuint64 (x) == asuint64 (-INFINITY))
return 0.0;
if (abstop >= top12 (INFINITY))
return 1.0 + x;
if (asuint64 (x) >> 63)
return __math_uflow (0);
else
return __math_oflow (0);
}
/* Large x is special cased below. */
abstop = 0;
}
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
z = InvLn2N * x;
#if TOINT_INTRINSICS
kd = roundtoint (z);
ki = converttoint (z);
#else
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
kd = math_narrow_eval (z + Shift);
ki = asuint64 (kd);
kd -= Shift;
#endif
r = x + kd * NegLn2hiN + kd * NegLn2loN;
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
if (hastail)
r += xtail;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = ki << (52 - EXP_TABLE_BITS);
tail = asdouble (T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.25/N ulp larger. */
/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
if (__glibc_unlikely (abstop == 0))
return specialcase (tmp, sbits, ki);
scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
#ifndef SECTION
# define SECTION
@ -52,187 +162,7 @@ double
SECTION
__ieee754_exp (double x)
{
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
double z;
mynumber junk1, junk2, binexp = {{0, 0}};
int4 i, j, m, n, ex;
int4 k;
double retval;
{
SET_RESTORE_ROUND (FE_TONEAREST);
junk1.x = x;
m = junk1.i[HIGH_HALF];
n = m & hugeint;
if (n < 0x3ff0a2b2) /* |x| < 1.03972053527832 */
{
if (n < 0x3f862e42) /* |x| < 3/2 ln 2 */
{
if (n < 0x3ed00000) /* |x| < 1/64 ln 2 */
{
if (n < 0x3e300000) /* |x| < 2^18 */
{
retval = one + junk1.x;
goto ret;
}
retval = one + junk1.x * (one + half * junk1.x);
goto ret;
}
t = junk1.x * junk1.x;
retval = junk1.x + (t * (half + junk1.x * t2) +
(t * t) * (t3 + junk1.x * t4 + t * t5));
retval = one + retval;
goto ret;
}
/* Find the multiple of 2^-6 nearest x. */
k = n >> 20;
j = (0x00100000 | (n & 0x000fffff)) >> (0x40c - k);
j = (j - 1) & ~1;
if (m < 0)
j += 134;
z = junk1.x - TBL2[j];
t = z * z;
retval = z + (t * (half + (z * t2))
+ (t * t) * (t3 + z * t4 + t * t5));
retval = TBL2[j + 1] + TBL2[j + 1] * retval;
goto ret;
}
if (n < bigint) /* && |x| >= 1.03972053527832 */
{
y = x * log2e.x + three51.x;
bexp = y - three51.x; /* multiply the result by 2**bexp */
junk1.x = y;
eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
t = x - bexp * ln_two1.x;
y = t + three33.x;
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
junk2.x = y;
del = (t - base) - eps; /* x = bexp*ln(2) + base + del */
eps = del + del * del * (p3.x * del + p2.x);
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
j = (junk2.i[LOW_HALF] & 511) << 1;
al = coar.x[i] * fine.x[j];
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
+ coar.x[i + 1] * fine.x[j + 1]);
rem = (bet + bet * eps) + al * eps;
res = al + rem;
/* Maximum relative error is 7.8e-22 (70.1 bits).
Maximum ULP error is 0.500007. */
retval = res * binexp.x;
goto ret;
}
if (n >= badint)
{
if (n > infint)
{
retval = x + x;
goto ret;
} /* x is NaN */
if (n < infint)
{
if (x > 0)
goto ret_huge;
else
goto ret_tiny;
}
/* x is finite, cause either overflow or underflow */
if (junk1.i[LOW_HALF] != 0)
{
retval = x + x;
goto ret;
} /* x is NaN */
retval = (x > 0) ? inf.x : zero; /* |x| = inf; return either inf or 0 */
goto ret;
}
y = x * log2e.x + three51.x;
bexp = y - three51.x;
junk1.x = y;
eps = bexp * ln_two2.x;
t = x - bexp * ln_two1.x;
y = t + three33.x;
base = y - three33.x;
junk2.x = y;
del = (t - base) - eps;
eps = del + del * del * (p3.x * del + p2.x);
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
j = (junk2.i[LOW_HALF] & 511) << 1;
al = coar.x[i] * fine.x[j];
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
+ coar.x[i + 1] * fine.x[j + 1]);
rem = (bet + bet * eps) + al * eps;
res = al + rem;
cor = (al - res) + rem;
if (m >> 31)
{
ex = junk1.i[LOW_HALF];
if (res < 1.0)
{
res += res;
cor += cor;
ex -= 1;
}
if (ex >= -1022)
{
binexp.i[HIGH_HALF] = (1023 + ex) << 20;
/* Does not underflow: res >= 1.0, binexp >= 0x1p-1022
Maximum relative error is 7.8e-22 (70.1 bits).
Maximum ULP error is 0.500007. */
retval = res * binexp.x;
goto ret;
}
ex = -(1022 + ex);
binexp.i[HIGH_HALF] = (1023 - ex) << 20;
res *= binexp.x;
cor *= binexp.x;
t = 1.0 + res;
y = ((1.0 - t) + res) + cor;
res = t + y;
/* Maximum ULP error is 0.5000035. */
binexp.i[HIGH_HALF] = 0x00100000;
retval = (res - 1.0) * binexp.x;
if (retval < DBL_MIN)
{
double force_underflow = tiny * tiny;
math_force_eval (force_underflow);
}
if (retval == 0)
goto ret_tiny;
goto ret;
}
else
{
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
/* Maximum relative error is 7.8e-22 (70.1 bits).
Maximum ULP error is 0.500007. */
retval = res * binexp.x * t256.x;
if (isinf (retval))
goto ret_huge;
else
goto ret;
}
}
ret:
return retval;
ret_huge:
return hhuge * hhuge;
ret_tiny:
return tiny * tiny;
return exp_inline (x, 0, 0);
}
#ifndef __ieee754_exp
strong_alias (__ieee754_exp, __exp_finite)
@ -243,112 +173,5 @@ double
SECTION
__exp1 (double x, double xx)
{
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
mynumber junk1, junk2, binexp = {{0, 0}};
int4 i, j, m, n, ex;
junk1.x = x;
m = junk1.i[HIGH_HALF];
n = m & hugeint; /* no sign */
/* fabs (x) > 5.551112e-17 and fabs (x) < 7.080010e+02. */
if (n > smallint && n < bigint)
{
y = x * log2e.x + three51.x;
bexp = y - three51.x; /* multiply the result by 2**bexp */
junk1.x = y;
eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
t = x - bexp * ln_two1.x;
y = t + three33.x;
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
junk2.x = y;
del = (t - base) + (xx - eps); /* x = bexp*ln(2) + base + del */
eps = del + del * del * (p3.x * del + p2.x);
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
j = (junk2.i[LOW_HALF] & 511) << 1;
al = coar.x[i] * fine.x[j];
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
+ coar.x[i + 1] * fine.x[j + 1]);
rem = (bet + bet * eps) + al * eps;
res = al + rem;
/* Maximum relative error before rounding is 8.8e-22 (69.9 bits).
Maximum ULP error is 0.500008. */
return res * binexp.x;
}
if (n <= smallint)
return 1.0; /* if x->0 e^x=1 */
if (n >= badint)
{
if (n > infint)
return (zero / zero); /* x is NaN, return invalid */
if (n < infint)
return ((x > 0) ? (hhuge * hhuge) : (tiny * tiny));
/* x is finite, cause either overflow or underflow */
if (junk1.i[LOW_HALF] != 0)
return (zero / zero); /* x is NaN */
return ((x > 0) ? inf.x : zero); /* |x| = inf; return either inf or 0 */
}
y = x * log2e.x + three51.x;
bexp = y - three51.x;
junk1.x = y;
eps = bexp * ln_two2.x;
t = x - bexp * ln_two1.x;
y = t + three33.x;
base = y - three33.x;
junk2.x = y;
del = (t - base) + (xx - eps);
eps = del + del * del * (p3.x * del + p2.x);
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
j = (junk2.i[LOW_HALF] & 511) << 1;
al = coar.x[i] * fine.x[j];
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
+ coar.x[i + 1] * fine.x[j + 1]);
rem = (bet + bet * eps) + al * eps;
res = al + rem;
cor = (al - res) + rem;
if (m >> 31)
{
/* x < 0. */
ex = junk1.i[LOW_HALF];
if (res < 1.0)
{
res += res;
cor += cor;
ex -= 1;
}
if (ex >= -1022)
{
binexp.i[HIGH_HALF] = (1023 + ex) << 20;
/* Maximum ULP error is 0.500008. */
return res * binexp.x;
}
/* Denormal case - ex < -1022. */
ex = -(1022 + ex);
binexp.i[HIGH_HALF] = (1023 - ex) << 20;
res *= binexp.x;
cor *= binexp.x;
t = 1.0 + res;
y = ((1.0 - t) + res) + cor;
res = t + y;
binexp.i[HIGH_HALF] = 0x00100000;
/* Maximum ULP error is 0.500004. */
return (res - 1.0) * binexp.x;
}
else
{
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
/* Maximum ULP error is 0.500008. */
return res * binexp.x * t256.x;
}
return exp_inline (x, xx, 1);
}

View File

@ -1,7 +1,6 @@
/* Double-precision floating point 2^x.
Copyright (C) 1997-2018 Free Software Foundation, Inc.
/* Double-precision 2^x function.
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@ -17,120 +16,130 @@
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* The basic design here is from
Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
17 (1), March 1991, pp. 26-45.
It has been slightly modified to compute 2^x instead of e^x.
*/
#include <stdlib.h>
#include <float.h>
#include <ieee754.h>
#include <math.h>
#include <fenv.h>
#include <inttypes.h>
#include <stdint.h>
#include <math-barriers.h>
#include <math_private.h>
#include <fenv_private.h>
#include <math-underflow.h>
#include <math-narrow-eval.h>
#include "math_config.h"
#include "t_exp2.h"
#define N (1 << EXP_TABLE_BITS)
#define Shift __exp_data.exp2_shift
#define T __exp_data.tab
#define C1 __exp_data.exp2_poly[0]
#define C2 __exp_data.exp2_poly[1]
#define C3 __exp_data.exp2_poly[2]
#define C4 __exp_data.exp2_poly[3]
#define C5 __exp_data.exp2_poly[4]
static const double TWO1023 = 8.988465674311579539e+307;
static const double TWOM1000 = 9.3326361850321887899e-302;
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by 1. */
sbits -= 1ull << 52;
scale = asdouble (sbits);
y = 2 * (scale + scale * tmp);
return check_oflow (y);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble (sbits);
y = scale + scale * tmp;
if (y < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = math_narrow_eval (hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (y);
}
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t
top12 (double x)
{
return asuint64 (x) >> 52;
}
double
__ieee754_exp2 (double x)
{
static const double himark = (double) DBL_MAX_EXP;
static const double lomark = (double) (DBL_MIN_EXP - DBL_MANT_DIG - 1);
uint32_t abstop;
uint64_t ki, idx, top, sbits;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, r, r2, scale, tail, tmp;
/* Check for usual case. */
if (__glibc_likely (isless (x, himark)))
abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop - top12 (0x1p-54)
>= top12 (512.0) - top12 (0x1p-54)))
{
/* Exceptional cases: */
if (__glibc_unlikely (!isgreaterequal (x, lomark)))
if (abstop - top12 (0x1p-54) >= 0x80000000)
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return WANT_ROUNDING ? 1.0 + x : 1.0;
if (abstop >= top12 (1024.0))
{
if (isinf (x))
/* e^-inf == 0, with no error. */
return 0;
else
/* Underflow */
return TWOM1000 * TWOM1000;
}
static const double THREEp42 = 13194139533312.0;
int tval, unsafe;
double rx, x22, result;
union ieee754_double ex2_u, scale_u;
if (fabs (x) < DBL_EPSILON / 4.0)
return 1.0 + x;
{
SET_RESTORE_ROUND_NOEX (FE_TONEAREST);
/* 1. Argument reduction.
Choose integers ex, -256 <= t < 256, and some real
-1/1024 <= x1 <= 1024 so that
x = ex + t/512 + x1.
First, calculate rx = ex + t/512. */
rx = x + THREEp42;
rx -= THREEp42;
x -= rx; /* Compute x=x1. */
/* Compute tval = (ex*512 + t)+256.
Now, t = (tval mod 512)-256 and ex=tval/512 [that's mod, NOT %;
and /-round-to-nearest not the usual c integer /]. */
tval = (int) (rx * 512.0 + 256.0);
/* 2. Adjust for accurate table entry.
Find e so that
x = ex + t/512 + e + x2
where -1e6 < e < 1e6, and
(double)(2^(t/512+e))
is accurate to one part in 2^-64. */
/* 'tval & 511' is the same as 'tval%512' except that it's always
positive.
Compute x = x2. */
x -= exp2_deltatable[tval & 511];
/* 3. Compute ex2 = 2^(t/512+e+ex). */
ex2_u.d = exp2_accuratetable[tval & 511];
tval >>= 9;
/* x2 is an integer multiple of 2^-54; avoid intermediate
underflow from the calculation of x22 * x. */
unsafe = abs (tval) >= -DBL_MIN_EXP - 56;
ex2_u.ieee.exponent += tval >> unsafe;
scale_u.d = 1.0;
scale_u.ieee.exponent += tval - (tval >> unsafe);
/* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial,
with maximum error in [-2^-10-2^-30,2^-10+2^-30]
less than 10^-19. */
x22 = (((.0096181293647031180
* x + .055504110254308625)
* x + .240226506959100583)
* x + .69314718055994495) * ex2_u.d;
math_opt_barrier (x22);
}
/* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex). */
result = x22 * x + ex2_u.d;
if (!unsafe)
return result;
else
{
result *= scale_u.d;
math_check_force_underflow_nonneg (result);
return result;
if (asuint64 (x) == asuint64 (-INFINITY))
return 0.0;
if (abstop >= top12 (INFINITY))
return 1.0 + x;
if (!(asuint64 (x) >> 63))
return __math_oflow (0);
else if (asuint64 (x) >= asuint64 (-1075.0))
return __math_uflow (0);
}
if (2 * asuint64 (x) > 2 * asuint64 (928.0))
/* Large x is special cased below. */
abstop = 0;
}
else
/* Return x, if x is a NaN or Inf; or overflow, otherwise. */
return TWO1023 * x;
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
kd = math_narrow_eval (x + Shift);
ki = asuint64 (kd); /* k. */
kd -= Shift; /* k/N for int k. */
r = x - kd;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = ki << (52 - EXP_TABLE_BITS);
tail = asdouble (T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.5/N ulp larger. */
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
if (__glibc_unlikely (abstop == 0))
return specialcase (tmp, sbits, ki);
scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
#ifndef __ieee754_exp2
strong_alias (__ieee754_exp2, __exp2_finite)
#endif

