Prepare to convert remaining _Complex functions

This patch has no function changes, except to
ensure the git history correctly tracks the
changes to convert the double version of these
functions into a templated version.
This commit is contained in:
Paul E. Murphy 2016-07-01 11:03:51 -05:00
parent d47d27d6c0
commit 1dbc54f61e
7 changed files with 650 additions and 0 deletions

View File

@ -1,3 +1,12 @@
2016-08-29 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
* s_cexp_template.c: Copy of s_cexp.c.
* s_clog_template.c: Copy of s_clog.c.
* s_clog10_template.c: Copy of s_clog10.c.
* s_cpow_template.c: Copy of s_cpow.c.
* s_cproj_template.c: Copy of s_cproj.c.
* s_csqrt_template.c: Copy of s_csqrt.c.
2016-08-29 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
[BZ #20517]

157
math/s_cexp_template.c Normal file
View File

@ -0,0 +1,157 @@
/* Return value of complex exponential function for double complex value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__cexp (__complex__ double x)
{
__complex__ double retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
double sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (__real__ x > t)
{
double exp_t = __ieee754_exp (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = DBL_MAX * cosix;
__imag__ retval = DBL_MAX * sinix;
}
else
{
double exp_val = __ieee754_exp (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = __nan ("");
__imag__ retval = __nan ("");
feraiseexcept (FE_INVALID);
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
double value = signbit (__real__ x) ? 0.0 : HUGE_VAL;
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
double sinix, cosix;
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
__real__ retval = __copysign (value, cosix);
__imag__ retval = __copysign (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = HUGE_VAL;
__imag__ retval = __nan ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = 0.0;
__imag__ retval = __copysign (0.0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = __nan ("");
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = __nan ("");
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
}
}
return retval;
}
weak_alias (__cexp, cexp)
#ifdef NO_LONG_DOUBLE
strong_alias (__cexp, __cexpl)
weak_alias (__cexp, cexpl)
#endif

124
math/s_clog10_template.c Normal file
View File

@ -0,0 +1,124 @@
/* Compute complex base 10 logarithm.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* log_10 (2). */
#define M_LOG10_2 0.3010299956639811952137388947244930267682
/* pi * log10 (e). */
#define M_PI_LOG10E 1.364376353841841347485783625431355770210
__complex__ double
__clog10 (__complex__ double x)
{
__complex__ double result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI_LOG10E : 0.0;
__imag__ result = __copysign (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabs (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
double absx = fabs (__real__ x), absy = fabs (__imag__ x);
int scale = 0;
if (absx < absy)
{
double t = absx;
absx = absy;
absy = t;
}
if (absx > DBL_MAX / 2.0)
{
scale = -1;
absx = __scalbn (absx, scale);
absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
}
else if (absx < DBL_MIN && absy < DBL_MIN)
{
scale = DBL_MANT_DIG;
absx = __scalbn (absx, scale);
absy = __scalbn (absy, scale);
}
if (absx == 1.0 && scale == 0)
{
__real__ result = __log1p (absy * absy) * (M_LOG10E / 2.0);
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
if (absy >= DBL_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
}
else if (absx < 1.0
&& absx >= 0.5
&& absy < DBL_EPSILON / 2.0
&& scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
}
else if (absx < 1.0
&& absx >= 0.5
&& scale == 0
&& absx * absx + absy * absy >= 0.5)
{
double d2m1 = __x2y2m1 (absx, absy);
__real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
}
else
{
double d = __ieee754_hypot (absx, absy);
__real__ result = __ieee754_log10 (d) - scale * M_LOG10_2;
}
__imag__ result = M_LOG10E * __ieee754_atan2 (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nan ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VAL;
else
__real__ result = __nan ("");
}
return result;
}
weak_alias (__clog10, clog10)
#ifdef NO_LONG_DOUBLE
strong_alias (__clog10, __clog10l)
weak_alias (__clog10, clog10l)
#endif

118
math/s_clog_template.c Normal file
View File

@ -0,0 +1,118 @@
/* Compute complex natural logarithm.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__clog (__complex__ double x)
{
__complex__ double result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI : 0.0;
__imag__ result = __copysign (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabs (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
double absx = fabs (__real__ x), absy = fabs (__imag__ x);
int scale = 0;
if (absx < absy)
{
double t = absx;
absx = absy;
absy = t;
}
if (absx > DBL_MAX / 2.0)
{
scale = -1;
absx = __scalbn (absx, scale);
absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
}
else if (absx < DBL_MIN && absy < DBL_MIN)
{
scale = DBL_MANT_DIG;
absx = __scalbn (absx, scale);
absy = __scalbn (absy, scale);
}
if (absx == 1.0 && scale == 0)
{
__real__ result = __log1p (absy * absy) / 2.0;
math_check_force_underflow_nonneg (__real__ result);
}
else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
if (absy >= DBL_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1p (d2m1) / 2.0;
}
else if (absx < 1.0
&& absx >= 0.5
&& absy < DBL_EPSILON / 2.0
&& scale == 0)
{
double d2m1 = (absx - 1.0) * (absx + 1.0);
__real__ result = __log1p (d2m1) / 2.0;
}
else if (absx < 1.0
&& absx >= 0.5
&& scale == 0
&& absx * absx + absy * absy >= 0.5)
{
double d2m1 = __x2y2m1 (absx, absy);
__real__ result = __log1p (d2m1) / 2.0;
}
else
{
double d = __ieee754_hypot (absx, absy);
__real__ result = __ieee754_log (d) - scale * M_LN2;
}
__imag__ result = __ieee754_atan2 (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nan ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VAL;
else
__real__ result = __nan ("");
}
return result;
}
weak_alias (__clog, clog)
#ifdef NO_LONG_DOUBLE
strong_alias (__clog, __clogl)
weak_alias (__clog, clogl)
#endif

