mirror of
git://sourceware.org/git/glibc.git
synced 2024-11-21 01:12:26 +08:00
1028 lines
28 KiB
C
1028 lines
28 KiB
C
|
/* Read decimal floating point numbers.
|
|||
|
Copyright (C) 1995 Free Software Foundation, Inc.
|
|||
|
Contributed by Ulrich Drepper.
|
|||
|
|
|||
|
This file is part of the GNU C Library.
|
|||
|
|
|||
|
The GNU C Library is free software; you can redistribute it and/or
|
|||
|
modify it under the terms of the GNU Library General Public License as
|
|||
|
published by the Free Software Foundation; either version 2 of the
|
|||
|
License, or (at your option) any later version.
|
|||
|
|
|||
|
The GNU C Library is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|||
|
Library General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU Library General Public
|
|||
|
License along with the GNU C Library; see the file COPYING.LIB. If
|
|||
|
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
|
|||
|
Cambridge, MA 02139, USA. */
|
|||
|
|
|||
|
/* Configuration part. These macros are defined by `strtold.c' and `strtof.c'
|
|||
|
to produce the `long double' and `float' versions of the reader. */
|
|||
|
#ifndef FLOAT
|
|||
|
#define FLOAT double
|
|||
|
#define FLT DBL
|
|||
|
#define STRTOF strtod
|
|||
|
#define MPN2FLOAT __mpn_construct_double
|
|||
|
#define FLOAT_HUGE_VAL HUGE_VAL
|
|||
|
#endif
|
|||
|
/* End of configuration part. */
|
|||
|
|
|||
|
#include <ctype.h>
|
|||
|
#include <errno.h>
|
|||
|
#include <float.h>
|
|||
|
#include <localeinfo.h>
|
|||
|
#include <math.h>
|
|||
|
#include <stdlib.h>
|
|||
|
#include "../stdio/gmp.h"
|
|||
|
#include "../stdio/gmp-impl.h"
|
|||
|
#include <gmp-mparam.h>
|
|||
|
#include "../stdio/longlong.h"
|
|||
|
#include "../stdio/fpioconst.h"
|
|||
|
|
|||
|
/* #define NDEBUG 1 */
|
|||
|
#include <assert.h>
|
|||
|
|
|||
|
|
|||
|
/* Constants we need from float.h; select the set for the FLOAT precision. */
|
|||
|
#define MANT_DIG FLT##_MANT_DIG
|
|||
|
#define MAX_EXP FLT##_MAX_EXP
|
|||
|
#define MIN_EXP FLT##_MIN_EXP
|
|||
|
#define MAX_10_EXP FLT##_MAX_10_EXP
|
|||
|
#define MIN_10_EXP FLT##_MIN_10_EXP
|
|||
|
#define MAX_10_EXP_LOG FLT##_MAX_10_EXP_LOG
|
|||
|
|
|||
|
|
|||
|
/* Function to construct a floating point number from an MP integer
|
|||
|
containing the fraction bits, a base 2 exponent, and a sign flag. */
|
|||
|
extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
|
|||
|
|
|||
|
/* Definitions according to limb size used. */
|
|||
|
#if BITS_PER_MP_LIMB == 32
|
|||
|
# define MAX_DIG_PER_LIMB 9
|
|||
|
# define MAX_FAC_PER_LIMB 1000000000L
|
|||
|
#elif BITS_PER_MP_LIMB == 64
|
|||
|
# define MAX_DIG_PER_LIMB 19
|
|||
|
# define MAX_FAC_PER_LIMB 10000000000000000000L
|
|||
|
#else
|
|||
|
# error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
/* Local data structure. */
|
|||
|
static const mp_limb _tens_in_limb[MAX_DIG_PER_LIMB] =
|
|||
|
{ 0, 10, 100,
|
|||
|
1000, 10000, 100000,
|
|||
|
1000000, 10000000, 100000000
|
|||
|
#if BITS_PER_MP_LIMB > 32
|
|||
|
, 1000000000, 10000000000, 100000000000,
|
|||
|
1000000000000, 10000000000000, 100000000000000,
|
|||
|
