x86-64: Replace assembly versions of e_expf with generic e_expf.c

This patch replaces x86-64 assembly versions of e_expf with generic
e_expf.c.  For workload-spec2017.wrf, on Nehalem, it improves
performance by:

                           Before            After     Improvement
reciprocal-throughput      36.039           20.7749       73%
latency                    58.8096          40.8715       43%

On Skylake, it improves

                           Before            After     Improvement
reciprocal-throughput      18.4436          11.1693       65%
latency                    47.5162          37.5411       26%

	* sysdeps/x86_64/fpu/e_expf.S: Removed.
	* sysdeps/x86_64/fpu/multiarch/e_expf-fma.S: Likewise.
	* sysdeps/x86_64/fpu/w_expf.c: Likewise.
	* sysdeps/x86_64/fpu/libm-test-ulps: Updated for generic
	e_expf.c.
	* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_expf-fma.c):
	New.
	* sysdeps/x86_64/fpu/multiarch/e_expf-fma.c: New file.
	* sysdeps/x86_64/fpu/multiarch/e_expf.c (__redirect_ieee754_expf):
	Renamed to ...
	(__redirect_expf): This.
	(SYMBOL_NAME): Changed to expf.
	(__ieee754_expf): Renamed to ...
	(__expf): This.
	(__GI___expf): This.
	(__ieee754_expf): Add strong_alias.
	(__expf_finite): Likewise.
	(__expf): New.
	Include <sysdeps/ieee754/flt-32/e_expf.c>.
This commit is contained in:
H.J. Lu 2017-10-22 07:49:36 -07:00
parent a159b53fa0
commit e1f59bebd8
8 changed files with 51 additions and 529 deletions

View File

@ -1,3 +1,25 @@
2017-10-22 H.J. Lu <hongjiu.lu@intel.com>
* sysdeps/x86_64/fpu/e_expf.S: Removed.
* sysdeps/x86_64/fpu/multiarch/e_expf-fma.S: Likewise.
* sysdeps/x86_64/fpu/w_expf.c: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Updated for generic
e_expf.c.
* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_expf-fma.c):
New.
* sysdeps/x86_64/fpu/multiarch/e_expf-fma.c: New file.
* sysdeps/x86_64/fpu/multiarch/e_expf.c (__redirect_ieee754_expf):
Renamed to ...
(__redirect_expf): This.
(SYMBOL_NAME): Changed to expf.
(__ieee754_expf): Renamed to ...
(__expf): This.
(__GI___expf): This.
(__ieee754_expf): Add strong_alias.
(__expf_finite): Likewise.
(__expf): New.
Include <sysdeps/ieee754/flt-32/e_expf.c>.
2017-10-22 Paul Eggert <eggert@cs.ucla.edu>
[BZ #22332]