View File

@ -0,0 +1,196 @@
/* Shared data between exp, exp2 and pow.
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "math_config.h"
#define N (1 << EXP_TABLE_BITS)
const struct exp_data __exp_data = {
// N/ln2
.invln2N = 0x1.71547652b82fep0 * N,
// -ln2/N
#if N == 128
.negln2hiN = -0x1.62e42fefa0000p-8,
.negln2loN = -0x1.cf79abc9e3b3ap-47,
#endif
// Used for rounding when !TOINT_INTRINSICS
.shift = 0x1.8p52,
// exp polynomial coefficients.
.poly = {
#if N == 128 && EXP_POLY_ORDER == 5
// abs error: 1.555*2^-66
// ulp error: 0.509 (0.511 without fma)
// if |x| < ln2/256+eps
// abs error if |x| < ln2/128: 1.7145*2^-56
0x1.ffffffffffdbdp-2,
0x1.555555555543cp-3,
0x1.55555cf172b91p-5,
0x1.1111167a4d017p-7,
#endif
},
.exp2_shift = 0x1.8p52 / N,
// exp2 polynomial coefficients.
.exp2_poly = {
#if N == 128 && EXP2_POLY_ORDER == 5
// abs error: 1.2195*2^-65
// ulp error: 0.507 (0.511 without fma)
// if |x| < 1/256
// abs error if |x| < 1/128: 1.9941*2^-56
0x1.62e42fefa39efp-1,
0x1.ebfbdff82c424p-3,
0x1.c6b08d70cf4b5p-5,
0x1.3b2abd24650ccp-7,
0x1.5d7e09b4e3a84p-10,
#endif
},
// 2^(k/N) ~= H[k]*(1 + T[k]) for int k in [0,N)
// tab[2*k] = asuint64(T[k])
// tab[2*k+1] = asuint64(H[k]) - (k << 52)/N
.tab = {
#if N == 128
0x0, 0x3ff0000000000000,
0x3c9b3b4f1a88bf6e, 0x3feff63da9fb3335,
0xbc7160139cd8dc5d, 0x3fefec9a3e778061,
0xbc905e7a108766d1, 0x3fefe315e86e7f85,
0x3c8cd2523567f613, 0x3fefd9b0d3158574,
0xbc8bce8023f98efa, 0x3fefd06b29ddf6de,
0x3c60f74e61e6c861, 0x3fefc74518759bc8,
0x3c90a3e45b33d399, 0x3fefbe3ecac6f383,
0x3c979aa65d837b6d, 0x3fefb5586cf9890f,
0x3c8eb51a92fdeffc, 0x3fefac922b7247f7,
0x3c3ebe3d702f9cd1, 0x3fefa3ec32d3d1a2,
0xbc6a033489906e0b, 0x3fef9b66affed31b,
0xbc9556522a2fbd0e, 0x3fef9301d0125b51,
0xbc5080ef8c4eea55, 0x3fef8abdc06c31cc,
0xbc91c923b9d5f416, 0x3fef829aaea92de0,
0x3c80d3e3e95c55af, 0x3fef7a98c8a58e51,
0xbc801b15eaa59348, 0x3fef72b83c7d517b,
0xbc8f1ff055de323d, 0x3fef6af9388c8dea,
0x3c8b898c3f1353bf, 0x3fef635beb6fcb75,
0xbc96d99c7611eb26, 0x3fef5be084045cd4,
0x3c9aecf73e3a2f60, 0x3fef54873168b9aa,
0xbc8fe782cb86389d, 0x3fef4d5022fcd91d,
0x3c8a6f4144a6c38d, 0x3fef463b88628cd6,
0x3c807a05b0e4047d, 0x3fef3f49917ddc96,
0x3c968efde3a8a894, 0x3fef387a6e756238,
0x3c875e18f274487d, 0x3fef31ce4fb2a63f,
0x3c80472b981fe7f2, 0x3fef2b4565e27cdd,
0xbc96b87b3f71085e, 0x3fef24dfe1f56381,
0x3c82f7e16d09ab31, 0x3fef1e9df51fdee1,
0xbc3d219b1a6fbffa, 0x3fef187fd0dad990,
0x3c8b3782720c0ab4, 0x3fef1285a6e4030b,
0x3c6e149289cecb8f, 0x3fef0cafa93e2f56,
0x3c834d754db0abb6, 0x3fef06fe0a31b715,
0x3c864201e2ac744c, 0x3fef0170fc4cd831,
0x3c8fdd395dd3f84a, 0x3feefc08b26416ff,
0xbc86a3803b8e5b04, 0x3feef6c55f929ff1,
0xbc924aedcc4b5068, 0x3feef1a7373aa9cb,
0xbc9907f81b512d8e, 0x3feeecae6d05d866,
0xbc71d1e83e9436d2, 0x3feee7db34e59ff7,
0xbc991919b3ce1b15, 0x3feee32dc313a8e5,
0x3c859f48a72a4c6d, 0x3feedea64c123422,
0xbc9312607a28698a, 0x3feeda4504ac801c,
0xbc58a78f4817895b, 0x3feed60a21f72e2a,
0xbc7c2c9b67499a1b, 0x3feed1f5d950a897,
0x3c4363ed60c2ac11, 0x3feece086061892d,
0x3c9666093b0664ef, 0x3feeca41ed1d0057,
0x3c6ecce1daa10379, 0x3feec6a2b5c13cd0,
0x3c93ff8e3f0f1230, 0x3feec32af0d7d3de,
0x3c7690cebb7aafb0, 0x3feebfdad5362a27,
0x3c931dbdeb54e077, 0x3feebcb299fddd0d,
0xbc8f94340071a38e, 0x3feeb9b2769d2ca7,
0xbc87deccdc93a349, 0x3feeb6daa2cf6642,
0xbc78dec6bd0f385f, 0x3feeb42b569d4f82,
0xbc861246ec7b5cf6, 0x3feeb1a4ca5d920f,
0x3c93350518fdd78e, 0x3feeaf4736b527da,
0x3c7b98b72f8a9b05, 0x3feead12d497c7fd,
0x3c9063e1e21c5409, 0x3feeab07dd485429,
0x3c34c7855019c6ea, 0x3feea9268a5946b7,
0x3c9432e62b64c035, 0x3feea76f15ad2148,
0xbc8ce44a6199769f, 0x3feea5e1b976dc09,
0xbc8c33c53bef4da8, 0x3feea47eb03a5585,
0xbc845378892be9ae, 0x3feea34634ccc320,
0xbc93cedd78565858, 0x3feea23882552225,
0x3c5710aa807e1964, 0x3feea155d44ca973,
0xbc93b3efbf5e2228, 0x3feea09e667f3bcd,
0xbc6a12ad8734b982, 0x3feea012750bdabf,
0xbc6367efb86da9ee, 0x3fee9fb23c651a2f,
0xbc80dc3d54e08851, 0x3fee9f7df9519484,
0xbc781f647e5a3ecf, 0x3fee9f75e8ec5f74,
0xbc86ee4ac08b7db0, 0x3fee9f9a48a58174,
0xbc8619321e55e68a, 0x3fee9feb564267c9,
0x3c909ccb5e09d4d3, 0x3feea0694fde5d3f,
0xbc7b32dcb94da51d, 0x3feea11473eb0187,
0x3c94ecfd5467c06b, 0x3feea1ed0130c132,
0x3c65ebe1abd66c55, 0x3feea2f336cf4e62,
0xbc88a1c52fb3cf42, 0x3feea427543e1a12,
0xbc9369b6f13b3734, 0x3feea589994cce13,
0xbc805e843a19ff1e, 0x3feea71a4623c7ad,
0xbc94d450d872576e, 0x3feea8d99b4492ed,
0x3c90ad675b0e8a00, 0x3feeaac7d98a6699,
0x3c8db72fc1f0eab4, 0x3feeace5422aa0db,
0xbc65b6609cc5e7ff, 0x3feeaf3216b5448c,
0x3c7bf68359f35f44, 0x3feeb1ae99157736,
0xbc93091fa71e3d83, 0x3feeb45b0b91ffc6,
0xbc5da9b88b6c1e29, 0x3feeb737b0cdc5e5,
0xbc6c23f97c90b959, 0x3feeba44cbc8520f,
0xbc92434322f4f9aa, 0x3feebd829fde4e50,
0xbc85ca6cd7668e4b, 0x3feec0f170ca07ba,
0x3c71affc2b91ce27, 0x3feec49182a3f090,
0x3c6dd235e10a73bb, 0x3feec86319e32323,
0xbc87c50422622263, 0x3feecc667b5de565,
0x3c8b1c86e3e231d5, 0x3feed09bec4a2d33,
0xbc91bbd1d3bcbb15, 0x3feed503b23e255d,
0x3c90cc319cee31d2, 0x3feed99e1330b358,
0x3c8469846e735ab3, 0x3feede6b5579fdbf,
0xbc82dfcd978e9db4, 0x3feee36bbfd3f37a,
0x3c8c1a7792cb3387, 0x3feee89f995ad3ad,
0xbc907b8f4ad1d9fa, 0x3feeee07298db666,
0xbc55c3d956dcaeba, 0x3feef3a2b84f15fb,
0xbc90a40e3da6f640, 0x3feef9728de5593a,
0xbc68d6f438ad9334, 0x3feeff76f2fb5e47,
0xbc91eee26b588a35, 0x3fef05b030a1064a,
0x3c74ffd70a5fddcd, 0x3fef0c1e904bc1d2,
0xbc91bdfbfa9298ac, 0x3fef12c25bd71e09,
0x3c736eae30af0cb3, 0x3fef199bdd85529c,
0x3c8ee3325c9ffd94, 0x3fef20ab5fffd07a,
0x3c84e08fd10959ac, 0x3fef27f12e57d14b,
0x3c63cdaf384e1a67, 0x3fef2f6d9406e7b5,
0x3c676b2c6c921968, 0x3fef3720dcef9069,
0xbc808a1883ccb5d2, 0x3fef3f0b555dc3fa,
0xbc8fad5d3ffffa6f, 0x3fef472d4a07897c,
0xbc900dae3875a949, 0x3fef4f87080d89f2,
0x3c74a385a63d07a7, 0x3fef5818dcfba487,
0xbc82919e2040220f, 0x3fef60e316c98398,
0x3c8e5a50d5c192ac, 0x3fef69e603db3285,
0x3c843a59ac016b4b, 0x3fef7321f301b460,
0xbc82d52107b43e1f, 0x3fef7c97337b9b5f,
0xbc892ab93b470dc9, 0x3fef864614f5a129,
0x3c74b604603a88d3, 0x3fef902ee78b3ff6,
0x3c83c5ec519d7271, 0x3fef9a51fbc74c83,
0xbc8ff7128fd391f0, 0x3fefa4afa2a490da,
0xbc8dae98e223747d, 0x3fefaf482d8e67f1,
0x3c8ec3bc41aa2008, 0x3fefba1bee615a27,
0x3c842b94c3a9eb32, 0x3fefc52b376bba97,
0x3c8a64a931d185ee, 0x3fefd0765b6e4540,
0xbc8e37bae43be3ed, 0x3fefdbfdad9cbe14,
0x3c77893b4d91cd9d, 0x3fefe7c1819e90d8,
0x3c5305c14160cc89, 0x3feff3c22b8f71f1,
#endif
},
};

View File

@ -108,12 +108,12 @@ __ieee754_pow (double x, double y)
a2 = (a - a1) + aa;
/* Maximum relative error RElog of log1 is 1.0e-21 (69.7 bits).
Maximum relative error REexp of __exp1 is 8.8e-22 (69.9 bits).
Maximum relative error REexp of __exp1 is 1.0e-18 (59.8 bits).
We actually compute exp ((1 + RElog) * log (x) * y) * (1 + REexp).
Since RElog/REexp are tiny and log (x) * y is at most log (DBL_MAX),
this is equivalent to pow (x, y) * (1 + 710 * RElog + REexp).
So the relative error is 710 * 1.0e-21 + 8.8e-22 = 7.1e-19
(60.2 bits). The worst-case ULP error is 0.5064. */
So the relative error is 710 * 1.0e-21 + 1.0e-18 = 1.7e-18
(59 bits). The worst-case ULP error is 0.515. */
retval = __exp1 (a1, a2);
}