1000000000000000, 10000000000000000, 100000000000000000,
|
|||
|
1000000000000000000
|
|||
|
#endif
|
|||
|
#if BITS_PER_MP_LIMB > 64
|
|||
|
#error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
|
|||
|
#endif
|
|||
|
};
|
|||
|
|
|||
|
#ifndef howmany
|
|||
|
#define howmany(x,y) (((x)+((y)-1))/(y))
|
|||
|
#endif
|
|||
|
#define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
|
|||
|
|
|||
|
#define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
|
|||
|
#define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
|
|||
|
|
|||
|
#define RETURN(val,end) \
|
|||
|
do { if (endptr != 0) *endptr = (char *) end; return val; } while (0)
|
|||
|
|
|||
|
/* Maximum size necessary for mpn integers to hold floating point numbers. */
|
|||
|
#define MPNSIZE (howmany (MAX_EXP + MANT_DIG, BITS_PER_MP_LIMB) + 1)
|
|||
|
/* Declare an mpn integer variable that big. */
|
|||
|
#define MPN_VAR(name) mp_limb name[MPNSIZE]; mp_size_t name##size
|
|||
|
/* Copy an mpn integer value. */
|
|||
|
#define MPN_ASSIGN(dst, src) \
|
|||
|
memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb))
|
|||
|
|
|||
|
|
|||
|
/* Return a floating point number of the needed type according to the given
|
|||
|
multi-precision number after possible rounding. */
|
|||
|
static inline FLOAT
|
|||
|
round_and_return (mp_limb *retval, int exponent, int negative,
|
|||
|
mp_limb round_limb, mp_size_t round_bit, int more_bits)
|
|||
|
{
|
|||
|
if (exponent < MIN_EXP)
|
|||
|
{
|
|||
|
mp_size_t shift = MIN_EXP - 1 - exponent;
|
|||
|
|
|||
|
if (shift >= MANT_DIG)
|
|||
|
{
|
|||
|
errno = EDOM;
|
|||
|
return 0.0;
|
|||
|
}
|
|||
|
|
|||
|
more_bits |= (round_limb & ((1 << round_bit) - 1)) != 0;
|
|||
|
if (shift >= BITS_PER_MP_LIMB)
|
|||
|
{
|
|||
|
round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
|
|||
|
round_bit = (shift - 1) % BITS_PER_MP_LIMB;
|
|||
|
#if RETURN_LIMB_SIZE <= 2
|
|||
|
assert (RETURN_LIMB_SIZE == 2);
|
|||
|
more_bits |= retval[0] != 0;
|
|||
|
retval[0] = retval[1];
|
|||
|
retval[1] = 0;
|
|||
|
#else
|
|||
|
int disp = shift / BITS_PER_MP_LIMB;
|
|||
|
int i = 0;
|
|||
|
while (retval[i] == 0 && i < disp)
|
|||
|
++i;
|
|||
|
more_bits |= i < disp;
|
|||
|
for (i = disp; i < RETURN_LIMB_SIZE; ++i)
|
|||
|
retval[i - disp] = retval[i];
|
|||
|
MPN_ZERO (&retval[RETURN_LIMB_SIZE - disp], disp);
|
|||
|
#endif
|
|||
|
shift %= BITS_PER_MP_LIMB;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
round_limb = retval[0];
|
|||
|
round_bit = shift - 1;
|
|||
|
}
|
|||
|
(void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
|
|||
|
exponent = MIN_EXP - 2;
|
|||
|
}
|
|||
|
|
|||
|
if ((round_limb & (1 << round_bit)) != 0 &&
|
|||
|
(more_bits || (retval[0] & 1) != 0 ||
|
|||
|
(round_limb & ((1 << round_bit) - 1)) != 0))
|
|||
|
{
|
|||
|
mp_limb cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
|
|||
|
if (cy || (retval[RETURN_LIMB_SIZE - 1]
|
|||
|
& (1 << (MANT_DIG % BITS_PER_MP_LIMB))) != 0)
|
|||
|
{
|
|||
|
++exponent;
|
|||
|
(void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
|
|||
|
retval[RETURN_LIMB_SIZE - 1] |= 1 << (MANT_DIG % BITS_PER_MP_LIMB);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (exponent > MAX_EXP)