View File

@ -1,339 +0,0 @@
/* Optimized __ieee754_expf function.
Copyright (C) 2012-2017 Free Software Foundation, Inc.
Contributed by Intel Corporation.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
/* Short algorithm description:
*
* Let K = 64 (table size).
* e^x = 2^(x/log(2)) = 2^n * T[j] * (1 + P(y))
* where
* x = m*log(2)/K + y, y in [0.0..log(2)/K]
* m = n*K + j, m,n,j - signed integer, j in [0..K-1]
* values of 2^(j/K) are tabulated as T[j].
*
* P(y) is a minimax polynomial approximation of expf(x)-1
* on small interval [0.0..log(2)/K].
*
* P(y) = P3*y*y*y*y + P2*y*y*y + P1*y*y + P0*y, calculated as
* z = y*y; P(y) = (P3*z + P1)*z + (P2*z + P0)*y
*
* Special cases:
* expf(NaN) = NaN
* expf(+INF) = +INF
* expf(-INF) = 0
* expf(x) = 1 for subnormals
* for finite argument, only expf(0)=1 is exact
* expf(x) overflows if x>88.7228317260742190
* expf(x) underflows if x<-103.972076416015620
*/
.text
ENTRY(__ieee754_expf)
/* Input: single precision x in %xmm0 */
cvtss2sd %xmm0, %xmm1 /* Convert x to double precision */
movd %xmm0, %ecx /* Copy x */
movsd L(DP_KLN2)(%rip), %xmm2 /* DP K/log(2) */
movsd L(DP_P2)(%rip), %xmm3 /* DP P2 */
movl %ecx, %eax /* x */
mulsd %xmm1, %xmm2 /* DP x*K/log(2) */
andl $0x7fffffff, %ecx /* |x| */
lea L(DP_T)(%rip), %rsi /* address of table T[j] */
cmpl $0x42ad496b, %ecx /* |x|<125*log(2) ? */
movsd L(DP_P3)(%rip), %xmm4 /* DP P3 */
addsd L(DP_RS)(%rip), %xmm2 /* DP x*K/log(2)+RS */
jae L(special_paths)
/* Here if |x|<125*log(2) */
cmpl $0x31800000, %ecx /* |x|<2^(-28) ? */
jb L(small_arg)
/* Main path: here if 2^(-28)<=|x|<125*log(2) */
cvtsd2ss %xmm2, %xmm2 /* SP x*K/log(2)+RS */
movd %xmm2, %eax /* bits of n*K+j with trash */
subss L(SP_RS)(%rip), %xmm2 /* SP t=round(x*K/log(2)) */
movl %eax, %edx /* n*K+j with trash */
cvtss2sd %xmm2, %xmm2 /* DP t */
andl $0x3f, %eax /* bits of j */
mulsd L(DP_NLN2K)(%rip), %xmm2/* DP -t*log(2)/K */
andl $0xffffffc0, %edx /* bits of n */
#ifdef __AVX__
vaddsd %xmm1, %xmm2, %xmm0 /* DP y=x-t*log(2)/K */
vmulsd %xmm0, %xmm0, %xmm2 /* DP z=y*y */
#else
addsd %xmm1, %xmm2 /* DP y=x-t*log(2)/K */
movaps %xmm2, %xmm0 /* DP y */
mulsd %xmm2, %xmm2 /* DP z=y*y */
#endif
mulsd %xmm2, %xmm4 /* DP P3*z */
addl $0x1fc0, %edx /* bits of n + SP exponent bias */
mulsd %xmm2, %xmm3 /* DP P2*z */
shll $17, %edx /* SP 2^n */
addsd L(DP_P1)(%rip), %xmm4 /* DP P3*z+P1 */
addsd L(DP_P0)(%rip), %xmm3 /* DP P2*z+P0 */
movd %edx, %xmm1 /* SP 2^n */
mulsd %xmm2, %xmm4 /* DP (P3*z+P1)*z */
mulsd %xmm3, %xmm0 /* DP (P2*z+P0)*y */
addsd %xmm4, %xmm0 /* DP P(y) */
mulsd (%rsi,%rax,8), %xmm0 /* DP P(y)*T[j] */
addsd (%rsi,%rax,8), %xmm0 /* DP T[j]*(P(y)+1) */
cvtsd2ss %xmm0, %xmm0 /* SP T[j]*(P(y)+1) */
mulss %xmm1, %xmm0 /* SP result=2^n*(T[j]*(P(y)+1)) */
ret
.p2align 4
L(small_arg):
/* Here if 0<=|x|<2^(-28) */
addss L(SP_ONE)(%rip), %xmm0 /* 1.0 + x */
/* Return 1.0 with inexact raised, except for x==0 */
ret
.p2align 4
L(special_paths):
/* Here if 125*log(2)<=|x| */
shrl $31, %eax /* Get sign bit of x, and depending on it: */
lea L(SP_RANGE)(%rip), %rdx /* load over/underflow bound */
cmpl (%rdx,%rax,4), %ecx /* |x|<under/overflow bound ? */
jbe L(near_under_or_overflow)