View File

@ -1,172 +0,0 @@
/* EXP function tables - for use in computing double precision exponential
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* For i = 0, ..., 66,
TBL2[2*i] is a double precision number near (i+1)*2^-6, and
TBL2[2*i+1] = exp(TBL2[2*i]) to within a relative error less
than 2^-60.
For i = 67, ..., 133,
TBL2[2*i] is a double precision number near -(i+1)*2^-6, and
TBL2[2*i+1] = exp(TBL2[2*i]) to within a relative error less
than 2^-60. */
static const double TBL2[268] = {
0x1.ffffffffffc82p-7, 0x1.04080ab55de32p+0,
0x1.fffffffffffdbp-6, 0x1.08205601127ecp+0,
0x1.80000000000a0p-5, 0x1.0c49236829e91p+0,
0x1.fffffffffff79p-5, 0x1.1082b577d34e9p+0,
0x1.3fffffffffffcp-4, 0x1.14cd4fc989cd6p+0,
0x1.8000000000060p-4, 0x1.192937074e0d4p+0,
0x1.c000000000061p-4, 0x1.1d96b0eff0e80p+0,
0x1.fffffffffffd6p-4, 0x1.2216045b6f5cap+0,
0x1.1ffffffffff58p-3, 0x1.26a7793f6014cp+0,
0x1.3ffffffffff75p-3, 0x1.2b4b58b372c65p+0,
0x1.5ffffffffff00p-3, 0x1.3001ecf601ad1p+0,
0x1.8000000000020p-3, 0x1.34cb8170b583ap+0,
0x1.9ffffffffa629p-3, 0x1.39a862bd3b344p+0,
0x1.c00000000000fp-3, 0x1.3e98deaa11dcep+0,
0x1.e00000000007fp-3, 0x1.439d443f5f16dp+0,
0x1.0000000000072p-2, 0x1.48b5e3c3e81abp+0,
0x1.0fffffffffecap-2, 0x1.4de30ec211dfbp+0,
0x1.1ffffffffff8fp-2, 0x1.5325180cfacd2p+0,
0x1.300000000003bp-2, 0x1.587c53c5a7b04p+0,
0x1.4000000000034p-2, 0x1.5de9176046007p+0,
0x1.4ffffffffff89p-2, 0x1.636bb9a98322fp+0,
0x1.5ffffffffffe7p-2, 0x1.690492cbf942ap+0,
0x1.6ffffffffff78p-2, 0x1.6eb3fc55b1e45p+0,
0x1.7ffffffffff65p-2, 0x1.747a513dbef32p+0,
0x1.8ffffffffffd5p-2, 0x1.7a57ede9ea22ep+0,
0x1.9ffffffffff6ep-2, 0x1.804d30347b50fp+0,
0x1.affffffffffc3p-2, 0x1.865a7772164aep+0,
0x1.c000000000053p-2, 0x1.8c802477b0030p+0,
0x1.d00000000004dp-2, 0x1.92be99a09bf1ep+0,
0x1.e000000000096p-2, 0x1.99163ad4b1e08p+0,
0x1.efffffffffefap-2, 0x1.9f876d8e8c4fcp+0,
0x1.fffffffffffd0p-2, 0x1.a61298e1e0688p+0,
0x1.0800000000002p-1, 0x1.acb82581eee56p+0,
0x1.100000000001fp-1, 0x1.b3787dc80f979p+0,
0x1.17ffffffffff8p-1, 0x1.ba540dba56e4fp+0,
0x1.1fffffffffffap-1, 0x1.c14b431256441p+0,
0x1.27fffffffffc4p-1, 0x1.c85e8d43f7c9bp+0,
0x1.2fffffffffffdp-1, 0x1.cf8e5d84758a6p+0,
0x1.380000000001fp-1, 0x1.d6db26d16cd84p+0,
0x1.3ffffffffffd8p-1, 0x1.de455df80e39bp+0,
0x1.4800000000052p-1, 0x1.e5cd799c6a59cp+0,
0x1.4ffffffffffc8p-1, 0x1.ed73f240dc10cp+0,
0x1.5800000000013p-1, 0x1.f539424d90f71p+0,
0x1.5ffffffffffbcp-1, 0x1.fd1de6182f885p+0,
0x1.680000000002dp-1, 0x1.02912df5ce741p+1,
0x1.7000000000040p-1, 0x1.06a39207f0a2ap+1,
0x1.780000000004fp-1, 0x1.0ac660691652ap+1,
0x1.7ffffffffff6fp-1, 0x1.0ef9db467dcabp+1,
0x1.87fffffffffe5p-1, 0x1.133e45d82e943p+1,
0x1.9000000000035p-1, 0x1.1793e4652cc6dp+1,
0x1.97fffffffffb3p-1, 0x1.1bfafc47bda48p+1,
0x1.a000000000000p-1, 0x1.2073d3f1bd518p+1,
0x1.a80000000004ap-1, 0x1.24feb2f105ce2p+1,
0x1.affffffffffedp-1, 0x1.299be1f3e7f11p+1,
0x1.b7ffffffffffbp-1, 0x1.2e4baacdb6611p+1,
0x1.c00000000001dp-1, 0x1.330e587b62b39p+1,
0x1.c800000000079p-1, 0x1.37e437282d538p+1,
0x1.cffffffffff51p-1, 0x1.3ccd943268248p+1,
0x1.d7fffffffff74p-1, 0x1.41cabe304cadcp+1,
0x1.e000000000011p-1, 0x1.46dc04f4e5343p+1,
0x1.e80000000001ep-1, 0x1.4c01b9950a124p+1,
0x1.effffffffff9ep-1, 0x1.513c2e6c73196p+1,
0x1.f7fffffffffedp-1, 0x1.568bb722dd586p+1,
0x1.0000000000034p+0, 0x1.5bf0a8b1457b0p+1,
0x1.03fffffffffe2p+0, 0x1.616b5967376dfp+1,
0x1.07fffffffff4bp+0, 0x1.66fc20f0337a9p+1,
0x1.0bffffffffffdp+0, 0x1.6ca35859290f5p+1,
-0x1.fffffffffffe4p-7, 0x1.f80feabfeefa5p-1,
-0x1.ffffffffffb0bp-6, 0x1.f03f56a88b5fep-1,
-0x1.7ffffffffffa7p-5, 0x1.e88dc6afecfc5p-1,
-0x1.ffffffffffea8p-5, 0x1.e0fabfbc702b8p-1,
-0x1.3ffffffffffb3p-4, 0x1.d985c89d041acp-1,
-0x1.7ffffffffffe3p-4, 0x1.d22e6a0197c06p-1,
-0x1.bffffffffff9ap-4, 0x1.caf42e73a4c89p-1,
-0x1.fffffffffff98p-4, 0x1.c3d6a24ed822dp-1,
-0x1.1ffffffffffe9p-3, 0x1.bcd553b9d7b67p-1,
-0x1.3ffffffffffe0p-3, 0x1.b5efd29f24c2dp-1,
-0x1.5fffffffff553p-3, 0x1.af25b0a61a9f4p-1,
-0x1.7ffffffffff8bp-3, 0x1.a876812c08794p-1,
-0x1.9fffffffffe51p-3, 0x1.a1e1d93d68828p-1,
-0x1.bffffffffff6ep-3, 0x1.9b674f8f2f3f5p-1,
-0x1.dffffffffff7fp-3, 0x1.95067c7837a0cp-1,
-0x1.fffffffffff7ap-3, 0x1.8ebef9eac8225p-1,
-0x1.0fffffffffffep-2, 0x1.8890636e31f55p-1,
-0x1.1ffffffffff41p-2, 0x1.827a56188975ep-1,
-0x1.2ffffffffffbap-2, 0x1.7c7c708877656p-1,
-0x1.3fffffffffff8p-2, 0x1.769652df22f81p-1,
-0x1.4ffffffffff90p-2, 0x1.70c79eba33c2fp-1,
-0x1.5ffffffffffdbp-2, 0x1.6b0ff72deb8aap-1,
-0x1.6ffffffffff9ap-2, 0x1.656f00bf5798ep-1,
-0x1.7ffffffffff9fp-2, 0x1.5fe4615e98eb0p-1,
-0x1.8ffffffffffeep-2, 0x1.5a6fc061433cep-1,
-0x1.9fffffffffc4ap-2, 0x1.5510c67cd26cdp-1,
-0x1.affffffffff30p-2, 0x1.4fc71dc13566bp-1,
-0x1.bfffffffffff0p-2, 0x1.4a9271936fd0ep-1,
-0x1.cfffffffffff3p-2, 0x1.45726ea84fb8cp-1,
-0x1.dfffffffffff3p-2, 0x1.4066c2ff3912bp-1,
-0x1.effffffffff80p-2, 0x1.3b6f1ddd05ab9p-1,
-0x1.fffffffffffdfp-2, 0x1.368b2fc6f9614p-1,
-0x1.0800000000000p-1, 0x1.31baaa7dca843p-1,
-0x1.0ffffffffffa4p-1, 0x1.2cfd40f8bdce4p-1,
-0x1.17fffffffff0ap-1, 0x1.2852a760d5ce7p-1,
-0x1.2000000000000p-1, 0x1.23ba930c1568bp-1,
-0x1.27fffffffffbbp-1, 0x1.1f34ba78d568dp-1,
-0x1.2fffffffffe32p-1, 0x1.1ac0d5492c1dbp-1,
-0x1.37ffffffff042p-1, 0x1.165e9c3e67ef2p-1,
-0x1.3ffffffffff77p-1, 0x1.120dc93499431p-1,
-0x1.47fffffffff6bp-1, 0x1.0dce171e34ecep-1,
-0x1.4fffffffffff1p-1, 0x1.099f41ffbe588p-1,
-0x1.57ffffffffe02p-1, 0x1.058106eb8a7aep-1,
-0x1.5ffffffffffe5p-1, 0x1.017323fd9002ep-1,
-0x1.67fffffffffb0p-1, 0x1.faeab0ae9386cp-2,
-0x1.6ffffffffffb2p-1, 0x1.f30ec837503d7p-2,
-0x1.77fffffffff7fp-1, 0x1.eb5210d627133p-2,
-0x1.7ffffffffffe8p-1, 0x1.e3b40ebefcd95p-2,
-0x1.87fffffffffc8p-1, 0x1.dc3448110dae2p-2,
-0x1.8fffffffffb30p-1, 0x1.d4d244cf4ef06p-2,
-0x1.97fffffffffefp-1, 0x1.cd8d8ed8ee395p-2,
-0x1.9ffffffffffa7p-1, 0x1.c665b1e1f1e5cp-2,
-0x1.a7fffffffffdcp-1, 0x1.bf5a3b6bf18d6p-2,
-0x1.affffffffff95p-1, 0x1.b86ababeef93bp-2,
-0x1.b7fffffffffcbp-1, 0x1.b196c0e24d256p-2,
-0x1.bffffffffff32p-1, 0x1.aadde095dadf7p-2,
-0x1.c7fffffffff6ap-1, 0x1.a43fae4b047c9p-2,
-0x1.cffffffffffb6p-1, 0x1.9dbbc01e182a4p-2,
-0x1.d7fffffffffcap-1, 0x1.9751adcfa81ecp-2,
-0x1.dffffffffffcdp-1, 0x1.910110be0699ep-2,
-0x1.e7ffffffffffbp-1, 0x1.8ac983dedbc69p-2,
-0x1.effffffffff88p-1, 0x1.84aaa3b8d51a9p-2,
-0x1.f7fffffffffbbp-1, 0x1.7ea40e5d6d92ep-2,
-0x1.fffffffffffdbp-1, 0x1.78b56362cef53p-2,
-0x1.03fffffffff00p+0, 0x1.72de43ddcb1f2p-2,
-0x1.07ffffffffe6fp+0, 0x1.6d1e525bed085p-2,
-0x1.0bfffffffffd6p+0, 0x1.677532dda1c57p-2};
static const double
half = 0.5,
one = 1.0,
/* t2-t5 terms used for polynomial computation. */
t2 = 0x1.5555555555555p-3, /* 1.6666666666666665741e-1 */
t3 = 0x1.5555555555555p-5, /* 4.1666666666666664354e-2 */
t4 = 0x1.1111111111111p-7, /* 8.3333333333333332177e-3 */
t5 = 0x1.6c16c16c16c17p-10; /* 1.3888888888888889419e-3 */

View File

@ -0,0 +1,136 @@
/* Configuration for double precision math routines.
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef _MATH_CONFIG_H
#define _MATH_CONFIG_H
#include <math.h>
#include <math_private.h>
#include <stdint.h>
#ifndef WANT_ROUNDING
/* Correct special case results in non-nearest rounding modes. */
# define WANT_ROUNDING 1
#endif
#ifndef WANT_ERRNO
/* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */
# define WANT_ERRNO 1
#endif
#ifndef WANT_ERRNO_UFLOW
/* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */
# define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO)
#endif
#ifndef TOINT_INTRINSICS
/* When set, the roundtoint and converttoint functions are provided with
the semantics documented below. */
# define TOINT_INTRINSICS 0
#endif
#if TOINT_INTRINSICS
/* Round x to nearest int in all rounding modes, ties have to be rounded
consistently with converttoint so the results match. If the result
would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
static inline double_t
roundtoint (double_t x);
/* Convert x to nearest int in all rounding modes, ties have to be rounded
consistently with roundtoint. If the result is not representible in an
int32_t then the semantics is unspecified. */
static inline int32_t
converttoint (double_t x);
#endif
static inline uint64_t
asuint64 (double f)
{
union
{
double f;
uint64_t i;
} u = {f};
return u.i;
}
static inline double
asdouble (uint64_t i)
{
union
{
uint64_t i;
double f;
} u = {i};
return u.f;
}
#define NOINLINE __attribute__ ((noinline))
/* Error handling tail calls for special cases, with a sign argument.
The sign of the return value is set if the argument is non-zero. */
/* The result overflows. */
attribute_hidden double __math_oflow (uint32_t);
/* The result underflows to 0 in nearest rounding mode. */
attribute_hidden double __math_uflow (uint32_t);
/* The result underflows to 0 in some directed rounding mode only. */
attribute_hidden double __math_may_uflow (uint32_t);
/* Division by zero. */
attribute_hidden double __math_divzero (uint32_t);
/* Error handling using input checking. */
/* Invalid input unless it is a quiet NaN. */
attribute_hidden double __math_invalid (double);
/* Error handling using output checking, only for errno setting. */
/* Check if the result overflowed to infinity. */
attribute_hidden double __math_check_oflow (double);
/* Check if the result underflowed to 0. */
attribute_hidden double __math_check_uflow (double);
/* Check if the result overflowed to infinity. */
static inline double
check_oflow (double x)
{
return WANT_ERRNO ? __math_check_oflow (x) : x;
}
/* Check if the result underflowed to 0. */
static inline double
check_uflow (double x)
{
return WANT_ERRNO ? __math_check_uflow (x) : x;
}
#define EXP_TABLE_BITS 7
#define EXP_POLY_ORDER 5
#define EXP2_POLY_ORDER 5
extern const struct exp_data
{
double invln2N;
double shift;
double negln2hiN;
double negln2loN;
double poly[4]; /* Last four coefficients. */
double exp2_shift;
double exp2_poly[EXP2_POLY_ORDER];
uint64_t tab[2*(1 << EXP_TABLE_BITS)];
} __exp_data attribute_hidden;
#endif

View File

@ -0,0 +1,92 @@
/* Double-precision math error handling.
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math-barriers.h>
#include "math_config.h"
#if WANT_ERRNO
#include <errno.h>
/* NOINLINE reduces code size and avoids making math functions non-leaf
when the error handling is inlined. */
NOINLINE static double
with_errno (double y, int e)
{
errno = e;
return y;
}
#else
#define with_errno(x, e) (x)
#endif
/* NOINLINE reduces code size. */
NOINLINE static double
xflow (uint32_t sign, double y)
{
y = math_opt_barrier (sign ? -y : y) * y;
return with_errno (y, ERANGE);
}
attribute_hidden double
__math_uflow (uint32_t sign)
{
return xflow (sign, 0x1p-767);
}
#if WANT_ERRNO_UFLOW
/* Underflows to zero in some non-nearest rounding mode, setting errno
is valid even if the result is non-zero, but in the subnormal range. */
attribute_hidden double
__math_may_uflow (uint32_t sign)
{
return xflow (sign, 0x1.8p-538);
}
#endif
attribute_hidden double
__math_oflow (uint32_t sign)
{
return xflow (sign, 0x1p769);
}
attribute_hidden double
__math_divzero (uint32_t sign)
{
double y = math_opt_barrier (sign ? -1.0 : 1.0) / 0.0;
return with_errno (y, ERANGE);
}
attribute_hidden double
__math_invalid (double x)
{
double y = (x - x) / (x - x);
return isnan (x) ? y : with_errno (y, EDOM);
}
/* Check result and set errno if necessary. */
attribute_hidden double
__math_check_uflow (double y)
{
return y == 0.0 ? with_errno (y, ERANGE) : y;
}
attribute_hidden double
__math_check_oflow (double y)
{
return isinf (y) ? with_errno (y, ERANGE) : y;
}

