benchtests: Improve benchtests for strstr

Use same strategy as bench-strstr.c (93eebae516 and 80b2bfb535)
and use json_ctx for output to help standardize format across all
benchtests.
Reviewed-by: Arjun Shankar <arjun@redhat.com>
This commit is contained in:
Adhemerval Zanella 2024-03-18 09:27:52 -03:00
parent 721314c980
commit a0698a5e92

View File

@ -16,10 +16,36 @@
License along with the GNU C Library; if not, see License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */ <https://www.gnu.org/licenses/>. */
#define MIN_PAGE_SIZE 131072
#define TEST_MAIN #define TEST_MAIN
#define TEST_NAME "strcasestr" #define TEST_NAME "strcasestr"
#include "bench-string.h" #include "bench-string.h"
#include "json-lib.h"
static const char input[] =
"This manual is written with the assumption that you are at least "
"somewhat familiar with the C programming language and basic programming "
"concepts. Specifically, familiarity with ISO standard C (*note ISO "
"C::), rather than “traditional” pre-ISO C dialects, is assumed.\n"
" The GNU C Library includes several “header files”, each of which "
"provides definitions and declarations for a group of related facilities; "
"this information is used by the C compiler when processing your program. "
"For example, the header file stdio.h declares facilities for "
"performing input and output, and the header file string.h declares "
"string processing utilities. The organization of this manual generally "
"follows the same division as the header files.\n"
" If you are reading this manual for the first time, you should read "
"all of the introductory material and skim the remaining chapters. There "
"are a _lot_ of functions in the GNU C Library and its not realistic to "
"expect that you will be able to remember exactly _how_ to use each and "
"every one of them. Its more important to become generally familiar "
"with the kinds of facilities that the library provides, so that when you "
"are writing your programs you can recognize _when_ to make use of "
"library functions, and _where_ in this manual you can find more specific "
"information about them.\n";
#define STRCASESTR simple_strcasestr #define STRCASESTR simple_strcasestr
#define NO_ALIAS #define NO_ALIAS
@ -32,123 +58,294 @@ typedef char *(*proto_t) (const char *, const char *);
IMPL (simple_strcasestr, 0) IMPL (simple_strcasestr, 0)
IMPL (strcasestr, 1) IMPL (strcasestr, 1)
static void static void
do_one_test (impl_t *impl, const char *s1, const char *s2, char *exp_result) do_one_test (json_ctx_t *json_ctx, impl_t *impl, const char *s1,
const char *s2, char *exp_result)
{ {
size_t i, iters = INNER_LOOP_ITERS_SMALL; size_t i, iters = INNER_LOOP_ITERS_SMALL / 8;
timing_t start, stop, cur; timing_t start, stop, cur;
char *res;
TIMING_NOW (start); TIMING_NOW (start);
for (i = 0; i < iters; ++i) for (i = 0; i < iters; ++i)
{ res = CALL (impl, s1, s2);
CALL (impl, s1, s2);
}
TIMING_NOW (stop); TIMING_NOW (stop);
TIMING_DIFF (cur, start, stop); TIMING_DIFF (cur, start, stop);
TIMING_PRINT_MEAN ((double) cur, (double) iters); json_element_double (json_ctx, (double) cur / (double) iters);
if (res != exp_result)
{
error (0, 0, "Wrong result in function %s %s %s", impl->name,
(res == NULL) ? "(null)" : res,
(exp_result == NULL) ? "(null)" : exp_result);
ret = 1;
}
} }
static void static void
do_test (size_t align1, size_t align2, size_t len1, size_t len2, do_test (json_ctx_t *json_ctx, size_t align1, size_t align2, size_t len1,
int fail) size_t len2, int fail)
{ {
char *s1 = (char *) (buf1 + align1); char *s1 = (char *) (buf1 + align1);
char *s2 = (char *) (buf2 + align2); char *s2 = (char *) (buf2 + align2);
static const char d[] = "1234567890abcxyz"; size_t size = sizeof (input) - 1;
#define dl (sizeof (d) - 1) size_t pos = (len1 + len2) % size;
char *ss2 = s2; char *ss2 = s2;
for (size_t l = len2; l > 0; l = l > dl ? l - dl : 0) for (size_t l = len2; l > 0; l = l > size ? l - size : 0)