/* Here if |x|>under/overflow bound */
cmpl $0x7f800000, %ecx /* |x| is finite ? */
jae L(arg_inf_or_nan)
/* Here if |x|>under/overflow bound, and x is finite */
testq %rax, %rax /* sign of x nonzero ? */
je L(res_overflow)
/* Here if -inf<x<underflow bound (x<0) */
movss L(SP_SMALL)(%rip), %xmm0/* load small value 2^(-100) */
mulss %xmm0, %xmm0 /* Return underflowed result (zero or subnormal) */
ret
.p2align 4
L(res_overflow):
/* Here if overflow bound<x<inf (x>0) */
movss L(SP_LARGE)(%rip), %xmm0/* load large value 2^100 */
mulss %xmm0, %xmm0 /* Return overflowed result (Inf or max normal) */
ret
.p2align 4
L(arg_inf_or_nan):
/* Here if |x| is Inf or NAN */
jne L(arg_nan) /* |x| is Inf ? */
/* Here if |x| is Inf */
lea L(SP_INF_0)(%rip), %rdx /* depending on sign of x: */
movss (%rdx,%rax,4), %xmm0 /* return zero or Inf */
ret
.p2align 4
L(arg_nan):
/* Here if |x| is NaN */
addss %xmm0, %xmm0 /* Return x+x (raise invalid) */
ret
.p2align 4
L(near_under_or_overflow):
/* Here if 125*log(2)<=|x|<under/overflow bound */
cvtsd2ss %xmm2, %xmm2 /* SP x*K/log(2)+RS */
movd %xmm2, %eax /* bits of n*K+j with trash */
subss L(SP_RS)(%rip), %xmm2 /* SP t=round(x*K/log(2)) */
movl %eax, %edx /* n*K+j with trash */
cvtss2sd %xmm2, %xmm2 /* DP t */
andl $0x3f, %eax /* bits of j */
mulsd L(DP_NLN2K)(%rip), %xmm2/* DP -t*log(2)/K */
andl $0xffffffc0, %edx /* bits of n */
#ifdef __AVX__
vaddsd %xmm1, %xmm2, %xmm0 /* DP y=x-t*log(2)/K */
vmulsd %xmm0, %xmm0, %xmm2 /* DP z=y*y */
#else
addsd %xmm1, %xmm2 /* DP y=x-t*log(2)/K */
movaps %xmm2, %xmm0 /* DP y */
mulsd %xmm2, %xmm2 /* DP z=y*y */
#endif
mulsd %xmm2, %xmm4 /* DP P3*z */
addl $0xffc0, %edx /* bits of n + DP exponent bias */
mulsd %xmm2, %xmm3 /* DP P2*z */
shlq $46, %rdx /* DP 2^n */
addsd L(DP_P1)(%rip), %xmm4 /* DP P3*z+P1 */
addsd L(DP_P0)(%rip), %xmm3 /* DP P2*z+P0 */
movd %rdx, %xmm1 /* DP 2^n */
mulsd %xmm2, %xmm4 /* DP (P3*z+P1)*z */
mulsd %xmm3, %xmm0 /* DP (P2*z+P0)*y */
addsd %xmm4, %xmm0 /* DP P(y) */
mulsd (%rsi,%rax,8), %xmm0 /* DP P(y)*T[j] */
addsd (%rsi,%rax,8), %xmm0 /* DP T[j]*(P(y)+1) */
mulsd %xmm1, %xmm0 /* DP result=2^n*(T[j]*(P(y)+1)) */
cvtsd2ss %xmm0, %xmm0 /* convert result to single precision */
ret
END(__ieee754_expf)
.section .rodata, "a"
.p2align 3
L(DP_T): /* table of double precision values 2^(j/K) for j=[0..K-1] */
.long 0x00000000, 0x3ff00000
.long 0x3e778061, 0x3ff02c9a
.long 0xd3158574, 0x3ff059b0
.long 0x18759bc8, 0x3ff08745
.long 0x6cf9890f, 0x3ff0b558
.long 0x32d3d1a2, 0x3ff0e3ec
.long 0xd0125b51, 0x3ff11301
.long 0xaea92de0, 0x3ff1429a
.long 0x3c7d517b, 0x3ff172b8
.long 0xeb6fcb75, 0x3ff1a35b
.long 0x3168b9aa, 0x3ff1d487
.long 0x88628cd6, 0x3ff2063b
.long 0x6e756238, 0x3ff2387a
.long 0x65e27cdd, 0x3ff26b45
.long 0xf51fdee1, 0x3ff29e9d
.long 0xa6e4030b, 0x3ff2d285
.long 0x0a31b715, 0x3ff306fe
.long 0xb26416ff, 0x3ff33c08
.long 0x373aa9cb, 0x3ff371a7
.long 0x34e59ff7, 0x3ff3a7db
.long 0x4c123422, 0x3ff3dea6
.long 0x21f72e2a, 0x3ff4160a
.long 0x6061892d, 0x3ff44e08
.long 0xb5c13cd0, 0x3ff486a2
.long 0xd5362a27, 0x3ff4bfda
.long 0x769d2ca7, 0x3ff4f9b2
.long 0x569d4f82, 0x3ff5342b
.long 0x36b527da, 0x3ff56f47
.long 0xdd485429, 0x3ff5ab07