|
|||
|
return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
|
|||
|
|
|||
|
return MPN2FLOAT (retval, exponent, negative);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Read a multi-precision integer starting at STR with exactly DIGCNT digits
|
|||
|
into N. Return the size of the number limbs in NSIZE at the first
|
|||
|
character od the string that is not part of the integer as the function
|
|||
|
value. If the EXPONENT is small enough to be taken as an additional
|
|||
|
factor for the resulting number (see code) multiply by it. */
|
|||
|
static inline const char *
|
|||
|
str_to_mpn (const char *str, int digcnt, mp_limb *n, mp_size_t *nsize,
|
|||
|
int *exponent)
|
|||
|
{
|
|||
|
/* Number of digits for actual limb. */
|
|||
|
int cnt = 0;
|
|||
|
mp_limb low = 0;
|
|||
|
mp_limb base;
|
|||
|
|
|||
|
*nsize = 0;
|
|||
|
assert (digcnt > 0);
|
|||
|
do
|
|||
|
{
|
|||
|
if (cnt == MAX_DIG_PER_LIMB)
|
|||
|
{
|
|||
|
if (*nsize == 0)
|
|||
|
n[0] = low;
|
|||
|
else
|
|||
|
{
|
|||
|
mp_limb cy;
|
|||
|
cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
|
|||
|
cy += __mpn_add_1 (n, n, *nsize, low);
|
|||
|
if (cy != 0)
|
|||
|
n[*nsize] = cy;
|
|||
|
}
|
|||
|
++(*nsize);
|
|||
|
cnt = 0;
|
|||
|
low = 0;
|
|||
|
}
|
|||
|
|
|||
|
/* There might be thousands separators or radix characters in the string.
|
|||
|
But these all can be ignored because we know the format of the number
|
|||
|
is correct and we have an exact number of characters to read. */
|
|||
|
while (!isdigit (*str))
|
|||
|
++str;
|
|||
|
low = low * 10 + *str++ - '0';
|
|||
|
++cnt;
|
|||
|
}
|
|||
|
while (--digcnt > 0);
|
|||
|
|
|||
|
if (*exponent > 0 && cnt + *exponent <= MAX_DIG_PER_LIMB)
|
|||
|
{
|
|||
|
low *= _tens_in_limb[*exponent];
|
|||
|
base = _tens_in_limb[cnt + *exponent];
|
|||
|
*exponent = 0;
|
|||
|
}
|
|||
|
else
|
|||
|
base = _tens_in_limb[cnt];
|
|||
|
|
|||
|
if (*nsize == 0)
|
|||
|
{
|
|||
|
n[0] = low;
|
|||
|
*nsize = 1;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
mp_limb cy;
|
|||
|
cy = __mpn_mul_1 (n, n, *nsize, base);
|
|||
|
cy += __mpn_add_1 (n, n, *nsize, low);
|
|||
|
if (cy != 0)
|
|||
|
n[(*nsize)++] = cy;
|
|||
|
}
|
|||
|
return str;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
|
|||
|
with the COUNT most significant bits of LIMB.
|
|||
|
|
|||
|
Tege doesn't like this function so I have to write it here myself. :)
|
|||
|
--drepper */
|
|||
|
static inline void
|
|||
|
__mpn_lshift_1 (mp_limb *ptr, mp_size_t size, unsigned int count, mp_limb limb)
|
|||
|
{
|
|||
|
if (count == BITS_PER_MP_LIMB)
|
|||
|
{
|
|||
|
/* Optimize the case of shifting by exactly a word:
|
|||
|
just copy words, with no actual bit-shifting. */
|
|||
|
mp_size_t i;
|
|||
|
for (i = size - 1; i > 0; --i)
|
|||
|
ptr[i] = ptr[i - 1];
|
|||
|
ptr[0] = limb;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
(void) __mpn_lshift (ptr, ptr, size, count);
|
|||
|
ptr[0] |= limb >> (BITS_PER_MP_LIMB - count);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Return a floating point number with the value of the given string NPTR.