33
math/s_cpow_template.c Normal file
View File

@ -0,0 +1,33 @@
/* Complex power of double values.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
__complex__ double
__cpow (__complex__ double x, __complex__ double c)
{
return __cexp (c * __clog (x));
}
weak_alias (__cpow, cpow)
#ifdef NO_LONG_DOUBLE
strong_alias (__cpow, __cpowl)
weak_alias (__cpow, cpowl)
#endif

44
math/s_cproj_template.c Normal file
View File

@ -0,0 +1,44 @@
/* Compute projection of complex double value to Riemann sphere.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
__complex__ double
__cproj (__complex__ double x)
{
if (isinf (__real__ x) || isinf (__imag__ x))
{
__complex__ double res;
__real__ res = INFINITY;
__imag__ res = __copysign (0.0, __imag__ x);
return res;
}
return x;
}
weak_alias (__cproj, cproj)
#ifdef NO_LONG_DOUBLE
strong_alias (__cproj, __cprojl)
weak_alias (__cproj, cprojl)
#endif

165
math/s_csqrt_template.c Normal file
View File

@ -0,0 +1,165 @@
/* Complex square root of double value.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__csqrt (__complex__ double x)
{
__complex__ double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = HUGE_VAL;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
if (__real__ x < 0.0)
{
__real__ res = icls == FP_NAN ? __nan ("") : 0;
__imag__ res = __copysign (HUGE_VAL, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
? __nan ("") : __copysign (0.0, __imag__ x));
}
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
}
}
else
{
if (__glibc_unlikely (icls == FP_ZERO))
{
if (__real__ x < 0.0)
{
__real__ res = 0.0;
__imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
__imag__ x);
}
else
{
__real__ res = fabs (__ieee754_sqrt (__real__ x));
__imag__ res = __copysign (0.0, __imag__ x);
}
}
else if (__glibc_unlikely (rcls == FP_ZERO))
{
double r;
if (fabs (__imag__ x) >= 2.0 * DBL_MIN)
r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
else
r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x));
__real__ res = r;
__imag__ res = __copysign (r, __imag__ x);
}
else
{
double d, r, s;
int scale = 0;
if (fabs (__real__ x) > DBL_MAX / 4.0)
{
scale = 1;
__real__ x = __scalbn (__real__ x, -2 * scale);
__imag__ x = __scalbn (__imag__ x, -2 * scale);
}
else if (fabs (__imag__ x) > DBL_MAX / 4.0)
{
scale = 1;
if (fabs (__real__ x) >= 4.0 * DBL_MIN)
__real__ x = __scalbn (__real__ x, -2 * scale);
else
__real__ x = 0.0;
__imag__ x = __scalbn (__imag__ x, -2 * scale);
}
else if (fabs (__real__ x) < 2.0 * DBL_MIN
&& fabs (__imag__ x) < 2.0 * DBL_MIN)
{
scale = -((DBL_MANT_DIG + 1) / 2);
__real__ x = __scalbn (__real__ x, -2 * scale);
__imag__ x = __scalbn (__imag__ x, -2 * scale);
}
d = __ieee754_hypot (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
r = __ieee754_sqrt (0.5 * (d + __real__ x));
if (scale == 1 && fabs (__imag__ x) < 1.0)
{
/* Avoid possible intermediate underflow. */
s = __imag__ x / r;
r = __scalbn (r, scale);
scale = 0;
}
else
s = 0.5 * (__imag__ x / r);
}
else
{
s = __ieee754_sqrt (0.5 * (d - __real__ x));
if (scale == 1 && fabs (__imag__ x) < 1.0)
{
/* Avoid possible intermediate underflow. */
r = fabs (__imag__ x / s);
s = __scalbn (s, scale);
scale = 0;
}
else
r = fabs (0.5 * (__imag__ x / s));
}
if (scale)
{
r = __scalbn (r, scale);
s = __scalbn (s, scale);
}
math_check_force_underflow (r);
math_check_force_underflow (s);
__real__ res = r;
__imag__ res = __copysign (s, __imag__ x);
}
}
return res;
}
weak_alias (__csqrt, csqrt)
#ifdef NO_LONG_DOUBLE
strong_alias (__csqrt, __csqrtl)
weak_alias (__csqrt, csqrtl)
#endif