.long 0x15ad2148, 0x3ff5e76f
.long 0xb03a5585, 0x3ff6247e
.long 0x82552225, 0x3ff66238
.long 0x667f3bcd, 0x3ff6a09e
.long 0x3c651a2f, 0x3ff6dfb2
.long 0xe8ec5f74, 0x3ff71f75
.long 0x564267c9, 0x3ff75feb
.long 0x73eb0187, 0x3ff7a114
.long 0x36cf4e62, 0x3ff7e2f3
.long 0x994cce13, 0x3ff82589
.long 0x9b4492ed, 0x3ff868d9
.long 0x422aa0db, 0x3ff8ace5
.long 0x99157736, 0x3ff8f1ae
.long 0xb0cdc5e5, 0x3ff93737
.long 0x9fde4e50, 0x3ff97d82
.long 0x82a3f090, 0x3ff9c491
.long 0x7b5de565, 0x3ffa0c66
.long 0xb23e255d, 0x3ffa5503
.long 0x5579fdbf, 0x3ffa9e6b
.long 0x995ad3ad, 0x3ffae89f
.long 0xb84f15fb, 0x3ffb33a2
.long 0xf2fb5e47, 0x3ffb7f76
.long 0x904bc1d2, 0x3ffbcc1e
.long 0xdd85529c, 0x3ffc199b
.long 0x2e57d14b, 0x3ffc67f1
.long 0xdcef9069, 0x3ffcb720
.long 0x4a07897c, 0x3ffd072d
.long 0xdcfba487, 0x3ffd5818
.long 0x03db3285, 0x3ffda9e6
.long 0x337b9b5f, 0x3ffdfc97
.long 0xe78b3ff6, 0x3ffe502e
.long 0xa2a490da, 0x3ffea4af
.long 0xee615a27, 0x3ffefa1b
.long 0x5b6e4540, 0x3fff5076
.long 0x819e90d8, 0x3fffa7c1
.type L(DP_T), @object
ASM_SIZE_DIRECTIVE(L(DP_T))
.section .rodata.cst8,"aM",@progbits,8
.p2align 3
L(DP_KLN2): /* double precision K/log(2) */
.long 0x652b82fe, 0x40571547
.type L(DP_KLN2), @object
ASM_SIZE_DIRECTIVE(L(DP_KLN2))
.p2align 3
L(DP_NLN2K): /* double precision -log(2)/K */
.long 0xfefa39ef, 0xbf862e42
.type L(DP_NLN2K), @object
ASM_SIZE_DIRECTIVE(L(DP_NLN2K))
.p2align 3
L(DP_RS): /* double precision 2^23+2^22 */
.long 0x00000000, 0x41680000
.type L(DP_RS), @object
ASM_SIZE_DIRECTIVE(L(DP_RS))
.p2align 3
L(DP_P3): /* double precision polynomial coefficient P3 */
.long 0xeb78fa85, 0x3fa56420
.type L(DP_P3), @object
ASM_SIZE_DIRECTIVE(L(DP_P3))
.p2align 3
L(DP_P1): /* double precision polynomial coefficient P1 */
.long 0x008d6118, 0x3fe00000
.type L(DP_P1), @object
ASM_SIZE_DIRECTIVE(L(DP_P1))
.p2align 3
L(DP_P2): /* double precision polynomial coefficient P2 */
.long 0xda752d4f, 0x3fc55550
.type L(DP_P2), @object
ASM_SIZE_DIRECTIVE(L(DP_P2))
.p2align 3
L(DP_P0): /* double precision polynomial coefficient P0 */
.long 0xffffe7c6, 0x3fefffff
.type L(DP_P0), @object
ASM_SIZE_DIRECTIVE(L(DP_P0))
.p2align 3
L(SP_RANGE): /* single precision overflow/underflow bounds */
.long 0x42b17217 /* if x>this bound, then result overflows */
.long 0x42cff1b4 /* if x<this bound, then result underflows */
.type L(SP_RANGE), @object
ASM_SIZE_DIRECTIVE(L(SP_RANGE))
.p2align 3
L(SP_INF_0):
.long 0x7f800000 /* single precision Inf */
.long 0 /* single precision zero */
.type L(SP_INF_0), @object
ASM_SIZE_DIRECTIVE(L(SP_INF_0))
.section .rodata.cst4,"aM",@progbits,4
.p2align 2
L(SP_RS): /* single precision 2^23+2^22 */
.long 0x4b400000
.type L(SP_RS), @object
ASM_SIZE_DIRECTIVE(L(SP_RS))
.p2align 2
L(SP_SMALL): /* single precision small value 2^(-100) */
.long 0x0d800000
.type L(SP_SMALL), @object
ASM_SIZE_DIRECTIVE(L(SP_SMALL))
.p2align 2
L(SP_LARGE): /* single precision large value 2^100 */
.long 0x71800000
.type L(SP_LARGE), @object
ASM_SIZE_DIRECTIVE(L(SP_LARGE))
.p2align 2
L(SP_ONE): /* single precision 1.0 */
.long 0x3f800000
.type L(SP_ONE), @object
ASM_SIZE_DIRECTIVE(L(SP_ONE))
strong_alias (__ieee754_expf, __expf_finite)