|
|||
|
Set *ENDPTR to the character after the last used one. If the number is
|
|||
|
smaller than the smallest representable number, set `errno' to ERANGE and
|
|||
|
return 0.0. If the number is too big to be represented, set `errno' to
|
|||
|
ERANGE and return HUGE_VAL with the approriate sign. */
|
|||
|
FLOAT
|
|||
|
STRTOF (nptr, endptr)
|
|||
|
const char *nptr;
|
|||
|
char **endptr;
|
|||
|
{
|
|||
|
int negative; /* The sign of the number. */
|
|||
|
MPN_VAR (num); /* MP representation of the number. */
|
|||
|
int exponent; /* Exponent of the number. */
|
|||
|
|
|||
|
/* When we have to compute fractional digits we form a fraction with a
|
|||
|
second multi-precision number (and we sometimes need a second for
|
|||
|
temporary results). */
|
|||
|
MPN_VAR (den);
|
|||
|
|
|||
|
/* Representation for the return value. */
|
|||
|
mp_limb retval[RETURN_LIMB_SIZE];
|
|||
|
/* Number of bits currently in result value. */
|
|||
|
int bits;
|
|||
|
|
|||
|
/* Running pointer after the last character processed in the string. */
|
|||
|
const char *cp;
|
|||
|
/* Start of significant part of the number. */
|
|||
|
const char *startp;
|
|||
|
/* Points at the character following the integer and fractional digits. */
|
|||
|
const char *expp;
|
|||
|
/* Total number of digit and number of digits in integer part. */
|
|||
|
int dig_no, int_no;
|
|||
|
/* Contains the last character read. */
|
|||
|
char c;
|
|||
|
|
|||
|
/* The radix character of the current locale. */
|
|||
|
wchar_t decimal;
|
|||
|
#ifdef USE_GROUPING
|
|||
|
/* The thousands character of the current locale. */
|
|||
|
wchar_t thousands;
|
|||
|
/* The numeric grouping specification of the current locale,
|
|||
|
in the format described in <locale.h>. */
|
|||
|
const char *grouping;
|
|||
|
|
|||
|
/* Check the grouping of the integer part at [BEGIN,END).
|
|||
|
Return zero iff a separator is found out of place. */
|
|||
|
int grouping_ok (const char *begin, const char *end)
|
|||
|
{
|
|||
|
if (grouping)
|
|||
|
while (end > begin)
|
|||
|
{
|
|||
|
const char *p = end;
|
|||
|
do
|
|||
|
--p;
|
|||
|
while (*p != thousands && p > begin);
|
|||
|
if (end - 1 - p != *grouping++)
|
|||
|
return 0; /* Wrong number of digits in this group. */
|
|||
|
end = p; /* Correct group; trim it off the end. */
|
|||
|
|
|||
|
if (*grouping == 0)
|
|||
|
--grouping; /* Same grouping repeats in next iteration. */
|
|||
|
else if (*grouping == CHAR_MAX || *grouping < 0)
|
|||
|
{
|
|||
|
/* No further grouping allowed. */
|
|||
|
while (end > begin)
|
|||
|
if (*--end == thousands)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
}
|
|||
|
return 1;
|
|||
|
}
|
|||
|
/* Return with no conversion if the grouping of [STARTP,CP) is bad. */
|
|||
|
#define CHECK_GROUPING if (! grouping_ok (startp, cp)) RETURN (0.0, nptr); else
|
|||
|
|
|||
|
grouping = _numeric_info->grouping; /* Cache the grouping info array. */
|
|||
|
if (*grouping <= 0 || *grouping == CHAR_MAX)
|
|||
|
grouping = NULL;
|
|||
|
else
|
|||
|
{
|
|||
|
/* Figure out the thousands seperator character. */
|
|||
|