View File

@ -1,435 +0,0 @@
/* Accurate tables for exp().
Copyright (C) 1998-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* This table has the property that, for all integers -177 <= i <= 177,
exp(i/512.0 + __exp_deltatable[abs(i)]) == __exp_atable[i+177] + r
for some -2^-64 < r < 2^-64 (abs(r) < 2^-65 if i <= 0); and that
__exp_deltatable[abs(i)] == t * 2^-60
for integer t so that abs(t) <= 8847927 * 2^8. */
#define W52 (2.22044605e-16)
#define W55 (2.77555756e-17)
#define W58 (3.46944695e-18)
#define W59 (1.73472348e-18)
#define W60 (8.67361738e-19)
const float __exp_deltatable[178] = {
0*W60, 16558714*W60, -10672149*W59, 1441652*W60,
-15787963*W55, 462888*W60, 7291806*W60, 1698880*W60,
-14375103*W58, -2021016*W60, 728829*W60, -3759654*W60,
3202123*W60, -10916019*W58, -251570*W60, -1043086*W60,
8207536*W60, -409964*W60, -5993931*W60, -475500*W60,
2237522*W60, 324170*W60, -244117*W60, 32077*W60,
123907*W60, -1019734*W60, -143*W60, 813077*W60,
743345*W60, 462461*W60, 629794*W60, 2125066*W60,
-2339121*W60, -337951*W60, 9922067*W60, -648704*W60,
149407*W60, -2687209*W60, -631608*W60, 2128280*W60,
-4882082*W60, 2001360*W60, 175074*W60, 2923216*W60,
-538947*W60, -1212193*W60, -1920926*W60, -1080577*W60,
3690196*W60, 2643367*W60, 2911937*W60, 671455*W60,
-1128674*W60, 593282*W60, -5219347*W60, -1941490*W60,
11007953*W60, 239609*W60, -2969658*W60, -1183650*W60,
942998*W60, 699063*W60, 450569*W60, -329250*W60,
-7257875*W60, -312436*W60, 51626*W60, 555877*W60,
-641761*W60, 1565666*W60, 884327*W60, -10960035*W60,
-2004679*W60, -995793*W60, -2229051*W60, -146179*W60,
-510327*W60, 1453482*W60, -3778852*W60, -2238056*W60,
-4895983*W60, 3398883*W60, -252738*W60, 1230155*W60,
346918*W60, 1109352*W60, 268941*W60, -2930483*W60,
-1036263*W60, -1159280*W60, 1328176*W60, 2937642*W60,
-9371420*W60, -6902650*W60, -1419134*W60, 1442904*W60,
-1319056*W60, -16369*W60, 696555*W60, -279987*W60,
-7919763*W60, 252741*W60, 459711*W60, -1709645*W60,
354913*W60, 6025867*W60, -421460*W60, -853103*W60,
-338649*W60, 962151*W60, 955965*W60, 784419*W60,
-3633653*W60, 2277133*W60, -8847927*W52, 1223028*W60,
5907079*W60, 623167*W60, 5142888*W60, 2599099*W60,
1214280*W60, 4870359*W60, 593349*W60, -57705*W60,
7761209*W60, -5564097*W60, 2051261*W60, 6216869*W60,
4692163*W60, 601691*W60, -5264906*W60, 1077872*W60,
-3205949*W60, 1833082*W60, 2081746*W60, -987363*W60,
-1049535*W60, 2015244*W60, 874230*W60, 2168259*W60,
-1740124*W60, -10068269*W60, -18242*W60, -3013583*W60,
580601*W60, -2547161*W60, -535689*W60, 2220815*W60,
1285067*W60, 2806933*W60, -983086*W60, -1729097*W60,
-1162985*W60, -2561904*W60, 801988*W60, 244351*W60,
1441893*W60, -7517981*W60, 271781*W60, -15021588*W60,
-2341588*W60, -919198*W60, 1642232*W60, 4771771*W60,
-1220099*W60, -3062372*W60, 628624*W60, 1278114*W60,
13083513*W60, -10521925*W60, 3180310*W60, -1659307*W60,
3543773*W60, 2501203*W60, 4151*W60, -340748*W60,
-2285625*W60, 2495202*W60
};
const double __exp_atable[355] /* __attribute__((mode(DF))) */ = {
0.707722561055888932371, /* 0x0.b52d4e46605c27ffd */
0.709106182438804188967, /* 0x0.b587fb96f75097ffb */
0.710492508843861281234, /* 0x0.b5e2d649899167ffd */
0.711881545564593931623, /* 0x0.b63dde74d36bdfffe */
0.713273297897442870573, /* 0x0.b699142f945f87ffc */
0.714667771153751463236, /* 0x0.b6f477909c4ea0001 */
0.716064970655995725059, /* 0x0.b75008aec758f8004 */
0.717464901723956938193, /* 0x0.b7abc7a0eea7e0002 */
0.718867569715736398602, /* 0x0.b807b47e1586c7ff8 */
0.720272979947266023271, /* 0x0.b863cf5d10e380003 */
0.721681137825144314297, /* 0x0.b8c01855195c37ffb */
0.723092048691992950199, /* 0x0.b91c8f7d213740004 */
0.724505717938892290800, /* 0x0.b97934ec5002d0007 */
0.725922150953176470431, /* 0x0.b9d608b9c92ea7ffc */
0.727341353138962865022, /* 0x0.ba330afcc29e98003 */
0.728763329918453162104, /* 0x0.ba903bcc8618b7ffc */
0.730188086709957051568, /* 0x0.baed9b40591ba0000 */
0.731615628948127705309, /* 0x0.bb4b296f931e30002 */
0.733045962086486091436, /* 0x0.bba8e671a05617ff9 */
0.734479091556371366251, /* 0x0.bc06d25dd49568001 */
0.735915022857225542529, /* 0x0.bc64ed4bce8f6fff9 */
0.737353761441304711410, /* 0x0.bcc33752f915d7ff9 */
0.738795312814142124419, /* 0x0.bd21b08af98e78005 */
0.740239682467211168593, /* 0x0.bd80590b65e9a8000 */
0.741686875913991849885, /* 0x0.bddf30ebec4a10000 */
0.743136898669507939299, /* 0x0.be3e38443c84e0007 */
0.744589756269486091620, /* 0x0.be9d6f2c1d32a0002 */
0.746045454254026796384, /* 0x0.befcd5bb59baf8004 */
0.747503998175051087583, /* 0x0.bf5c6c09ca84c0003 */
0.748965393601880857739, /* 0x0.bfbc322f5b18b7ff8 */
0.750429646104262104698, /* 0x0.c01c2843f776fffff */
0.751896761271877989160, /* 0x0.c07c4e5fa18b88002 */
0.753366744698445112140, /* 0x0.c0dca49a5fb18fffd */
0.754839601988627206827, /* 0x0.c13d2b0c444db0005 */
0.756315338768691947122, /* 0x0.c19de1cd798578006 */
0.757793960659406629066, /* 0x0.c1fec8f623723fffd */
0.759275473314173443536, /* 0x0.c25fe09e8a0f47ff8 */
0.760759882363831851927, /* 0x0.c2c128dedc88f8000 */
0.762247193485956486805, /* 0x0.c322a1cf7d6e7fffa */
0.763737412354726363781, /* 0x0.c3844b88cb9347ffc */
0.765230544649828092739, /* 0x0.c3e626232bd8f7ffc */
0.766726596071518051729, /* 0x0.c44831b719bf18002 */
0.768225572321911687194, /* 0x0.c4aa6e5d12d078001 */
0.769727479119219348810, /* 0x0.c50cdc2da64a37ffb */
0.771232322196981678892, /* 0x0.c56f7b41744490001 */
0.772740107296721268087, /* 0x0.c5d24bb1259e70004 */
0.774250840160724651565, /* 0x0.c6354d95640dd0007 */
0.775764526565368872643, /* 0x0.c6988106fec447fff */
0.777281172269557396602, /* 0x0.c6fbe61eb1bd0ffff */
0.778800783068235302750, /* 0x0.c75f7cf560942fffc */
0.780323364758801041312, /* 0x0.c7c345a3f1983fffe */
0.781848923151573727006, /* 0x0.c8274043594cb0002 */
0.783377464064598849602, /* 0x0.c88b6cec94b3b7ff9 */
0.784908993312207869935, /* 0x0.c8efcbb89cba27ffe */
0.786443516765346961618, /* 0x0.c9545cc0a88c70003 */
0.787981040257604625744, /* 0x0.c9b9201dc643bfffa */
0.789521569657452682047, /* 0x0.ca1e15e92a5410007 */
0.791065110849462849192, /* 0x0.ca833e3c1ae510005 */
0.792611669712891875319, /* 0x0.cae8992fd84667ffd */
0.794161252150049179450, /* 0x0.cb4e26ddbc207fff8 */
0.795713864077794763584, /* 0x0.cbb3e75f301b60003 */
0.797269511407239561694, /* 0x0.cc19dacd978cd8002 */
0.798828200086368567220, /* 0x0.cc8001427e55d7ffb */
0.800389937624300440456, /* 0x0.cce65ade24d360006 */
0.801954725261124767840, /* 0x0.cd4ce7a5de839fffb */
0.803522573691593189330, /* 0x0.cdb3a7c79a678fffd */
0.805093487311204114563, /* 0x0.ce1a9b563965ffffc */
0.806667472122675088819, /* 0x0.ce81c26b838db8000 */
0.808244534127439906441, /* 0x0.cee91d213f8428002 */
0.809824679342317166307, /* 0x0.cf50ab9144d92fff9 */
0.811407913793616542005, /* 0x0.cfb86dd5758c2ffff */
0.812994243520784198882, /* 0x0.d0206407c20e20005 */
0.814583674571603966162, /* 0x0.d0888e4223facfff9 */
0.816176213022088536960, /* 0x0.d0f0ec9eb3f7c8002 */
0.817771864936188586101, /* 0x0.d1597f377d6768002 */
0.819370636400374108252, /* 0x0.d1c24626a46eafff8 */
0.820972533518165570298, /* 0x0.d22b41865ff1e7ff9 */
0.822577562404315121269, /* 0x0.d2947170f32ec7ff9 */
0.824185729164559344159, /* 0x0.d2fdd60097795fff8 */
0.825797039949601741075, /* 0x0.d3676f4fb796d0001 */
0.827411500902565544264, /* 0x0.d3d13d78b5f68fffb */
0.829029118181348834154, /* 0x0.d43b40960546d8001 */
0.830649897953322891022, /* 0x0.d4a578c222a058000 */
0.832273846408250750368, /* 0x0.d50fe617a3ba78005 */
0.833900969738858188772, /* 0x0.d57a88b1218e90002 */
0.835531274148056613016, /* 0x0.d5e560a94048f8006 */
0.837164765846411529371, /* 0x0.d6506e1aac8078003 */
0.838801451086016225394, /* 0x0.d6bbb1204074e0001 */
0.840441336100884561780, /* 0x0.d72729d4c28518004 */
0.842084427144139224814, /* 0x0.d792d8530e12b0001 */
0.843730730487052604790, /* 0x0.d7febcb61273e7fff */
0.845380252404570153833, /* 0x0.d86ad718c308dfff9 */
0.847032999194574087728, /* 0x0.d8d727962c69d7fff */
0.848688977161248581090, /* 0x0.d943ae49621ce7ffb */
0.850348192619261200615, /* 0x0.d9b06b4d832ef8005 */
0.852010651900976245816, /* 0x0.da1d5ebdc22220005 */
0.853676361342631029337, /* 0x0.da8a88b555baa0006 */
0.855345327311054837175, /* 0x0.daf7e94f965f98004 */
0.857017556155879489641, /* 0x0.db6580a7c98f7fff8 */
0.858693054267390953857, /* 0x0.dbd34ed9617befff8 */
0.860371828028939855647, /* 0x0.dc4153ffc8b65fff9 */
0.862053883854957292436, /* 0x0.dcaf90368bfca8004 */
0.863739228154875360306, /* 0x0.dd1e0399328d87ffe */
0.865427867361348468455, /* 0x0.dd8cae435d303fff9 */
0.867119807911702289458, /* 0x0.ddfb9050b1cee8006 */
0.868815056264353846599, /* 0x0.de6aa9dced8448001 */
0.870513618890481399881, /* 0x0.ded9fb03db7320006 */
0.872215502247877139094, /* 0x0.df4983e1380657ff8 */
0.873920712852848668986, /* 0x0.dfb94490ffff77ffd */
0.875629257204025623884, /* 0x0.e0293d2f1cb01fff9 */
0.877341141814212965880, /* 0x0.e0996dd786fff0007 */
0.879056373217612985183, /* 0x0.e109d6a64f5d57ffc */
0.880774957955916648615, /* 0x0.e17a77b78e72a7ffe */
0.882496902590150900078, /* 0x0.e1eb5127722cc7ff8 */
0.884222213673356738383, /* 0x0.e25c63121fb0c8006 */
0.885950897802399772740, /* 0x0.e2cdad93ec5340003 */
0.887682961567391237685, /* 0x0.e33f30c925fb97ffb */
0.889418411575228162725, /* 0x0.e3b0ecce2d05ffff9 */
0.891157254447957902797, /* 0x0.e422e1bf727718006 */
0.892899496816652704641, /* 0x0.e4950fb9713fc7ffe */
0.894645145323828439008, /* 0x0.e50776d8b0e60fff8 */
0.896394206626591749641, /* 0x0.e57a1739c8fadfffc */
0.898146687421414902124, /* 0x0.e5ecf0f97c5798007 */
0.899902594367530173098, /* 0x0.e660043464e378005 */
0.901661934163603406867, /* 0x0.e6d3510747e150006 */
0.903424713533971135418, /* 0x0.e746d78f06cd97ffd */
0.905190939194458810123, /* 0x0.e7ba97e879c91fffc */
0.906960617885092856864, /* 0x0.e82e92309390b0007 */
0.908733756358986566306, /* 0x0.e8a2c6845544afffa */
0.910510361377119825629, /* 0x0.e9173500c8abc7ff8 */
0.912290439722343249336, /* 0x0.e98bddc30f98b0002 */
0.914073998177417412765, /* 0x0.ea00c0e84bc4c7fff */
0.915861043547953501680, /* 0x0.ea75de8db8094fffe */
0.917651582652244779397, /* 0x0.eaeb36d09d3137ffe */
0.919445622318405764159, /* 0x0.eb60c9ce4ed3dffff */
0.921243169397334638073, /* 0x0.ebd697a43995b0007 */
0.923044230737526172328, /* 0x0.ec4ca06fc7768fffa */
0.924848813220121135342, /* 0x0.ecc2e44e865b6fffb */
0.926656923710931002014, /* 0x0.ed39635df34e70006 */
0.928468569126343790092, /* 0x0.edb01dbbc2f5b7ffa */
0.930283756368834757725, /* 0x0.ee2713859aab57ffa */
0.932102492359406786818, /* 0x0.ee9e44d9342870004 */
0.933924784042873379360, /* 0x0.ef15b1d4635438005 */
0.935750638358567643520, /* 0x0.ef8d5a94f60f50007 */
0.937580062297704630580, /* 0x0.f0053f38f345cffff */
0.939413062815381727516, /* 0x0.f07d5fde3a2d98001 */
0.941249646905368053689, /* 0x0.f0f5bca2d481a8004 */
0.943089821583810716806, /* 0x0.f16e55a4e497d7ffe */
0.944933593864477061592, /* 0x0.f1e72b028a2827ffb */