View File

@ -1987,13 +1987,17 @@ ldouble: 1
Function: "exp_downward":
double: 1
float: 1
idouble: 1
ifloat: 1
ildouble: 1
ldouble: 1
Function: "exp_towardzero":
double: 1
float: 1
idouble: 1
ifloat: 1
ildouble: 2
ldouble: 2

View File

@ -37,9 +37,10 @@ CFLAGS-slowpow-fma.c = -mfma -mavx2
CFLAGS-s_sin-fma.c = -mfma -mavx2
CFLAGS-s_tan-fma.c = -mfma -mavx2
# e_expf-fma.S implements both FMA and SSE2 versions of e_expf.
libm-sysdep_routines += e_expf-fma
CFLAGS-e_expf-fma.c = -mfma -mavx2
libm-sysdep_routines += e_exp-fma4 e_log-fma4 e_pow-fma4 s_atan-fma4 \
e_asin-fma4 e_atan2-fma4 s_sin-fma4 s_tan-fma4 \
mplog-fma4 mpa-fma4 slowexp-fma4 slowpow-fma4 \

View File

@ -1,182 +0,0 @@
/* FMA/AVX2 version of IEEE 754 expf.
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <sysdep.h>
/* Short algorithm description:
Let K = 64 (table size).
e^x = 2^(x/log(2)) = 2^n * T[j] * (1 + P(y))
where
x = m*log(2)/K + y, y in [0.0..log(2)/K]
m = n*K + j, m,n,j - signed integer, j in [0..K-1]
values of 2^(j/K) are tabulated as T[j].
P(y) is a minimax polynomial approximation of expf(x)-1
on small interval [0.0..log(2)/K].
P(y) = P3*y*y*y*y + P2*y*y*y + P1*y*y + P0*y, calculated as
z = y*y; P(y) = (P3*z + P1)*z + (P2*z + P0)*y
Special cases:
expf(NaN) = NaN
expf(+INF) = +INF
expf(-INF) = 0
expf(x) = 1 for subnormals
for finite argument, only expf(0)=1 is exact
expf(x) overflows if x>88.7228317260742190
expf(x) underflows if x<-103.972076416015620
*/
.section .text.fma,"ax",@progbits
ENTRY(__ieee754_expf_fma)
/* Input: single precision x in %xmm0 */
vcvtss2sd %xmm0, %xmm0, %xmm1 /* Convert x to double precision */
vmovd %xmm0, %ecx /* Copy x */
vmovsd L(DP_KLN2)(%rip), %xmm2 /* DP K/log(2) */
vfmadd213sd L(DP_RD)(%rip), %xmm1, %xmm2 /* DP x*K/log(2)+RD */
vmovsd L(DP_P2)(%rip), %xmm3 /* DP P2 */
movl %ecx, %eax /* x */
andl $0x7fffffff, %ecx /* |x| */
lea L(DP_T)(%rip), %rsi /* address of table T[j] */
vmovsd L(DP_P3)(%rip), %xmm4 /* DP P3 */
cmpl $0x42ad496b, %ecx /* |x|<125*log(2) ? */
jae L(special_paths_fma)
/* Here if |x|<125*log(2) */
cmpl $0x31800000, %ecx /* |x|<2^(-28) ? */
jb L(small_arg_fma)
/* Main path: here if 2^(-28)<=|x|<125*log(2) */
/* %xmm2 = SP x*K/log(2)+RS */
vmovd %xmm2, %eax
vsubsd L(DP_RD)(%rip), %xmm2, %xmm2 /* DP t=round(x*K/log(2)) */
movl %eax, %edx /* n*K+j with trash */
andl $0x3f, %eax /* bits of j */
vmovsd (%rsi,%rax,8), %xmm5 /* T[j] */
andl $0xffffffc0, %edx /* bits of n */
vfmadd132sd L(DP_NLN2K)(%rip), %xmm1, %xmm2 /* DP y=x-t*log(2)/K */
vmulsd %xmm2, %xmm2, %xmm6 /* DP z=y*y */
vfmadd213sd L(DP_P1)(%rip), %xmm6, %xmm4 /* DP P3*z + P1 */
vfmadd213sd L(DP_P0)(%rip), %xmm6, %xmm3 /* DP P2*z+P0 */
addl $0x1fc0, %edx /* bits of n + SP exponent bias */
shll $17, %edx /* SP 2^n */
vmovd %edx, %xmm1 /* SP 2^n */
vmulsd %xmm6, %xmm4, %xmm4 /* DP (P3*z+P1)*z */
vfmadd213sd %xmm4, %xmm3, %xmm2 /* DP P(Y) (P2*z+P0)*y */
vfmadd213sd %xmm5, %xmm5, %xmm2 /* DP T[j]*(P(y)+1) */