if (mbtowc (&thousands_sep, _numeric_info->thousands_sep,
|
|||
|
strlen (_numeric_info->thousands_sep)) <= 0)
|
|||
|
thousands = (wchar_t) *_numeric_info->thousands_sep;
|
|||
|
if (thousands == L'\0')
|
|||
|
grouping = NULL;
|
|||
|
}
|
|||
|
#else
|
|||
|
#define grouping NULL
|
|||
|
#define thousands L'\0'
|
|||
|
#define CHECK_GROUPING ((void) 0)
|
|||
|
#endif
|
|||
|
|
|||
|
/* Find the locale's decimal point character. */
|
|||
|
if (mbtowc (&decimal, _numeric_info->decimal_point,
|
|||
|
strlen (_numeric_info->decimal_point)) <= 0)
|
|||
|
decimal = (wchar_t) *_numeric_info->decimal_point;
|
|||
|
|
|||
|
|
|||
|
/* Prepare number representation. */
|
|||
|
exponent = 0;
|
|||
|
negative = 0;
|
|||
|
bits = 0;
|
|||
|
|
|||
|
/* Parse string to get maximal legal prefix. We need the number of
|
|||
|
characters of the interger part, the fractional part and the exponent. */
|
|||
|
cp = nptr - 1;
|
|||
|
/* Ignore leading white space. */
|
|||
|
do
|
|||
|
c = *++cp;
|
|||
|
while (isspace (c));
|
|||
|
|
|||
|
/* Get sign of the result. */
|
|||
|
if (c == '-')
|
|||
|
{
|
|||
|
negative = 1;
|
|||
|
c = *++cp;
|
|||
|
}
|
|||
|
else if (c == '+')
|
|||
|
c = *++cp;
|
|||
|
|
|||
|
/* Return 0.0 if no legal string is found.
|
|||
|
No character is used even if a sign was found. */
|
|||
|
if (!isdigit (c))
|
|||
|
RETURN (0.0, nptr);
|
|||
|
|
|||
|
/* Record the start of the digits, in case we will check their grouping. */
|
|||
|
startp = cp;
|
|||
|
|
|||
|
/* Ignore leading zeroes. This helps us to avoid useless computations. */
|
|||
|
while (c == '0' || (thousands != L'\0' && c == thousands))
|
|||
|
c = *++cp;
|
|||
|
|
|||
|
CHECK_GROUPING;
|
|||
|
|
|||
|
/* If no other digit but a '0' is found the result is 0.0.
|
|||
|
Return current read pointer. */
|
|||
|
if (!isdigit (c) && c != decimal)
|
|||
|
RETURN (0.0, cp);
|
|||
|
|
|||
|
/* Remember first significant digit and read following characters until the
|
|||
|
decimal point, exponent character or any non-FP number character. */
|
|||
|
startp = cp;
|
|||
|
dig_no = 0;
|
|||
|
while (dig_no < NDIG ||
|
|||
|
/* If parsing grouping info, keep going past useful digits
|
|||
|
so we can check all the grouping separators. */
|
|||
|
grouping)
|
|||
|
{
|
|||
|
if (isdigit (c))
|
|||
|
++dig_no;
|
|||
|
else if (thousands == L'\0' || c != thousands)
|
|||
|
/* Not a digit or separator: end of the integer part. */
|
|||
|
break;
|
|||
|
c = *++cp;
|
|||
|
}
|
|||
|
|
|||
|
CHECK_GROUPING;
|
|||
|
|
|||
|
if (dig_no >= NDIG)
|
|||
|
/* Too many digits to be representable. Assigning this to EXPONENT
|
|||
|
allows us to read the full number but return HUGE_VAL after parsing. */
|
|||
|
exponent = MAX_10_EXP;
|
|||
|
|
|||
|
/* We have the number digits in the integer part. Whether these are all or
|
|||
|
any is really a fractional digit will be decided later. */
|
|||
|
int_no = dig_no;
|
|||
|
|
|||
|
/* Read the fractional digits. */
|
|||
|
if (c == decimal)
|
|||
|
{
|
|||
|
if (isdigit (cp[1]))
|
|||
|
{
|
|||
|
++cp;
|
|||
|
do
|
|||
|
{
|
|||
|
++dig_no;
|
|||
|
c = *++cp;
|
|||
|
}
|
|||
|