0.946780970781518460559, /* 0x0.f2603cd9fb5430001 */
0.948631959382661205081, /* 0x0.f2d98b497d2a87ff9 */
0.950486566729423554277, /* 0x0.f353166f63e3dffff */
0.952344799896018723290, /* 0x0.f3ccde6a11ae37ffe */
0.954206665969085765512, /* 0x0.f446e357f66120000 */
0.956072172053890279009, /* 0x0.f4c12557964f0fff9 */
0.957941325265908139014, /* 0x0.f53ba48781046fffb */
0.959814132734539637840, /* 0x0.f5b66106555d07ffa */
0.961690601603558903308, /* 0x0.f6315af2c2027fffc */
0.963570739036113010927, /* 0x0.f6ac926b8aeb80004 */
0.965454552202857141381, /* 0x0.f728078f7c5008002 */
0.967342048278315158608, /* 0x0.f7a3ba7d66a908001 */
0.969233234469444204768, /* 0x0.f81fab543e1897ffb */
0.971128118008140250896, /* 0x0.f89bda33122c78007 */
0.973026706099345495256, /* 0x0.f9184738d4cf97ff8 */
0.974929006031422851235, /* 0x0.f994f284d3a5c0008 */
0.976835024947348973265, /* 0x0.fa11dc35bc7820002 */
0.978744770239899142285, /* 0x0.fa8f046b4fb7f8007 */
0.980658249138918636210, /* 0x0.fb0c6b449ab1cfff9 */
0.982575468959622777535, /* 0x0.fb8a10e1088fb7ffa */
0.984496437054508843888, /* 0x0.fc07f5602d79afffc */
0.986421160608523028820, /* 0x0.fc8618e0e55e47ffb */
0.988349647107594098099, /* 0x0.fd047b83571b1fffa */
0.990281903873210800357, /* 0x0.fd831d66f4c018002 */
0.992217938695037382475, /* 0x0.fe01fead3320bfff8 */
0.994157757657894713987, /* 0x0.fe811f703491e8006 */
0.996101369488558541238, /* 0x0.ff007fd5744490005 */
0.998048781093141101932, /* 0x0.ff801ffa9b9280007 */
1.000000000000000000000, /* 0x1.00000000000000000 */
1.001955033605393285965, /* 0x1.0080200565d29ffff */
1.003913889319761887310, /* 0x1.0100802aa0e80fff0 */
1.005876574715736104818, /* 0x1.01812090377240007 */
1.007843096764807100351, /* 0x1.020201541aad7fff6 */
1.009813464316352327214, /* 0x1.0283229c4c9820007 */
1.011787683565730677817, /* 0x1.030484836910a000e */
1.013765762469146736174, /* 0x1.0386272b9c077fffe */
1.015747708536026694351, /* 0x1.04080ab526304fff0 */
1.017733529475172815584, /* 0x1.048a2f412375ffff0 */
1.019723232714418781378, /* 0x1.050c94ef7ad5e000a */
1.021716825883923762690, /* 0x1.058f3be0f1c2d0004 */
1.023714316605201180057, /* 0x1.06122436442e2000e */
1.025715712440059545995, /* 0x1.06954e0fec63afff2 */
1.027721021151397406936, /* 0x1.0718b98f41c92fff6 */
1.029730250269221158939, /* 0x1.079c66d49bb2ffff1 */
1.031743407506447551857, /* 0x1.082056011a9230009 */
1.033760500517691527387, /* 0x1.08a487359ebd50002 */
1.035781537016238873464, /* 0x1.0928fa93490d4fff3 */
1.037806524719013578963, /* 0x1.09adb03b3e5b3000d */
1.039835471338248051878, /* 0x1.0a32a84e9e5760004 */
1.041868384612101516848, /* 0x1.0ab7e2eea5340ffff */
1.043905272300907460835, /* 0x1.0b3d603ca784f0009 */
1.045946142174331239262, /* 0x1.0bc3205a042060000 */
1.047991002016745332165, /* 0x1.0c4923682a086fffe */
1.050039859627715177527, /* 0x1.0ccf698898f3a000d */
1.052092722826109660856, /* 0x1.0d55f2dce5d1dfffb */
1.054149599440827866881, /* 0x1.0ddcbf86b09a5fff6 */
1.056210497317612961855, /* 0x1.0e63cfa7abc97fffd */
1.058275424318780855142, /* 0x1.0eeb23619c146fffb */
1.060344388322010722446, /* 0x1.0f72bad65714bffff */
1.062417397220589476718, /* 0x1.0ffa9627c38d30004 */
1.064494458915699715017, /* 0x1.1082b577d0eef0003 */
1.066575581342167566880, /* 0x1.110b18e893a90000a */
1.068660772440545025953, /* 0x1.1193c09c267610006 */
1.070750040138235936705, /* 0x1.121cacb4959befff6 */
1.072843392435016474095, /* 0x1.12a5dd543cf36ffff */
1.074940837302467588937, /* 0x1.132f529d59552000b */
1.077042382749654914030, /* 0x1.13b90cb250d08fff5 */
1.079148036789447484528, /* 0x1.14430bb58da3dfff9 */
1.081257807444460983297, /* 0x1.14cd4fc984c4a000e */
1.083371702785017154417, /* 0x1.1557d910df9c7000e */
1.085489730853784307038, /* 0x1.15e2a7ae292d30002 */
1.087611899742884524772, /* 0x1.166dbbc422d8c0004 */
1.089738217537583819804, /* 0x1.16f9157586772ffff */
1.091868692357631731528, /* 0x1.1784b4e533cacfff0 */
1.094003332327482702577, /* 0x1.18109a360fc23fff2 */
1.096142145591650907149, /* 0x1.189cc58b155a70008 */
1.098285140311341168136, /* 0x1.1929370751ea50002 */
1.100432324652149906842, /* 0x1.19b5eecdd79cefff0 */
1.102583706811727015711, /* 0x1.1a42ed01dbdba000e */
1.104739294993289488947, /* 0x1.1ad031c69a2eafff0 */
1.106899097422573863281, /* 0x1.1b5dbd3f66e120003 */
1.109063122341542140286, /* 0x1.1beb8f8fa8150000b */
1.111231377994659874592, /* 0x1.1c79a8dac6ad0fff4 */
1.113403872669181282605, /* 0x1.1d0809445a97ffffc */
1.115580614653132185460, /* 0x1.1d96b0effc9db000e */
1.117761612217810673898, /* 0x1.1e25a001332190000 */
1.119946873713312474002, /* 0x1.1eb4d69bdb2a9fff1 */
1.122136407473298902480, /* 0x1.1f4454e3bfae00006 */
1.124330221845670330058, /* 0x1.1fd41afcbb48bfff8 */
1.126528325196519908506, /* 0x1.2064290abc98c0001 */
1.128730725913251964394, /* 0x1.20f47f31c9aa7000f */
1.130937432396844410880, /* 0x1.21851d95f776dfff0 */
1.133148453059692917203, /* 0x1.2216045b6784efffa */
1.135363796355857157764, /* 0x1.22a733a6692ae0004 */
1.137583470716100553249, /* 0x1.2338ab9b3221a0004 */
1.139807484614418608939, /* 0x1.23ca6c5e27aadfff7 */
1.142035846532929888057, /* 0x1.245c7613b7f6c0004 */
1.144268564977221958089, /* 0x1.24eec8e06b035000c */
1.146505648458203463465, /* 0x1.258164e8cea85fff8 */
1.148747105501412235671, /* 0x1.26144a5180d380009 */
1.150992944689175123667, /* 0x1.26a7793f5de2efffa */
1.153243174560058870217, /* 0x1.273af1d712179000d */
1.155497803703682491111, /* 0x1.27ceb43d81d42fff1 */
1.157756840726344771440, /* 0x1.2862c097a3d29000c */
1.160020294239811677834, /* 0x1.28f7170a74cf4fff1 */
1.162288172883275239058, /* 0x1.298bb7bb0faed0004 */
1.164560485298402170388, /* 0x1.2a20a2ce920dffff4 */
1.166837240167474476460, /* 0x1.2ab5d86a4631ffff6 */
1.169118446164539637555, /* 0x1.2b4b58b36d5220009 */
1.171404112007080167155, /* 0x1.2be123cf786790002 */
1.173694246390975415341, /* 0x1.2c7739e3c0aac000d */
1.175988858069749065617, /* 0x1.2d0d9b15deb58fff6 */
1.178287955789017793514, /* 0x1.2da4478b627040002 */
1.180591548323240091978, /* 0x1.2e3b3f69fb794fffc */
1.182899644456603782686, /* 0x1.2ed282d76421d0004 */
1.185212252993012693694, /* 0x1.2f6a11f96c685fff3 */
1.187529382762033236513, /* 0x1.3001ecf60082ffffa */
1.189851042595508889847, /* 0x1.309a13f30f28a0004 */
1.192177241354644978669, /* 0x1.31328716a758cfff7 */
1.194507987909589896687, /* 0x1.31cb4686e1e85fffb */
1.196843291137896336843, /* 0x1.32645269dfd04000a */
1.199183159977805113226, /* 0x1.32fdaae604c39000f */
1.201527603343041317132, /* 0x1.339750219980dfff3 */
1.203876630171082595692, /* 0x1.3431424300e480007 */
1.206230249419600664189, /* 0x1.34cb8170b3fee000e */
1.208588470077065268869, /* 0x1.35660dd14dbd4fffc */
1.210951301134513435915, /* 0x1.3600e78b6bdfc0005 */
1.213318751604272271958, /* 0x1.369c0ec5c38ebfff2 */
1.215690830512196507537, /* 0x1.373783a718d29000f */
1.218067546930756250870, /* 0x1.37d3465662f480007 */
1.220448909901335365929, /* 0x1.386f56fa770fe0008 */
1.222834928513994334780, /* 0x1.390bb5ba5fc540004 */
1.225225611877684750397, /* 0x1.39a862bd3c7a8fff3 */
1.227620969111500981433, /* 0x1.3a455e2a37bcafffd */
1.230021009336254911271, /* 0x1.3ae2a8287dfbefff6 */
1.232425741726685064472, /* 0x1.3b8040df76f39fffa */
1.234835175450728295084, /* 0x1.3c1e287682e48fff1 */
1.237249319699482263931, /* 0x1.3cbc5f151b86bfff8 */
1.239668183679933477545, /* 0x1.3d5ae4e2cc0a8000f */
1.242091776620540377629, /* 0x1.3df9ba07373bf0006 */
1.244520107762172811399, /* 0x1.3e98deaa0d8cafffe */
1.246953186383919165383, /* 0x1.3f3852f32973efff0 */
1.249391019292643401078, /* 0x1.3fd816ffc72b90001 */
1.251833623164381181797, /* 0x1.40782b17863250005 */
1.254280999953110153911, /* 0x1.41188f42caf400000 */
1.256733161434815393410, /* 0x1.41b943b42945bfffd */
1.259190116985283935980, /* 0x1.425a4893e5f10000a */
1.261651875958665236542, /* 0x1.42fb9e0a2df4c0009 */
1.264118447754797758244, /* 0x1.439d443f608c4fff9 */
1.266589841787181258708, /* 0x1.443f3b5bebf850008 */
1.269066067469190262045, /* 0x1.44e183883e561fff7 */
1.271547134259576328224, /* 0x1.45841cecf7a7a0001 */
1.274033051628237434048, /* 0x1.462707b2c43020009 */
1.276523829025464573684, /* 0x1.46ca44023aa410007 */
1.279019475999373156531, /* 0x1.476dd2045d46ffff0 */
1.281520002043128991825, /* 0x1.4811b1e1f1f19000b */
1.284025416692967214122, /* 0x1.48b5e3c3edd74fff4 */
1.286535729509738823464, /* 0x1.495a67d3613c8fff7 */
1.289050950070396384145, /* 0x1.49ff3e396e19d000b */
1.291571087985403654081, /* 0x1.4aa4671f5b401fff1 */
1.294096152842774794011, /* 0x1.4b49e2ae56d19000d */
1.296626154297237043484, /* 0x1.4befb10fd84a3fff4 */
1.299161101984141142272, /* 0x1.4c95d26d41d84fff8 */
1.301701005575179204100, /* 0x1.4d3c46f01d9f0fff3 */
1.304245874766450485904, /* 0x1.4de30ec21097d0003 */
1.306795719266019562007, /* 0x1.4e8a2a0ccce3d0002 */
1.309350548792467483458, /* 0x1.4f3198fa10346fff5 */
1.311910373099227200545, /* 0x1.4fd95bb3be8cffffd */
1.314475201942565174546, /* 0x1.50817263bf0e5fffb */
1.317045045107389400535, /* 0x1.5129dd3418575000e */
1.319619912422941299109, /* 0x1.51d29c4f01c54ffff */
1.322199813675649204855, /* 0x1.527bafde83a310009 */
1.324784758729532718739, /* 0x1.5325180cfb8b3fffd */
1.327374757430096474625, /* 0x1.53ced504b2bd0fff4 */
1.329969819671041886272, /* 0x1.5478e6f02775e0001 */
1.332569955346704748651, /* 0x1.55234df9d8a59fff8 */
1.335175174370685002822, /* 0x1.55ce0a4c5a6a9fff6 */
1.337785486688218616860, /* 0x1.56791c1263abefff7 */
1.340400902247843806217, /* 0x1.57248376aef21fffa */
1.343021431036279800211, /* 0x1.57d040a420c0bfff3 */
1.345647083048053138662, /* 0x1.587c53c5a630f0002 */
1.348277868295411074918, /* 0x1.5928bd063fd7bfff9 */
1.350913796821875845231, /* 0x1.59d57c9110ad60006 */
1.353554878672557082439, /* 0x1.5a8292913d68cfffc */
1.356201123929036356254, /* 0x1.5b2fff3212db00007 */
1.358852542671913132777, /* 0x1.5bddc29edcc06fff3 */
1.361509145047255398051, /* 0x1.5c8bdd032ed16000f */
1.364170941142184734180, /* 0x1.5d3a4e8a5bf61fff4 */
1.366837941171020309735, /* 0x1.5de9176042f1effff */
1.369510155261156381121, /* 0x1.5e9837b062f4e0005 */
1.372187593620959988833, /* 0x1.5f47afa69436cfff1 */
1.374870266463378287715, /* 0x1.5ff77f6eb3f8cfffd */
1.377558184010425845733, /* 0x1.60a7a734a9742fff9 */
1.380251356531521533853, /* 0x1.6158272490016000c */
1.382949794301995272203, /* 0x1.6208ff6a8978a000f */
1.385653507605306700170, /* 0x1.62ba3032c0a280004 */
1.388362506772382154503, /* 0x1.636bb9a994784000f */
1.391076802081129493127, /* 0x1.641d9bfb29a7bfff6 */
1.393796403973427855412, /* 0x1.64cfd7545928b0002 */
1.396521322756352656542, /* 0x1.65826be167badfff8 */
1.399251568859207761660, /* 0x1.663559cf20826000c */
1.401987152677323100733, /* 0x1.66e8a14a29486fffc */
1.404728084651919228815, /* 0x1.679c427f5a4b6000b */
1.407474375243217723560, /* 0x1.68503d9ba0add000f */
1.410226034922914983815, /* 0x1.690492cbf6303fff9 */
1.412983074197955213304, /* 0x1.69b9423d7b548fff6 */
};