vcvtsd2ss %xmm2, %xmm2, %xmm0 /* SP T[j]*(P(y)+1) */
vmulss %xmm1, %xmm0, %xmm0 /* SP result=2^n*(T[j]*(P(y)+1)) */
ret
.p2align 4
L(small_arg_fma):
/* Here if 0<=|x|<2^(-28) */
vaddss L(SP_ONE)(%rip), %xmm0, %xmm0 /* 1.0 + x */
/* Return 1.0 with inexact raised, except for x==0 */
ret
.p2align 4
L(special_paths_fma):
/* Here if 125*log(2)<=|x| */
shrl $31, %eax /* Get sign bit of x, and depending on it: */
lea L(SP_RANGE)(%rip), %rdx /* load over/underflow bound */
cmpl (%rdx,%rax,4), %ecx /* |x|<under/overflow bound ? */
jbe L(near_under_or_overflow_fma)
/* Here if |x|>under/overflow bound */
cmpl $0x7f800000, %ecx /* |x| is finite ? */
jae L(arg_inf_or_nan_fma)
/* Here if |x|>under/overflow bound, and x is finite */
testl %eax, %eax /* sign of x nonzero ? */
je L(res_overflow_fma)
/* Here if -inf<x<underflow bound (x<0) */
vmovss L(SP_SMALL)(%rip), %xmm0/* load small value 2^(-100) */
vmulss %xmm0, %xmm0, %xmm0 /* Return underflowed result (zero or subnormal) */
ret
.p2align 4
L(res_overflow_fma):
/* Here if overflow bound<x<inf (x>0) */
vmovss L(SP_LARGE)(%rip), %xmm0/* load large value 2^100 */
vmulss %xmm0, %xmm0, %xmm0 /* Return overflowed result (Inf or max normal) */
ret
.p2align 4
L(arg_inf_or_nan_fma):
/* Here if |x| is Inf or NAN */
jne L(arg_nan_fma) /* |x| is Inf ? */
/* Here if |x| is Inf */
lea L(SP_INF_0)(%rip), %rdx /* depending on sign of x: */
vmovss (%rdx,%rax,4), %xmm0 /* return zero or Inf */
ret
.p2align 4
L(arg_nan_fma):
/* Here if |x| is NaN */
vaddss %xmm0, %xmm0, %xmm0 /* Return x+x (raise invalid) */
ret
.p2align 4
L(near_under_or_overflow_fma):
/* Here if 125*log(2)<=|x|<under/overflow bound */
vmovd %xmm2, %eax /* bits of n*K+j with trash */
vsubsd L(DP_RD)(%rip), %xmm2, %xmm2 /* DP t=round(x*K/log(2)) */
movl %eax, %edx /* n*K+j with trash */
andl $0x3f, %eax /* bits of j */
vmulsd L(DP_NLN2K)(%rip),%xmm2, %xmm2/* DP -t*log(2)/K */
andl $0xffffffc0, %edx /* bits of n */
vaddsd %xmm1, %xmm2, %xmm0 /* DP y=x-t*log(2)/K */
vmulsd %xmm0, %xmm0, %xmm2 /* DP z=y*y */
addl $0xffc0, %edx /* bits of n + DP exponent bias */
vfmadd213sd L(DP_P0)(%rip), %xmm2, %xmm3/* DP P2*z+P0 */
shlq $46, %rdx /* DP 2^n */
vfmadd213sd L(DP_P1)(%rip), %xmm2, %xmm4/* DP P3*z+P1 */
vmovq %rdx, %xmm1 /* DP 2^n */
vmulsd %xmm2, %xmm4, %xmm4 /* DP (P3*z+P1)*z */
vfmadd213sd %xmm4, %xmm3, %xmm0 /* DP (P2*z+P0)*y */
vmovsd (%rsi,%rax,8), %xmm2
vfmadd213sd %xmm2, %xmm2, %xmm0 /* DP T[j]*(P(y)+1) */
vmulsd %xmm1, %xmm0, %xmm0 /* DP result=2^n*(T[j]*(P(y)+1)) */
vcvtsd2ss %xmm0, %xmm0, %xmm0 /* convert result to single precision */
ret
END(__ieee754_expf_fma)
.section .rodata.cst8,"aM",@progbits,8
.p2align 3
L(DP_RD): /* double precision 2^52+2^51 */
.long 0x00000000, 0x43380000
.type L(DP_RD), @object
ASM_SIZE_DIRECTIVE(L(DP_RD))
#define __ieee754_expf __ieee754_expf_sse2
#undef strong_alias
#define strong_alias(ignored1, ignored2)
#include <sysdeps/x86_64/fpu/e_expf.S>