{ {
size_t t = l > dl ? dl : l; size_t t = l > size ? size : l;
ss2 = mempcpy (ss2, d, t); if (pos + t <= size)
ss2 = mempcpy (ss2, input + pos, t);
else
{
ss2 = mempcpy (ss2, input + pos, size - pos);
ss2 = mempcpy (ss2, input, t - (size - pos));
}
} }
s2[len2] = '\0'; s2[len2] = '\0';
if (fail)
{
char *ss1 = s1; char *ss1 = s1;
for (size_t l = len1; l > 0; l = l > dl ? l - dl : 0) for (size_t l = len1; l > 0; l = l > size ? l - size : 0)
{ {
size_t t = l > dl ? dl : l; size_t t = l > size ? size : l;
memcpy (ss1, d, t); memcpy (ss1, input, t);
++ss1[len2 > 7 ? 7 : len2 - 1];
ss1 += t; ss1 += t;
} }
}
else if (!fail)
{ memcpy (s1 + len1 - len2, s2, len2);
memset (s1, '0', len1);
for (size_t i = 0; i < len2; ++i)
s1[len1 - len2 + i] = toupper (s2[i]);
}
s1[len1] = '\0'; s1[len1] = '\0';
printf ("Length %4zd/%zd, alignment %2zd/%2zd, %s:", /* Remove any accidental matches except for the last if !fail. */
len1, len2, align1, align2, fail ? "fail" : "found"); for (ss1 = simple_strcasestr (s1, s2);
ss1 != NULL;
ss1 = simple_strcasestr (ss1 + 1, s2))
if (fail || ss1 != s1 + len1 - len2)
++ss1[len2 / 2];
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", len1);
json_attr_uint (json_ctx, "len_needle", len2);
json_attr_uint (json_ctx, "align_haystack", align1);
json_attr_uint (json_ctx, "align_needle", align2);
json_attr_uint (json_ctx, "fail", fail);
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0) FOR_EACH_IMPL (impl, 0)
do_one_test (impl, s1, s2, fail ? NULL : s1 + len1 - len2); do_one_test (json_ctx, impl, s1, s2, fail ? NULL : s1 + len1 - len2);
putchar ('\n'); json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
/* Test needles which exhibit worst-case performance for naive quadradic
implementations. */
static void
test_hard_needle (json_ctx_t *json_ctx, size_t ne_len, size_t hs_len)
{
char *ne = (char *) buf1;
char *hs = (char *) buf2;
/* Hard needle for strstr algorithm using skip table. This results in many
memcmp calls comparing most of the needle. */
{
memset (ne, 'a', ne_len);
ne[ne_len] = '\0';
ne[ne_len - 14] = 'b';
memset (hs, 'a', hs_len);
for (size_t i = ne_len; i <= hs_len; i += ne_len)
{
hs[i - 5] = 'b';
hs[i - 62] = 'b';
}
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", hs_len);
json_attr_uint (json_ctx, "len_needle", ne_len);
json_attr_uint (json_ctx, "align_haystack", 0);
json_attr_uint (json_ctx, "align_needle", 0);
json_attr_uint (json_ctx, "fail", 1);
json_attr_string (json_ctx, "desc", "Difficult skiptable(0)");
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, hs, ne, NULL);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
/* 2nd hard needle for strstr algorithm using skip table. This results in
many memcmp calls comparing most of the needle. */
{
memset (ne, 'a', ne_len);
ne[ne_len] = '\0';
ne[ne_len - 6] = 'b';
memset (hs, 'a', hs_len);
for (size_t i = ne_len; i <= hs_len; i += ne_len)
{
hs[i - 5] = 'b';
hs[i - 6] = 'b';
}
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", hs_len);
json_attr_uint (json_ctx, "len_needle", ne_len);
json_attr_uint (json_ctx, "align_haystack", 0);
json_attr_uint (json_ctx, "align_needle", 0);
json_attr_uint (json_ctx, "fail", 1);
json_attr_string (json_ctx, "desc", "Difficult skiptable(1)");
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, hs, ne, NULL);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
/* Hard needle for Two-way algorithm - the random input causes a large number
of branch mispredictions which significantly reduces performance on modern
micro architectures. */
{
for (int i = 0; i < hs_len; i++)
hs[i] = (rand () & 255) > 155 ? 'a' : 'b';
hs[hs_len] = 0;
memset (ne, 'a', ne_len);
ne[ne_len - 2] = 'b';
ne[0] = 'b';
ne[ne_len] = 0;
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", hs_len);
json_attr_uint (json_ctx, "len_needle", ne_len);
json_attr_uint (json_ctx, "align_haystack", 0);
json_attr_uint (json_ctx, "align_needle", 0);