View File

@ -1,585 +0,0 @@
/* These values are accurate to 52+12 bits when represented as
a double. */
static const double exp2_accuratetable[512] = {
0.707106781187802013759 /* 0x0.b504f333fb3f80007 */,
0.708064712808760599040 /* 0x0.b543baa0f71b38000 */,
0.709023942160304065938 /* 0x0.b58297d3a8d518002 */,
0.709984470998547667624 /* 0x0.b5c18ad39b4ba0001 */,
0.710946301084324217006 /* 0x0.b60093a85e8d30001 */,
0.711909434180505784637 /* 0x0.b63fb25984e628005 */,
0.712873872052760648733 /* 0x0.b67ee6eea3b5f8003 */,
0.713839616467838999908 /* 0x0.b6be316f518c98001 */,
0.714806669195984345523 /* 0x0.b6fd91e328d148007 */,
0.715775032009894562898 /* 0x0.b73d0851c69e20002 */,
0.716744706683768884058 /* 0x0.b77c94c2c9b3d0003 */,
0.717715694995770148178 /* 0x0.b7bc373dd52eb0003 */,
0.718687998724665488852 /* 0x0.b7fbefca8cd530004 */,
0.719661619652575468291 /* 0x0.b83bbe70981da8001 */,
0.720636559564428180758 /* 0x0.b87ba337a194b0006 */,
0.721612820246623098989 /* 0x0.b8bb9e27556508004 */,
0.722590403488338473025 /* 0x0.b8fbaf4762c798006 */,
0.723569311081411870036 /* 0x0.b93bd69f7be1d0000 */,
0.724549544820974333906 /* 0x0.b97c1437567828007 */,
0.725531106502312561633 /* 0x0.b9bc6816a87ae8002 */,
0.726513997924421062181 /* 0x0.b9fcd2452bee00000 */,
0.727498220889519875430 /* 0x0.ba3d52ca9e6148002 */,
0.728483777200401694265 /* 0x0.ba7de9aebe05c8003 */,
0.729470668664712662563 /* 0x0.babe96f94e62a8002 */,
0.730458897090379144517 /* 0x0.baff5ab2134df0004 */,
0.731448464287988597833 /* 0x0.bb4034e0d38ab0000 */,
0.732439372072965166897 /* 0x0.bb81258d5b2d60001 */,
0.733431622260458326859 /* 0x0.bbc22cbf75fd28001 */,
0.734425216668725511232 /* 0x0.bc034a7ef32c00001 */,
0.735420157118880535324 /* 0x0.bc447ed3a50fe0005 */,
0.736416445434497690674 /* 0x0.bc85c9c560b350001 */,
0.737414083433310718618 /* 0x0.bcc72b5bf4b4e0000 */,
0.738413072966152328496 /* 0x0.bd08a39f5417a8007 */,
0.739413415848264365956 /* 0x0.bd4a32974abcd0002 */,
0.740415113911250699637 /* 0x0.bd8bd84bb68300002 */,
0.741418168994518067562 /* 0x0.bdcd94c47ddd30003 */,
0.742422582936659858376 /* 0x0.be0f6809865968006 */,
0.743428357577745613238 /* 0x0.be515222b72530003 */,
0.744435494762383687126 /* 0x0.be935317fc6ba0002 */,
0.745443996335090397492 /* 0x0.bed56af1423de8001 */,
0.746453864145572798553 /* 0x0.bf1799b67a6248007 */,
0.747465100043933849969 /* 0x0.bf59df6f970e70002 */,
0.748477705883256683178 /* 0x0.bf9c3c248dbee8001 */,
0.749491683518965001732 /* 0x0.bfdeafdd568308000 */,
0.750507034813367890373 /* 0x0.c0213aa1f0fc38004 */,
0.751523761622240105153 /* 0x0.c063dc7a559ca0003 */,
0.752541865811731880422 /* 0x0.c0a6956e883ed8000 */,
0.753561349247157341600 /* 0x0.c0e965868bd220006 */,
0.754582213796583967110 /* 0x0.c12c4cca664cb8002 */,
0.755604461332336940791 /* 0x0.c16f4b42225350006 */,
0.756628093726406381068 /* 0x0.c1b260f5ca2c48002 */,
0.757653112855631305506 /* 0x0.c1f58ded6d72d8001 */,
0.758679520599333412360 /* 0x0.c238d2311e7d08001 */,
0.759707318837184453227 /* 0x0.c27c2dc8f00368005 */,
0.760736509456435783249 /* 0x0.c2bfa0bcfd1400000 */,
0.761767094336480043995 /* 0x0.c3032b155818d0000 */,
0.762799075372231349951 /* 0x0.c346ccda248cc0001 */,
0.763832454453522768941 /* 0x0.c38a8613805488005 */,
0.764867233473625618441 /* 0x0.c3ce56c98d1ca8005 */,
0.765903414329434539816 /* 0x0.c4123f04708d80002 */,
0.766940998920452976510 /* 0x0.c4563ecc532dc0001 */,
0.767979989148100838946 /* 0x0.c49a56295f9f88006 */,
0.769020386915772125040 /* 0x0.c4de8523c2b0a0001 */,
0.770062194131770905170 /* 0x0.c522cbc3ae94e0003 */,
0.771105412703856241146 /* 0x0.c5672a1154e6b8004 */,
0.772150044545352520777 /* 0x0.c5aba014ed5f18003 */,
0.773196091570364285606 /* 0x0.c5f02dd6b09288003 */,
0.774243555696622731700 /* 0x0.c634d35edb1260003 */,
0.775292438842697939641 /* 0x0.c67990b5aa5c18004 */,
0.776342742931542928455 /* 0x0.c6be65e360bed8000 */,
0.777394469888802008854 /* 0x0.c70352f0437f50004 */,
0.778447621641124243320 /* 0x0.c74857e498fd00006 */,
0.779502200118583399303 /* 0x0.c78d74c8ab5b60000 */,
0.780558207255445668515 /* 0x0.c7d2a9a4c959f8000 */,
0.781615644985491186966 /* 0x0.c817f681412f80002 */,
0.782674515247667956808 /* 0x0.c85d5b6666c150006 */,
0.783734819983036512536 /* 0x0.c8a2d85c904760003 */,
0.784796561133562109454 /* 0x0.c8e86d6c14f850002 */,
0.785859740645942328471 /* 0x0.c92e1a9d513ec8002 */,
0.786924360469767103536 /* 0x0.c973dff8a4b390007 */,
0.787990422552312885808 /* 0x0.c9b9bd866c6440007 */,
0.789057928854407064640 /* 0x0.c9ffb34f1444b0001 */,
0.790126881326406182996 /* 0x0.ca45c15afcc570001 */,
0.791197281930050233534 /* 0x0.ca8be7b292db38000 */,
0.792269132620954885659 /* 0x0.cad2265e3cbee8000 */,
0.793342435380726906957 /* 0x0.cb187d667d3d38006 */,
0.794417192158282659010 /* 0x0.cb5eecd3b33158006 */,
0.795493404931386649540 /* 0x0.cba574ae5d2e80001 */,
0.796571075671306805268 /* 0x0.cbec14fef2a348004 */,
0.797650206352955137846 /* 0x0.cc32cdcdef0000000 */,
0.798730798954342069432 /* 0x0.cc799f23d11d18000 */,
0.799812855456121796232 /* 0x0.ccc089091abb28004 */,
0.800896377841454287795 /* 0x0.cd078b86505c18003 */,
0.801981368096190028208 /* 0x0.cd4ea6a3f97720007 */,
0.803067828208752554378 /* 0x0.cd95da6aa057b8007 */,
0.804155760170129796375 /* 0x0.cddd26e2d21b28001 */,
0.805245165974338261710 /* 0x0.ce248c151f3330001 */,
0.806336047619038653883 /* 0x0.ce6c0a0a1c1350001 */,
0.807428407102107836855 /* 0x0.ceb3a0ca5d6be0006 */,
0.808522246427078927792 /* 0x0.cefb505e7e2550007 */,
0.809617567597010201484 /* 0x0.cf4318cf18a268002 */,
0.810714372621179513182 /* 0x0.cf8afa24ce1c98004 */,
0.811812663508675536069 /* 0x0.cfd2f4683f9810005 */,
0.812912442272482604912 /* 0x0.d01b07a2126188003 */,
0.814013710929394895825 /* 0x0.d06333daeff618001 */,
0.815116471495287542325 /* 0x0.d0ab791b80d028006 */,
0.816220725993571205593 /* 0x0.d0f3d76c75b330000 */,
0.817326476447408967199 /* 0x0.d13c4ed67f1cf8000 */,
0.818433724883006474832 /* 0x0.d184df6250e3b0001 */,
0.819542473330909460055 /* 0x0.d1cd8918a3a328004 */,
0.820652723822034690935 /* 0x0.d2164c02305fa0002 */,
0.821764478391968422618 /* 0x0.d25f2827b53fb0005 */,
0.822877739077315761840 /* 0x0.d2a81d91f188b8000 */,
0.823992507918612782109 /* 0x0.d2f12c49a8d290005 */,
0.825108786960634610365 /* 0x0.d33a5457a35e40003 */,
0.826226578247117093869 /* 0x0.d38395c4a84848007 */,
0.827345883828319528258 /* 0x0.d3ccf09985d958004 */,
0.828466705754248966560 /* 0x0.d41664df0a1320005 */,
0.829589046080638992111 /* 0x0.d45ff29e094330000 */,
0.830712906863802391671 /* 0x0.d4a999df585a20005 */,
0.831838290163696481037 /* 0x0.d4f35aabd04a60006 */,
0.832965198041969556729 /* 0x0.d53d350c4be258002 */,
0.834093632565442222342 /* 0x0.d5872909aba050007 */,
0.835223595802037643865 /* 0x0.d5d136acd138e8006 */,
0.836355089820669306292 /* 0x0.d61b5dfe9f7780004 */,
0.837488116698010487424 /* 0x0.d6659f0801afa8005 */,
0.838622678508982644113 /* 0x0.d6aff9d1e147d8004 */,
0.839758777333464490056 /* 0x0.d6fa6e652d19e0000 */,
0.840896415254110962690 /* 0x0.d744fccad70d00003 */,
0.842035594355151628676 /* 0x0.d78fa50bd2c3b0000 */,
0.843176316724478125433 /* 0x0.d7da673117e730007 */,
0.844318584453106590905 /* 0x0.d8254343a19038003 */,
0.845462399634695271912 /* 0x0.d870394c6dbf30003 */,
0.846607764365415071965 /* 0x0.d8bb49547d37c0004 */,
0.847754680744707056494 /* 0x0.d9067364d45608003 */,
0.848903150873708822763 /* 0x0.d951b7867953b0006 */,
0.850053176859071113491 /* 0x0.d99d15c2787a30006 */,
0.851204760807439786431 /* 0x0.d9e88e21de11a0003 */,
0.852357904828824897169 /* 0x0.da3420adba1508003 */,
0.853512611037803181642 /* 0x0.da7fcd6f2184d8005 */,
0.854668881550406100980 /* 0x0.dacb946f2afaf8000 */,
0.855826718478671755185 /* 0x0.db1775b6e8ad48000 */,
0.856986123964844970247 /* 0x0.db63714f8e0818006 */,
0.858147100114499461478 /* 0x0.dbaf87422625b8000 */,
0.859309649060962410524 /* 0x0.dbfbb797daa460002 */,
0.860473772936213743282 /* 0x0.dc480259d3a710001 */,
0.861639473872910177676 /* 0x0.dc9467913a0f48006 */,
0.862806754008130227807 /* 0x0.dce0e7473b9b28003 */,
0.863975615481124226159 /* 0x0.dd2d8185086c20006 */,
0.865146060433749419813 /* 0x0.dd7a3653d38168005 */,
0.866318091005120138881 /* 0x0.ddc705bcccd628000 */,
0.867491709362415264210 /* 0x0.de13efc9434100004 */,
0.868666917636779056818 /* 0x0.de60f4825df9b8005 */,
0.869843717989716047624 /* 0x0.deae13f16599c0003 */,
0.871022112578215268471 /* 0x0.defb4e1f9dc388002 */,
0.872202103559697183859 /* 0x0.df48a3164a92f0001 */,
0.873383693097737778847 /* 0x0.df9612deb6e878007 */,
0.874566883362160263365 /* 0x0.dfe39d82348310001 */,
0.875751676517234511901 /* 0x0.e031430a0f0688000 */,
0.876938074732511840819 /* 0x0.e07f037f97e548001 */,
0.878126080186539592654 /* 0x0.e0ccdeec2a75e0006 */,
0.879315695055312818168 /* 0x0.e11ad5591f4078001 */,
0.880506921518618312932 /* 0x0.e168e6cfd2f880004 */,
0.881699761760385225541 /* 0x0.e1b71359a6df60003 */,
0.882894217964411143207 /* 0x0.e2055afffc1178000 */,
0.884090292325693805080 /* 0x0.e253bdcc3ffbb8001 */,
0.885287987031581180559 /* 0x0.e2a23bc7d7a1d8002 */,
0.886487304278189114386 /* 0x0.e2f0d4fc31ab80004 */,
0.887688246263368285778 /* 0x0.e33f8972bea8a8005 */,
0.888890815189881999840 /* 0x0.e38e5934f49010007 */,
0.890095013257492739835 /* 0x0.e3dd444c460bd0007 */,
0.891300842677948068626 /* 0x0.e42c4ac232f380000 */,
0.892508305659222567226 /* 0x0.e47b6ca036f8b8005 */,
0.893717404414979710310 /* 0x0.e4caa9efd40e58002 */,
0.894928141160697743242 /* 0x0.e51a02ba8e2610007 */,
0.896140518115016826430 /* 0x0.e5697709ecab90000 */,
0.897354537501434679237 /* 0x0.e5b906e77c61d0006 */,
0.898570201543732793877 /* 0x0.e608b25cca5ba8005 */,
0.899787512470129891014 /* 0x0.e6587973688ce8002 */,
0.901006472512270728537 /* 0x0.e6a85c34ecadb8000 */,
0.902227083902570559127 /* 0x0.e6f85aaaed4f20006 */,
0.903449348881299796343 /* 0x0.e74874df09a530003 */,
0.904673269686823378091 /* 0x0.e798aadadecba0007 */,
0.905898848559668845585 /* 0x0.e7e8fca80c3ee0001 */,
0.907126087750156795426 /* 0x0.e8396a503c3fe0005 */,
0.908354989505901100354 /* 0x0.e889f3dd1615b0002 */,
0.909585556079328783087 /* 0x0.e8da9958465228007 */,
0.910817789726044213523 /* 0x0.e92b5acb7d0578001 */,
0.912051692703457872481 /* 0x0.e97c38406c3c30003 */,
0.913287267274154990210 /* 0x0.e9cd31c0cbb370001 */,
0.914524515702244578108 /* 0x0.ea1e475654d540000 */,
0.915763440256158633982 /* 0x0.ea6f790ac5cc78001 */,
0.917004043205012497909 /* 0x0.eac0c6e7dd8448007 */,
0.918246326823137892807 /* 0x0.eb1230f760a428007 */,
0.919490293387826285200 /* 0x0.eb63b7431714a8007 */,
0.920735945178816406225 /* 0x0.ebb559d4cb6f30007 */,
0.921983284479243714322 /* 0x0.ec0718b64c0940002 */,
0.923232313574974705626 /* 0x0.ec58f3f16a3910002 */,
0.924483034755387955725 /* 0x0.ecaaeb8ffb3168005 */,
0.925735450311948926408 /* 0x0.ecfcff9bd67078000 */,
0.926989562542820610982 /* 0x0.ed4f301edad1a0007 */,
0.928245373740515189457 /* 0x0.eda17d22e0f9b0001 */,
0.929502886213858126045 /* 0x0.edf3e6b1d37d40001 */,
0.930762102264245716494 /* 0x0.ee466cd594c5c8005 */,
0.932023024199046146183 /* 0x0.ee990f980dcdb0005 */,
0.933285654329454095216 /* 0x0.eeebcf032bc470007 */,
0.934549994971191289044 /* 0x0.ef3eab20e0d3c0001 */,
0.935816048439005676599 /* 0x0.ef91a3fb1e1340004 */,
0.937083817055075818404 /* 0x0.efe4b99bdcc618006 */,
0.938353303143720007819 /* 0x0.f037ec0d1889b8000 */,
0.939624509028518128972 /* 0x0.f08b3b58cc2bb8006 */,
0.940897437041863904384 /* 0x0.f0dea788fc2a90000 */,
0.942172089516254085427 /* 0x0.f13230a7ad21b8003 */,
0.943448468787511540534 /* 0x0.f185d6bee754e0006 */,
0.944726577195256100890 /* 0x0.f1d999d8b73478005 */,
0.946006417082291717338 /* 0x0.f22d79ff2cb130000 */,
0.947287990793413858827 /* 0x0.f281773c59ec48007 */,
0.948571300678290207925 /* 0x0.f2d5919a566268001 */,
0.949856349088629370320 /* 0x0.f329c9233bceb0001 */,
0.951143138379053731954 /* 0x0.f37e1de1272068002 */,
0.952431670908847949364 /* 0x0.f3d28fde3a6728006 */,
0.953721949039916472305 /* 0x0.f4271f249a93f0001 */,
0.955013975135367898520 /* 0x0.f47bcbbe6deab0001 */,
0.956307751564417496418 /* 0x0.f4d095b5e16638004 */,
0.957603280698967163097 /* 0x0.f5257d1524f590006 */,
0.958900564911197350604 /* 0x0.f57a81e668d628000 */,
0.960199606581278120057 /* 0x0.f5cfa433e60e50007 */,
0.961500408088936442422 /* 0x0.f624e407d527a0007 */,
0.962802971817578789903 /* 0x0.f67a416c72b760006 */,
0.964107300155846558292 /* 0x0.f6cfbc6c011458004 */,
0.965413395493874504368 /* 0x0.f7255510c439a8002 */,
0.966721260225105960572 /* 0x0.f77b0b6503c5b8006 */,
0.968030896745834645873 /* 0x0.f7d0df730a7940005 */,
0.969342307458006424716 /* 0x0.f826d145294be8003 */,
0.970655494764855020231 /* 0x0.f87ce0e5b29fd8000 */,
0.971970461071268720958 /* 0x0.f8d30e5efaa8f0004 */,
0.973287208789983648852 /* 0x0.f92959bb5e3c08001 */,
0.974605740331924708124 /* 0x0.f97fc305383028004 */,
0.975926058115625383329 /* 0x0.f9d64a46ebb9f8004 */,
0.977248164559556209435 /* 0x0.fa2cef8adbfc68004 */,
0.978572062087848637573 /* 0x0.fa83b2db7253d0007 */,
0.979897753126343307191 /* 0x0.fada944319fda0005 */,
0.981225240104636631254 /* 0x0.fb3193cc425870002 */,
0.982554525455618277276 /* 0x0.fb88b1815e61d0003 */,
0.983885611617111077747 /* 0x0.fbdfed6ce683e0007 */,
0.985218501026348891812 /* 0x0.fc3747995282f8006 */,
0.986553196127724962867 /* 0x0.fc8ec0112202a0005 */,
0.987889699367056062238 /* 0x0.fce656ded63710002 */,
0.989228013193998778636 /* 0x0.fd3e0c0cf48d50005 */,
0.990568140061241164686 /* 0x0.fd95dfa605c7b0003 */,
0.991910082424819927754 /* 0x0.fdedd1b4965710004 */,
0.993253842749249660216 /* 0x0.fe45e2433bfea0000 */,
0.994599423484053835071 /* 0x0.fe9e115c7c05f0005 */,
0.995946827107488830167 /* 0x0.fef65f0afb4c28006 */,
0.997296056085008264529 /* 0x0.ff4ecb59509cc8001 */,
0.998647112892057764479 /* 0x0.ffa756521dbfd0007 */,
1.000000000000000000000 /* 0x1.00000000000000000 */,
1.001354719891689004659 /* 0x1.0058c86da14aa0005 */,
1.002711275050312211844 /* 0x1.00b1afa5abead0003 */,
1.004069667960743483835 /* 0x1.010ab5b2cc0660009 */,
1.005429901112333324093 /* 0x1.0163da9fb2af30008 */,
1.006791976999887428009 /* 0x1.01bd1e7716f6a0008 */,
1.008155898118476168101 /* 0x1.02168143b03890006 */,
1.009521666967782227439 /* 0x1.027003103ae320002 */,
1.010889286051850133326 /* 0x1.02c9a3e7783030002 */,
1.012258757875921233497 /* 0x1.032363d42aaa8000e */,
1.013630084952214405194 /* 0x1.037d42e11c88d0000 */,
1.015003269791313389451 /* 0x1.03d741191635a0001 */,
1.016378314911229763267 /* 0x1.04315e86e84630008 */,
1.017755222831652872635 /* 0x1.048b9b35652800002 */,
1.019133996077934645224 /* 0x1.04e5f72f65827000b */,
1.020514637175266248212 /* 0x1.0540727fc1cfa0006 */,
1.021897148653734488385 /* 0x1.059b0d3157ebb0002 */,
1.023281533050062419584 /* 0x1.05f5c74f0cfeb0002 */,
1.024667792897328677539 /* 0x1.0650a0e3c22ee0003 */,
1.026055930738840826806 /* 0x1.06ab99fa63e1b0008 */,
1.027445949118511947550 /* 0x1.0706b29ddf2700009 */,
1.028837850584049418178 /* 0x1.0761ead9253ab0009 */,
1.030231637685799839262 /* 0x1.07bd42b72a3f80008 */,
1.031627312979383592802 /* 0x1.0818ba42e824a000c */,
1.033024879021186448496 /* 0x1.0874518759b0b0008 */,
1.034424338374263729911 /* 0x1.08d0088f80ffa0006 */,
1.035825693601787333992 /* 0x1.092bdf66604e30005 */,
1.037228947273990842283 /* 0x1.0987d617019cd000a */,
1.038634101961269928846 /* 0x1.09e3ecac6f199000f */,
1.040041160239590700707 /* 0x1.0a402331b91270002 */,
1.041450124688240164200 /* 0x1.0a9c79b1f37c3000b */,
1.042860997889083929381 /* 0x1.0af8f038352160000 */,
1.044273782427270314011 /* 0x1.0b5586cf986890006 */,
1.045688480893644856116 /* 0x1.0bb23d833dfbf0006 */,
1.047105095879385272564 /* 0x1.0c0f145e46e330007 */,
1.048523629981608529302 /* 0x1.0c6c0b6bdaadc000f */,
1.049944085800634585634 /* 0x1.0cc922b72470a000f */,
1.051366465939483019223 /* 0x1.0d265a4b5238b0007 */,
1.052790773004648849929 /* 0x1.0d83b23395e510002 */,