View File

@ -0,0 +1,3 @@
#define __expf __expf_fma
#include <sysdeps/ieee754/flt-32/e_expf.c>

View File

@ -1,4 +1,4 @@
/* Multiple versions of IEEE 754 expf.
/* Multiple versions of expf.
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
@ -16,11 +16,25 @@
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
extern float __redirect_ieee754_expf (float);
extern float __redirect_expf (float);
#define SYMBOL_NAME ieee754_expf
#define SYMBOL_NAME expf
#include "ifunc-fma.h"
libc_ifunc_redirected (__redirect_ieee754_expf, __ieee754_expf,
IFUNC_SELECTOR ());
strong_alias (__ieee754_expf, __expf_finite)
libc_ifunc_redirected (__redirect_expf, __expf, IFUNC_SELECTOR ());
#ifdef SHARED
__hidden_ver1 (__expf, __GI___expf, __redirect_expf)
__attribute__ ((visibility ("hidden")));
# include <shlib-compat.h>
versioned_symbol (libm, __expf, expf, GLIBC_2_27);
#else
weak_alias (__expf, expf)
#endif
strong_alias (__expf, __ieee754_expf)
strong_alias (__expf, __expf_finite)
#define __expf __expf_sse2
#include <sysdeps/ieee754/flt-32/e_expf.c>

View File

@ -1 +0,0 @@
#include <sysdeps/../math/w_expf.c>