json_attr_uint (json_ctx, "fail", 1);
json_attr_string (json_ctx, "desc", "Difficult 2-way");
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, hs, ne, NULL);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
/* Hard needle for standard algorithm testing first few characters of
* needle. */
{
for (int i = 0; i < hs_len; i++)
hs[i] = (rand () & 255) >= 128 ? 'a' : 'b';
hs[hs_len] = 0;
for (int i = 0; i < ne_len; i++)
{
if (i % 3 == 0)
ne[i] = 'a';
else if (i % 3 == 1)
ne[i] = 'b';
else
ne[i] = 'c';
}
ne[ne_len] = 0;
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "len_haystack", hs_len);
json_attr_uint (json_ctx, "len_needle", ne_len);
json_attr_uint (json_ctx, "align_haystack", 0);
json_attr_uint (json_ctx, "align_needle", 0);
json_attr_uint (json_ctx, "fail", 1);
json_attr_string (json_ctx, "desc", "Difficult testing first 2");
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, hs, ne, NULL);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
} }
static int static int
test_main (void) test_main (void)
{ {
json_ctx_t json_ctx;
test_init (); test_init ();
printf ("%23s", ""); json_init (&json_ctx, 0, stdout);
json_document_begin (&json_ctx);
json_attr_string (&json_ctx, "timing_type", TIMING_TYPE);
json_attr_object_begin (&json_ctx, "functions");
json_attr_object_begin (&json_ctx, TEST_NAME);
json_attr_string (&json_ctx, "bench-variant", "");
json_array_begin (&json_ctx, "ifuncs");
FOR_EACH_IMPL (impl, 0) FOR_EACH_IMPL (impl, 0)
printf ("\t%s", impl->name); json_element_string (&json_ctx, impl->name);
putchar ('\n'); json_array_end (&json_ctx);
for (size_t klen = 2; klen < 32; ++klen) json_array_begin (&json_ctx, "results");
for (size_t hlen = 2 * klen; hlen < 16 * klen; hlen += klen)
for (size_t hlen = 8; hlen <= 256;)
for (size_t klen = 1; klen <= 16; klen++)
{ {
do_test (0, 0, hlen, klen, 0); do_test (&json_ctx, 1, 3, hlen, klen, 0);
do_test (0, 0, hlen, klen, 1); do_test (&json_ctx, 0, 9, hlen, klen, 1);
do_test (0, 3, hlen, klen, 0);
do_test (0, 3, hlen, klen, 1);
do_test (0, 9, hlen, klen, 0);
do_test (0, 9, hlen, klen, 1);
do_test (0, 15, hlen, klen, 0);
do_test (0, 15, hlen, klen, 1);
do_test (3, 0, hlen, klen, 0); do_test (&json_ctx, 1, 3, hlen + 1, klen, 0);
do_test (3, 0, hlen, klen, 1); do_test (&json_ctx, 0, 9, hlen + 1, klen, 1);
do_test (3, 3, hlen, klen, 0);
do_test (3, 3, hlen, klen, 1);
do_test (3, 9, hlen, klen, 0);
do_test (3, 9, hlen, klen, 1);
do_test (3, 15, hlen, klen, 0);
do_test (3, 15, hlen, klen, 1);
do_test (9, 0, hlen, klen, 0); do_test (&json_ctx, getpagesize () - 15, 9, hlen, klen, 1);
do_test (9, 0, hlen, klen, 1); if (hlen < 64)
do_test (9, 3, hlen, klen, 0); {
do_test (9, 3, hlen, klen, 1); hlen += 8;
do_test (9, 9, hlen, klen, 0); }
do_test (9, 9, hlen, klen, 1); else
do_test (9, 15, hlen, klen, 0); {
do_test (9, 15, hlen, klen, 1); hlen += 32;
}
do_test (15, 0, hlen, klen, 0);
do_test (15, 0, hlen, klen, 1);
do_test (15, 3, hlen, klen, 0);
do_test (15, 3, hlen, klen, 1);
do_test (15, 9, hlen, klen, 0);
do_test (15, 9, hlen, klen, 1);
do_test (15, 15, hlen, klen, 0);
do_test (15, 15, hlen, klen, 1);
} }
do_test (0, 0, page_size - 1, 16, 0); for (size_t hlen = 256; hlen <= 65536; hlen *= 2)
do_test (0, 0, page_size - 1, 16, 1); for (size_t klen = 4; klen <= 256; klen *= 2)
{
do_test (&json_ctx, 1, 11, hlen, klen, 0);
do_test (&json_ctx, 14, 5, hlen, klen, 1);
do_test (&json_ctx, 1, 11, hlen + 1, klen + 1, 0);
do_test (&json_ctx, 14, 5, hlen + 1, klen + 1, 1);
do_test (&json_ctx, 1, 11, hlen + 1, klen, 0);
do_test (&json_ctx, 14, 5, hlen + 1, klen, 1);
do_test (&json_ctx, getpagesize () - 15, 5, hlen + 1, klen, 1);
}
test_hard_needle (&json_ctx, 64, 65536);
test_hard_needle (&json_ctx, 256, 65536);
test_hard_needle (&json_ctx, 1024, 65536);
json_array_end (&json_ctx);
json_attr_object_end (&json_ctx);
json_attr_object_end (&json_ctx);
json_document_end (&json_ctx);
return ret; return ret;
} }