1.054217009607077093512 /* 0x1.0de12a7b263970006 */,
1.055645178360430591625 /* 0x1.0e3ec32d3cf680000 */,
1.057075281882416506511 /* 0x1.0e9c7c55184f5000e */,
1.058507322794714378170 /* 0x1.0efa55fdfad51000a */,
1.059941303721639416236 /* 0x1.0f58503329fed0003 */,
1.061377227289284297385 /* 0x1.0fb66affed37f0000 */,
1.062815096132297298980 /* 0x1.1014a66f95540000c */,
1.064254912884593951029 /* 0x1.1073028d725850007 */,
1.065696680185205469411 /* 0x1.10d17f64d9ea2000b */,
1.067140400676658718053 /* 0x1.11301d012586a0007 */,
1.068586077004890055886 /* 0x1.118edb6db26ab0003 */,
1.070033711820396415998 /* 0x1.11edbab5e2d6e000b */,
1.071483307775789262099 /* 0x1.124cbae51b5ef0001 */,
1.072934867526001312439 /* 0x1.12abdc06c3240000c */,
1.074388393734249103080 /* 0x1.130b1e264a62e0005 */,
1.075843889063253344684 /* 0x1.136a814f20ccd0003 */,
1.077301356179926061823 /* 0x1.13ca058cbaaed000b */,
1.078760797756675327056 /* 0x1.1429aaea9260e000e */,
1.080222216468626150775 /* 0x1.148971742537c0009 */,
1.081685614993597610617 /* 0x1.14e95934f37e8000b */,
1.083150996013011013776 /* 0x1.1549623881762000d */,
1.084618362213087383633 /* 0x1.15a98c8a58a6a000b */,
1.086087716284427351384 /* 0x1.1609d8360768c0008 */,
1.087559060917626885283 /* 0x1.166a45471c13f0008 */,
1.089032398810997337465 /* 0x1.16cad3c92d7b50009 */,
1.090507732647478578212 /* 0x1.172b83c7c18b5000f */,
1.091985065182095926460 /* 0x1.178c554ead72a000c */,
1.093464399073070136880 /* 0x1.17ed48695befe000c */,
1.094945737045367906172 /* 0x1.184e5d23812500007 */,
1.096429081816546080591 /* 0x1.18af9388c90e40005 */,
1.097914436104650892651 /* 0x1.1910eba4e031a0001 */,
1.099401802629782043408 /* 0x1.19726583755720003 */,
1.100891184121537858001 /* 0x1.19d4013041b860007 */,
1.102382583308144647940 /* 0x1.1a35beb6fd0cd0007 */,
1.103876002922312915544 /* 0x1.1a979e2363fa10000 */,
1.105371445702084232160 /* 0x1.1af99f8139025000e */,
1.106868914387219016199 /* 0x1.1b5bc2dc408b9000e */,
1.108368411723785085252 /* 0x1.1bbe084045eb30002 */,
1.109869940458469095340 /* 0x1.1c206fb91524c000e */,
1.111373503344554869449 /* 0x1.1c82f952817cc0001 */,
1.112879103137133007859 /* 0x1.1ce5a51860344000f */,
1.114386742595953938610 /* 0x1.1d4873168babf000e */,
1.115896424484008608911 /* 0x1.1dab6358e1d4a000f */,
1.117408151567338414664 /* 0x1.1e0e75eb43f9c000c */,
1.118921926613465345265 /* 0x1.1e71aad995078000f */,
1.120437752409564780022 /* 0x1.1ed5022fcd8600003 */,
1.121955631720569668277 /* 0x1.1f387bf9cd88b0000 */,
1.123475567332998359439 /* 0x1.1f9c18438cdec000a */,
1.124997562033035469759 /* 0x1.1fffd71902f970002 */,
1.126521618608448571713 /* 0x1.2063b88629079000e */,
1.128047739853580200284 /* 0x1.20c7bc96ff72a0002 */,
1.129575928566289189112 /* 0x1.212be3578a81e0006 */,
1.131106187546149888259 /* 0x1.21902cd3d05f70007 */,
1.132638519598779369743 /* 0x1.21f49917ddda5000c */,
1.134172927531616359481 /* 0x1.2259282fc1c24000e */,
1.135709414157753949251 /* 0x1.22bdda27911e90007 */,
1.137247982292643566662 /* 0x1.2322af0b638e60007 */,
1.138788634756517259562 /* 0x1.2387a6e755f270000 */,
1.140331374372893558110 /* 0x1.23ecc1c788c890006 */,
1.141876203969685699176 /* 0x1.2451ffb821639000c */,
1.143423126377846266197 /* 0x1.24b760c5486dc0009 */,
1.144972144431494420774 /* 0x1.251ce4fb2a0cc0005 */,
1.146523260971646252006 /* 0x1.25828c65f9fb8000d */,
1.148076478839068270690 /* 0x1.25e85711ebaeb0000 */,
1.149631800883562204903 /* 0x1.264e450b3c8a30008 */,
1.151189229953253789786 /* 0x1.26b4565e281a20003 */,
1.152748768902654319399 /* 0x1.271a8b16f0f000002 */,
1.154310420590433317050 /* 0x1.2780e341de2fc0001 */,
1.155874187878668246681 /* 0x1.27e75eeb3abc90007 */,
1.157440073633736243899 /* 0x1.284dfe1f5633e000a */,
1.159008080725518974322 /* 0x1.28b4c0ea840d90001 */,
1.160578212048386514965 /* 0x1.291ba75932ae60000 */,
1.162150470417516290340 /* 0x1.2982b177796850008 */,
1.163724858777502646494 /* 0x1.29e9df51fdd900001 */,
1.165301379991388053320 /* 0x1.2a5130f50bf34000e */,
1.166880036952526289469 /* 0x1.2ab8a66d10fdc0008 */,
1.168460832550151540268 /* 0x1.2b203fc675b7a000a */,
1.170043769683112966389 /* 0x1.2b87fd0dad7260008 */,
1.171628851252754177681 /* 0x1.2befde4f2e3da000d */,
1.173216080163546060084 /* 0x1.2c57e397719940002 */,
1.174805459325657830448 /* 0x1.2cc00cf2f7491000c */,
1.176396991650083379037 /* 0x1.2d285a6e3ff90000b */,
1.177990680055698513602 /* 0x1.2d90cc15d4ff90005 */,
1.179586527463262646306 /* 0x1.2df961f641c57000c */,
1.181184536796979545103 /* 0x1.2e621c1c157cd000d */,
1.182784710984701836994 /* 0x1.2ecafa93e35af0004 */,
1.184387052960675701386 /* 0x1.2f33fd6a459cb0000 */,
1.185991565661414393112 /* 0x1.2f9d24abd8fd1000e */,
1.187598252026902612178 /* 0x1.300670653e083000a */,
1.189207115003001469262 /* 0x1.306fe0a31bc040008 */,
1.190818157535919796833 /* 0x1.30d9757219895000e */,
1.192431382587621380206 /* 0x1.31432edef01a1000f */,
1.194046793097208292195 /* 0x1.31ad0cf63f0630008 */,
1.195664392040319823392 /* 0x1.32170fc4ce0db000c */,
1.197284182375793593084 /* 0x1.32813757527750005 */,
1.198906167074650808198 /* 0x1.32eb83ba8eef3000f */,
1.200530349107333139048 /* 0x1.3355f4fb457e5000d */,
1.202156731453099647353 /* 0x1.33c08b2641df9000c */,
1.203785317090505513368 /* 0x1.342b46484f07b0005 */,
1.205416109005122526928 /* 0x1.3496266e3fa270005 */,
1.207049110184904572310 /* 0x1.35012ba4e8fa10000 */,
1.208684323627194912036 /* 0x1.356c55f92aabb0004 */,
1.210321752322854882437 /* 0x1.35d7a577dd33f0004 */,
1.211961399276747286580 /* 0x1.36431a2de8748000d */,
1.213603267492579629347 /* 0x1.36aeb4283309e000c */,
1.215247359985374142610 /* 0x1.371a7373b00160000 */,
1.216893679753690671322 /* 0x1.3786581d404e90000 */,
1.218542229828181611183 /* 0x1.37f26231e82e4000c */,
1.220193013225231215567 /* 0x1.385e91be9c2d20002 */,
1.221846032973555429280 /* 0x1.38cae6d05e66f0000 */,
1.223501292099485437962 /* 0x1.393761742e5830001 */,
1.225158793636904830441 /* 0x1.39a401b713cb3000e */,
1.226818540625497444577 /* 0x1.3a10c7a61ceae0007 */,
1.228480536107136034131 /* 0x1.3a7db34e5a4a50003 */,
1.230144783126481566885 /* 0x1.3aeac4bcdf8d60001 */,
1.231811284734168454619 /* 0x1.3b57fbfec6e950008 */,
1.233480043984379381835 /* 0x1.3bc559212e7a2000f */,
1.235151063936380300149 /* 0x1.3c32dc3139f2a0004 */,
1.236824347652524913647 /* 0x1.3ca0853c106ac000e */,
1.238499898199571624970 /* 0x1.3d0e544eddd240003 */,
1.240177718649636107175 /* 0x1.3d7c4976d3fcd0000 */,
1.241857812073360767273 /* 0x1.3dea64c1231f70004 */,
1.243540181554270152039 /* 0x1.3e58a63b099920005 */,
1.245224830175077013244 /* 0x1.3ec70df1c4e46000e */,
1.246911761022835740725 /* 0x1.3f359bf29741c000e */,
1.248600977188942806639 /* 0x1.3fa4504ac7b800009 */,
1.250292481770148400634 /* 0x1.40132b07a330d000a */,
1.251986277866492969263 /* 0x1.40822c367a340000b */,
1.253682368581898742876 /* 0x1.40f153e4a18e0000d */,
1.255380757024939564249 /* 0x1.4160a21f73289000d */,
1.257081446308726757662 /* 0x1.41d016f44deaa000c */,
1.258784439550028944083 /* 0x1.423fb27094c090008 */,
1.260489739869405489991 /* 0x1.42af74a1aec1c0006 */,
1.262197350394008266193 /* 0x1.431f5d950a453000c */,
1.263907274252603851764 /* 0x1.438f6d58176860004 */,
1.265619514578811388761 /* 0x1.43ffa3f84b9eb000d */,
1.267334074511444086425 /* 0x1.44700183221180008 */,
1.269050957191869555296 /* 0x1.44e0860618b930006 */,
1.270770165768063009230 /* 0x1.4551318eb4d20000e */,
1.272491703389059036805 /* 0x1.45c2042a7cc26000b */,
1.274215573211836316547 /* 0x1.4632fde6ffacd000d */,
1.275941778396075143580 /* 0x1.46a41ed1cfac40001 */,
1.277670322103555911043 /* 0x1.471566f8812ac0000 */,
1.279401207505722393185 /* 0x1.4786d668b33260005 */,
1.281134437771823675369 /* 0x1.47f86d3002637000a */,
1.282870016078732078362 /* 0x1.486a2b5c13c00000e */,
1.284607945607987078432 /* 0x1.48dc10fa916bd0004 */,
1.286348229545787758022 /* 0x1.494e1e192aaa30007 */,
1.288090871080605159846 /* 0x1.49c052c5913df000c */,
1.289835873406902644341 /* 0x1.4a32af0d7d8090002 */,
1.291583239722392528754 /* 0x1.4aa532feab5e10002 */,
1.293332973229098792374 /* 0x1.4b17dea6db8010008 */,
1.295085077135345708087 /* 0x1.4b8ab213d57d9000d */,
1.296839554650994097442 /* 0x1.4bfdad53629e10003 */,
1.298596408992440220988 /* 0x1.4c70d0735358a000d */,
1.300355643380135983739 /* 0x1.4ce41b817c99e0001 */,
1.302117261036232376282 /* 0x1.4d578e8bb52cb0003 */,
1.303881265192249561154 /* 0x1.4dcb299fde2920008 */,
1.305647659079073541490 /* 0x1.4e3eeccbd7f4c0003 */,
1.307416445934474813521 /* 0x1.4eb2d81d8a86f000b */,
1.309187629001237640529 /* 0x1.4f26eba2e35a5000e */,
1.310961211525240921493 /* 0x1.4f9b2769d35090009 */,
1.312737196755087820678 /* 0x1.500f8b804e4a30000 */,
1.314515587949291131086 /* 0x1.508417f4530d00009 */,
1.316296388365203462468 /* 0x1.50f8ccd3df1840003 */,
1.318079601265708777911 /* 0x1.516daa2cf60020002 */,
1.319865229921343141607 /* 0x1.51e2b00da3c2b0007 */,
1.321653277603506371251 /* 0x1.5257de83f5512000d */,
1.323443747588034513690 /* 0x1.52cd359dfc7d5000e */,
1.325236643161341820781 /* 0x1.5342b569d6baa000f */,
1.327031967602244177939 /* 0x1.53b85df59921b0000 */,
1.328829724206201046165 /* 0x1.542e2f4f6b17e0006 */,
1.330629916266568235675 /* 0x1.54a4298571b27000e */,
1.332432547083447937938 /* 0x1.551a4ca5d97190009 */,
1.334237619959296017340 /* 0x1.559098bed16bf0008 */,
1.336045138203900251029 /* 0x1.56070dde90c800000 */,
1.337855105129210686631 /* 0x1.567dac13510cd0009 */,
1.339667524053662184301 /* 0x1.56f4736b52e2c000c */,
1.341482398296830025383 /* 0x1.576b63f4d8333000f */,
1.343299731186792467254 /* 0x1.57e27dbe2c40e0003 */,
1.345119526053918823702 /* 0x1.5859c0d59cd37000f */,
1.346941786233264881662 /* 0x1.58d12d497cd9a0005 */,
1.348766515064854010261 /* 0x1.5948c32824b87000c */,
1.350593715891792223641 /* 0x1.59c0827ff03890007 */,
1.352423392064920459908 /* 0x1.5a386b5f43a3e0006 */,
1.354255546937278120764 /* 0x1.5ab07dd485af1000c */,
1.356090183865519494030 /* 0x1.5b28b9ee21085000f */,
1.357927306213322804534 /* 0x1.5ba11fba8816e000b */,
1.359766917346459269620 /* 0x1.5c19af482f8f2000f */,
1.361609020638567812980 /* 0x1.5c9268a594cc00004 */,
1.363453619463660171403 /* 0x1.5d0b4be135916000c */,
1.365300717204201985683 /* 0x1.5d84590998eeb0005 */,
1.367150317245710233754 /* 0x1.5dfd902d494e40001 */,
1.369002422974674892971 /* 0x1.5e76f15ad22c40008 */,
1.370857037789471544224 /* 0x1.5ef07ca0cc166000b */,
1.372714165088220639199 /* 0x1.5f6a320dcf5280006 */,
1.374573808273481745378 /* 0x1.5fe411b0790800009 */,
1.376435970755022220096 /* 0x1.605e1b976e4b1000e */,
1.378300655944092456600 /* 0x1.60d84fd155d15000e */,
1.380167867259843417228 /* 0x1.6152ae6cdf0030003 */,
1.382037608124419003675 /* 0x1.61cd3778bc879000d */,
1.383909881963391264069 /* 0x1.6247eb03a4dc40009 */,
1.385784692209972801544 /* 0x1.62c2c91c56d9b0002 */,
1.387662042298923203992 /* 0x1.633dd1d1930ec0001 */,
1.389541935670444372533 /* 0x1.63b90532200630004 */,
1.391424375772021271329 /* 0x1.6434634ccc4cc0007 */,
1.393309366052102982208 /* 0x1.64afec30677e90008 */,
1.395196909966106124701 /* 0x1.652b9febc8e0f000d */,
1.397087010973788290271 /* 0x1.65a77e8dcc7f10004 */,
1.398979672539331309267 /* 0x1.66238825534170000 */,
1.400874898129892187656 /* 0x1.669fbcc1415600008 */,
1.402772691220124823310 /* 0x1.671c1c708328e000a */,
1.404673055288671035301 /* 0x1.6798a7420988b000d */,
1.406575993818903302975 /* 0x1.68155d44ca77a000f */,
1.408481510297352468121 /* 0x1.68923e87bf70e000a */,
1.410389608216942924956 /* 0x1.690f4b19e8f74000c */,
1.412300291075172076232 /* 0x1.698c830a4c94c0008 */
};
#define S (1.0/4503599627370496.0) /* 2^-52 */
static const float exp2_deltatable[512] = {
11527*S, -963*S, 884*S, -781*S, -2363*S, -3441*S, 123*S, 526*S,
-6*S, 1254*S, -1138*S, 1519*S, 1576*S, -65*S, 1040*S, 793*S,
-1662*S, -5063*S, -387*S, 968*S, -941*S, 984*S, -2856*S, -545*S,
495*S, -5246*S, -2109*S, 1281*S, 2075*S, 909*S, -1642*S,-78233*S,
-31653*S, -265*S, 130*S, 430*S, 2482*S, -742*S, 1616*S, -2213*S,
-519*S, 20*S, -3134*S,-13981*S, 1343*S, -1740*S, 247*S, 1679*S,
-1097*S, 3131*S, 871*S, -1480*S, 1936*S, -1827*S, 17325*S, 528*S,
-322*S, 1404*S, -152*S, -1845*S, -212*S, 2639*S, -476*S, 2960*S,
-962*S, -1012*S, -1231*S, 3030*S, 1659*S, -486*S, 2154*S, 1728*S,
-2793*S, 699*S, -1560*S, -2125*S, 2156*S, 142*S, -1888*S, 4426*S,
-13443*S, 1970*S, -50*S, 1771*S,-43399*S, 4979*S, -2448*S, -370*S,
1414*S, 1075*S, 232*S, 206*S, 873*S, 2141*S, 2970*S, 1279*S,
-2331*S, 336*S, -2595*S, 753*S, -3384*S, -616*S, 89*S, -818*S,
5755*S, -241*S, -528*S, -661*S, -3777*S, -354*S, 250*S, 3881*S,
2632*S, -2131*S, 2565*S, -316*S, 1746*S, -2541*S, -1324*S, -50*S,
2564*S, -782*S, 1176*S, 6452*S, -1002*S, 1288*S, 336*S, -185*S,
3063*S, 3784*S, 2169*S, 686*S, 328*S, -400*S, 312*S, -4517*S,
-1457*S, 1046*S, -1530*S, -685*S, 1328*S,-49815*S, -895*S, 1063*S,
-2091*S, -672*S, -1710*S, -665*S, 1545*S, 1819*S,-45265*S, 3548*S,
-554*S, -568*S, 4752*S, -1907*S,-13738*S, 675*S, 9611*S, -1115*S,
-815*S, 408*S, -1281*S, -937*S,-16376*S, -4772*S, -1440*S, 992*S,
788*S, 10364*S, -1602*S, -661*S, -1783*S, -265*S, -20*S, -3781*S,
-861*S, -345*S, -994*S, 1364*S, -5339*S, 1620*S, 9390*S, -1066*S,
-305*S, -170*S, 175*S, 2461*S, -490*S, -769*S, -1450*S, 3315*S,
2418*S, -45*S, -852*S, -1295*S, -488*S, -96*S, 1142*S, -2639*S,
7905*S, -9306*S, -3859*S, 760*S, 1057*S, -1570*S, 3977*S, 209*S,
-514*S, 7151*S, 1646*S, 627*S, 599*S, -774*S, -1468*S, 633*S,
-473*S, 851*S, 2406*S, 143*S, 74*S, 4260*S, 1177*S, -913*S,
2670*S, -3298*S, -1662*S, -120*S, -3264*S, -2148*S, 410*S, 2078*S,
-2098*S, -926*S, 3580*S, -1289*S, 2450*S, -1158*S, 907*S, -590*S,
986*S, 1801*S, 1145*S, -1677*S, 3455*S, 956*S, 710*S, 144*S,
153*S, -255*S, -1898*S, 28102*S, 2748*S, 1194*S, -3009*S, 7076*S,
0*S, -2720*S, 711*S, 1225*S, -3034*S, -473*S, 378*S, -1046*S,
962*S, -2006*S, 4647*S, 3206*S, 1769*S, -2665*S, 1254*S, 2025*S,
-2430*S, 6193*S, 1224*S, -856*S, -1592*S, -325*S, -1521*S, 1827*S,
-264*S, 2403*S, -1065*S, 967*S, -681*S, -2106*S, -474*S, 1333*S,
-893*S, 2296*S, 592*S, -1220*S, -326*S, 990*S, 139*S, 206*S,
-779*S, -1683*S, 1238*S, 6098*S, 136*S, 1197*S, 790*S, -107*S,
-1004*S, -2449*S, 939*S, 5568*S, 156*S, 1812*S, 2792*S, -1094*S,
-2677*S, -251*S, 2297*S, 943*S, -1329*S, 2883*S, -853*S, -2626*S,
-105929*S, -6552*S, 1095*S, -1508*S, 1003*S, 5039*S, -2600*S, -749*S,
1790*S, 890*S, 2016*S, -1073*S, 624*S, -2084*S, -1536*S, -1330*S,
358*S, 2444*S, -179*S,-25759*S, -243*S, -552*S, -124*S, 3766*S,
1192*S, -1614*S, 6*S, -1227*S, 345*S, -981*S, -295*S, -1006*S,
-995*S, -1195*S, 706*S, 2512*S, -1758*S, -734*S, -6286*S, -922*S,
1530*S, 1542*S, 1223*S, 61*S, -83*S, 522*S,116937*S, -914*S,
-418*S, -7339*S, 249*S, -520*S, -762*S, 426*S, -505*S, 2664*S,
-1093*S, -1035*S, 2130*S, 4878*S, 1982*S, 1551*S, 2304*S, 193*S,
1532*S, -7268*S, 24357*S, 531*S, 2676*S, -1170*S, 1465*S, -1917*S,
2143*S, 1466*S, -7*S, -7300*S, 3297*S, -1197*S, -289*S, -1548*S,
26226*S, 4401*S, 4123*S, -1588*S, 4243*S, 4069*S, -1276*S, -2010*S,
1407*S, 1478*S, 488*S, -2366*S, -2909*S, -2534*S, -1285*S, 7095*S,
-645*S, -2089*S, -944*S, -40*S, -1363*S, -833*S, 917*S, 1609*S,
1286*S, 1677*S, 1613*S, -2295*S, -1248*S, 40*S, 26*S, 2038*S,
698*S, 2675*S, -1755*S, -3522*S, -1614*S, -6111*S, 270*S, 1822*S,
-234*S, -2844*S, -1201*S, -830*S, 1193*S, 2354*S, 47*S, 1522*S,
-78*S, -640*S, 2425*S, -1596*S, 1563*S, 1169*S, -1006*S, -83*S,
2362*S, -3521*S, -314*S, 1814*S, -1751*S, 305*S, 1715*S, -3741*S,
7847*S, 1291*S, 1206*S, 36*S, 1397*S, -1419*S, -1194*S, -2014*S,
1742*S, -578*S, -207*S, 875*S, 1539*S, 2826*S, -1165*S, -909*S,
1849*S, 927*S, 2018*S, -981*S, 1637*S, -463*S, 905*S, 6618*S,
400*S, 630*S, 2614*S, 900*S, 2323*S, -1094*S, -1858*S, -212*S,
-2069*S, 747*S, 1845*S, -1450*S, 444*S, -213*S, -438*S, 1158*S,
4738*S, 2497*S, -370*S, -2016*S, -518*S, -1160*S, -1510*S, 123*S
};
/* Maximum magnitude in above table: 116937 */
#undef S

View File

@ -1,68 +0,0 @@
/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
* Copyright (C) 2001-2018 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/******************************************************************/
/* */
/* MODULE_NAME:uexp.h */
/* */
/* common data and variables prototype and definition */
/******************************************************************/
#ifndef UEXP_H
#define UEXP_H
#include "mydefs.h"
const static double zero = 0.0, hhuge = 1.0e300, tiny = 1.0e-300;
const static int4 bigint = 0x40862002,
badint = 0x40876000,smallint = 0x3C8fffff;
const static int4 hugeint = 0x7FFFFFFF, infint = 0x7ff00000;
#ifdef BIG_ENDI
const static mynumber inf = {{0x7FF00000, 0}}; /* inf */
const static mynumber t256 = {{0x4ff00000, 0}}; /* 2^256 */
const static mynumber ln_two1 = {{0x3FE62E42, 0xFEFA3800}};/*0.69314718055989033 */
const static mynumber ln_two2 = {{0x3D2EF357, 0x93C76730}};/*5.4979230187083712e-14*/
const static mynumber log2e = {{0x3FF71547, 0x652B82FE}};/* 1.4426950408889634 */
const static mynumber p2 = {{0x3FE00000, 0x000004DC}};/* 0.50000000000013811 */
const static mynumber p3 = {{0x3FC55555, 0x55555A0F}};/* 0.16666666666670024 */
const static mynumber three33 = {{0x42180000, 0}}; /* 25769803776 */
const static mynumber three51 = {{0x43380000, 0}}; /* 6755399441055744 */
#else
#ifdef LITTLE_ENDI
const static mynumber inf = {{0, 0x7FF00000}}; /* inf */
const static mynumber t256 = {{0, 0x4ff00000}}; /* 2^256 */
const static mynumber ln_two1 = {{0xFEFA3800, 0x3FE62E42}};/*0.69314718055989033 */
const static mynumber ln_two2 = {{0x93C76730, 0x3D2EF357}};/*5.4979230187083712e-14*/
const static mynumber log2e = {{0x652B82FE, 0x3FF71547}};/* 1.4426950408889634 */
const static mynumber p2 = {{0x000004DC, 0x3FE00000}};/* 0.50000000000013811 */
const static mynumber p3 = {{0x55555A0F, 0x3FC55555}};/* 0.16666666666670024 */
const static mynumber three33 = {{0, 0x42180000}}; /* 25769803776 */
const static mynumber three51 = {{0, 0x43380000}}; /* 6755399441055744 */
#endif
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -1 +0,0 @@
/* Empty. Not needed. */

View File

@ -902,10 +902,10 @@ ildouble: 6
ldouble: 6
Function: Imaginary part of "ccos_downward":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 6
@ -922,10 +922,10 @@ ildouble: 6
ldouble: 6
Function: Imaginary part of "ccos_towardzero":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 6
@ -972,40 +972,40 @@ ildouble: 2
ldouble: 2
Function: Real part of "ccosh_downward":
double: 1
double: 2
float: 3
float128: 2
idouble: 1
idouble: 2
ifloat: 3
ifloat128: 2
ildouble: 6
ldouble: 6
Function: Imaginary part of "ccosh_downward":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 6
ldouble: 6
Function: Real part of "ccosh_towardzero":
double: 1
double: 2
float: 3
float128: 2
idouble: 1
idouble: 2
ifloat: 3
ifloat128: 2
ildouble: 6
ldouble: 6
Function: Imaginary part of "ccosh_towardzero":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 6
@ -1052,40 +1052,40 @@ ildouble: 2
ldouble: 2
Function: Real part of "cexp_downward":
double: 1
double: 2
float: 2
float128: 2
idouble: 1
idouble: 2
ifloat: 2
ifloat128: 2
ildouble: 11
ldouble: 11
Function: Imaginary part of "cexp_downward":
double: 1
double: 3
float: 3
float128: 2
idouble: 1
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 11
ldouble: 11
Function: Real part of "cexp_towardzero":
double: 1
double: 2
float: 2
float128: 2
idouble: 1
idouble: 2
ifloat: 2
ifloat128: 2
ildouble: 11
ldouble: 11
Function: Imaginary part of "cexp_towardzero":
double: 1
double: 3
float: 3
float128: 2
idouble: 1
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 11
@ -1102,10 +1102,10 @@ ildouble: 3
ldouble: 3
Function: Imaginary part of "cexp_upward":
double: 1
double: 3
float: 2
float128: 3
idouble: 1
idouble: 3
ifloat: 2
ifloat128: 3
ildouble: 3
@ -1322,30 +1322,30 @@ ildouble: 3
ldouble: 3
Function: "cosh_downward":
double: 1
double: 2
float: 1
float128: 2
idouble: 1
idouble: 2
ifloat: 1
ifloat128: 1
ildouble: 2
ldouble: 2
Function: "cosh_towardzero":
double: 1
double: 2
float: 1
float128: 2
idouble: 1
idouble: 2
ifloat: 1
ifloat128: 1
ildouble: 2
ldouble: 2
Function: "cosh_upward":
double: 1
double: 2
float: 2
float128: 3
idouble: 1
idouble: 2
ifloat: 2
ifloat128: 1
ildouble: 2
@ -1370,10 +1370,10 @@ ildouble: 2
ldouble: 2
Function: Real part of "cpow_downward":
double: 4
double: 5
float: 8
float128: 6
idouble: 4
idouble: 5
ifloat: 8
ifloat128: 6
ildouble: 7
@ -1390,10 +1390,10 @@ ildouble: 4
ldouble: 4
Function: Real part of "cpow_towardzero":
double: 4
double: 5
float: 8
float128: 6
idouble: 4
idouble: 5
ifloat: 8
ifloat128: 6
ildouble: 8
@ -1446,10 +1446,10 @@ ildouble: 1
ldouble: 1
Function: Real part of "csin_downward":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 6
@ -1466,10 +1466,10 @@ ildouble: 6
ldouble: 6
Function: Real part of "csin_towardzero":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 6
@ -1534,10 +1534,10 @@ ildouble: 6
ldouble: 6
Function: Imaginary part of "csinh_downward":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 6
@ -1554,10 +1554,10 @@ ildouble: 6
ldouble: 6
Function: Imaginary part of "csinh_towardzero":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 6
@ -1877,10 +1877,10 @@ ildouble: 3
ldouble: 3
Function: "erfc_downward":
double: 3
double: 4
float: 4
float128: 5
idouble: 3
idouble: 4
ifloat: 4
ifloat128: 5
ildouble: 10
@ -1897,10 +1897,10 @@ ildouble: 9
ldouble: 9
Function: "erfc_upward":
double: 3
double: 4
float: 4
float128: 5
idouble: 3
idouble: 4
ifloat: 4
ifloat128: 5
ildouble: 7
@ -1923,20 +1923,20 @@ ildouble: 1
ldouble: 1
Function: "exp10_downward":
double: 2
double: 3
float: 1
float128: 3
idouble: 2
idouble: 3
ifloat: 1
ifloat128: 3
ildouble: 9
ldouble: 9
Function: "exp10_towardzero":
double: 2
double: 3
float: 1
float128: 3
idouble: 2
idouble: 3
ifloat: 1
ifloat128: 3
ildouble: 9

View File

@ -894,10 +894,10 @@ ildouble: 3
ldouble: 3
Function: Imaginary part of "ccos_downward":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
@ -914,10 +914,10 @@ ildouble: 3
ldouble: 3
Function: Imaginary part of "ccos_towardzero":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
@ -964,40 +964,40 @@ ildouble: 1
ldouble: 1
Function: Real part of "ccosh_downward":
double: 1
double: 2
float: 2
float128: 2
idouble: 1
idouble: 2
ifloat: 2
ifloat128: 2
ildouble: 3
ldouble: 3
Function: Imaginary part of "ccosh_downward":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
ldouble: 3
Function: Real part of "ccosh_towardzero":
double: 1
double: 2
float: 3
float128: 2
idouble: 1
idouble: 2
ifloat: 3
ifloat128: 2
ildouble: 3
ldouble: 3
Function: Imaginary part of "ccosh_towardzero":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
@ -1044,40 +1044,40 @@ ildouble: 1
ldouble: 1
Function: Real part of "cexp_downward":
double: 1
double: 2
float: 2
float128: 2
idouble: 1
idouble: 2
ifloat: 2
ifloat128: 2
ildouble: 3
ldouble: 3
Function: Imaginary part of "cexp_downward":
double: 1
double: 3
float: 3
float128: 2
idouble: 1
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
ldouble: 3
Function: Real part of "cexp_towardzero":
double: 1
double: 2
float: 2
float128: 2
idouble: 1
idouble: 2
ifloat: 2
ifloat128: 2
ildouble: 3
ldouble: 3
Function: Imaginary part of "cexp_towardzero":
double: 1
double: 3
float: 3
float128: 2
idouble: 1
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
@ -1094,10 +1094,10 @@ ildouble: 2
ldouble: 2
Function: Imaginary part of "cexp_upward":
double: 1
double: 3
float: 2
float128: 3
idouble: 1
idouble: 3
ifloat: 2
ifloat128: 3
ildouble: 3
@ -1330,30 +1330,30 @@ ildouble: 2
ldouble: 2
Function: "cosh_downward":
double: 1
double: 2
float: 1
float128: 2
idouble: 1
idouble: 2
ifloat: 1
ifloat128: 1
ildouble: 2
ldouble: 3
Function: "cosh_towardzero":
double: 1
double: 2
float: 1
float128: 2
idouble: 1
idouble: 2
ifloat: 1
ifloat128: 1
ildouble: 2
ldouble: 2
Function: "cosh_upward":
double: 1
double: 2
float: 2
float128: 3
idouble: 1
idouble: 2
ifloat: 2
ifloat128: 1
ildouble: 2
@ -1378,10 +1378,10 @@ ildouble: 4
ldouble: 4
Function: Real part of "cpow_downward":
double: 4
double: 5
float: 8
float128: 6
idouble: 4
idouble: 5
ifloat: 8
ifloat128: 6
ildouble: 7
@ -1398,10 +1398,10 @@ ildouble: 2
ldouble: 2
Function: Real part of "cpow_towardzero":
double: 4
double: 5
float: 8
float128: 6
idouble: 4
idouble: 5
ifloat: 8
ifloat128: 6
ildouble: 7
@ -1452,10 +1452,10 @@ float128: 1
ifloat128: 1
Function: Real part of "csin_downward":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
@ -1472,10 +1472,10 @@ ildouble: 3
ldouble: 3
Function: Real part of "csin_towardzero":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
@ -1540,10 +1540,10 @@ ildouble: 3
ldouble: 3
Function: Imaginary part of "csinh_downward":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
@ -1560,10 +1560,10 @@ ildouble: 3
ldouble: 3
Function: Imaginary part of "csinh_towardzero":
double: 2
double: 3
float: 3
float128: 2
idouble: 2
idouble: 3
ifloat: 3
ifloat128: 2
ildouble: 3
@ -1924,20 +1924,20 @@ ildouble: 1
ldouble: 1
Function: "exp10_downward":
double: 2
double: 3
float: 1
float128: 3
idouble: 2
idouble: 3
ifloat: 1
ifloat128: 3
ildouble: 2
ldouble: 2
Function: "exp10_towardzero":
double: 2
double: 3
float: 1
float128: 3
idouble: 2
idouble: 3
ifloat: 1
ifloat128: 3
ildouble: 2