while (isdigit (c));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Remember start of exponent (if any). */
|
|||
|
expp = cp;
|
|||
|
|
|||
|
/* Read exponent. */
|
|||
|
if (tolower (c) == 'e')
|
|||
|
{
|
|||
|
int exp_negative = 0;
|
|||
|
|
|||
|
c = *++cp;
|
|||
|
if (c == '-')
|
|||
|
{
|
|||
|
exp_negative = 1;
|
|||
|
c = *++cp;
|
|||
|
}
|
|||
|
else if (c == '+')
|
|||
|
c = *++cp;
|
|||
|
|
|||
|
if (isdigit (c))
|
|||
|
{
|
|||
|
do
|
|||
|
{
|
|||
|
if ((!exp_negative && exponent * 10 + int_no > MAX_10_EXP)
|
|||
|
|| (exp_negative
|
|||
|
&& exponent * 10 + int_no > -MIN_10_EXP + MANT_DIG))
|
|||
|
/* The exponent is too large/small to represent a valid
|
|||
|
number. */
|
|||
|
{
|
|||
|
FLOAT retval;
|
|||
|
|
|||
|
/* Overflow or underflow. */
|
|||
|
errno = ERANGE;
|
|||
|
retval = (exp_negative ? 0.0 :
|
|||
|
negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL);
|
|||
|
|
|||
|
/* Accept all following digits as part of the exponent. */
|
|||
|
do
|
|||
|
++cp;
|
|||
|
while (isdigit (*cp));
|
|||
|
|
|||
|
RETURN (retval, cp);
|
|||
|
/* NOTREACHED */
|
|||
|
}
|
|||
|
|
|||
|
exponent *= 10;
|
|||
|
exponent += c - '0';
|
|||
|
c = *++cp;
|
|||
|
}
|
|||
|
while (isdigit (c));
|
|||
|
}
|
|||
|
else
|
|||
|
cp = expp;
|
|||
|
|
|||
|
if (exp_negative)
|
|||
|
exponent = -exponent;
|
|||
|
}
|
|||
|
|
|||
|
/* We don't want to have to work with trailing zeroes after the radix. */
|
|||
|
if (dig_no > int_no)
|
|||
|
{
|
|||
|
while (expp[-1] == '0')
|
|||
|
{
|
|||
|
--expp;
|
|||
|
--dig_no;
|
|||
|
}
|
|||
|
assert (dig_no >= int_no);
|
|||
|
}
|
|||
|
|
|||
|
/* The whole string is parsed. Store the address of the next character. */
|
|||
|
if (endptr)
|
|||
|
*endptr = (char *) cp;
|
|||
|
|
|||
|
if (dig_no == 0)
|
|||
|
return 0.0;
|
|||
|
|
|||
|
/* Now we have the number of digits in total and the integer digits as well
|
|||
|
as the exponent and its sign. We can decide whether the read digits are
|
|||
|
really integer digits or belong to the fractional part; i.e. we normalize
|
|||
|
123e-2 to 1.23. */
|
|||
|
{
|
|||
|
register int incr = exponent < 0 ? MAX (-int_no, exponent)
|
|||
|
: MIN (dig_no - int_no, exponent);
|
|||
|
int_no += incr;
|
|||
|
exponent -= incr;
|
|||
|
}
|
|||
|
|
|||
|
if (int_no + exponent > MAX_10_EXP)
|
|||
|
{
|
|||
|
errno = ERANGE;
|
|||
|
return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
|
|||
|
}
|
|||
|
|
|||
|
if (int_no - dig_no + exponent < MIN_10_EXP - MANT_DIG)
|
|||
|
{
|
|||
|
errno = ERANGE;
|
|||
|
return 0.0;
|
|||
|
}
|
|||
|
|
|||
|
if (int_no > 0)
|
|||
|
{
|
|||
|
/* Read the integer part as a multi-precision number to NUM. */
|
|||
|
startp = str_to_mpn (startp, int_no, num, &numsize, &exponent);
|
|||
|
|
|||
|
if (exponent > 0)
|
|||
|
{
|
|||
|
/* We now multiply the gained number by the given power of ten. */
|
|||
|
mp_limb *psrc = num;
|
|||
|
mp_limb *pdest = den;
|
|||
|
int expbit = 1;
|
|||
|
const struct mp_power *ttab = &_fpioconst_pow10[0];
|
|||
|
|
|||
|
assert (exponent < (1 << (MAX_10_EXP_LOG + 1)));
|
|||
|
do
|
|||
|
{
|
|||
|
if ((exponent & expbit) != 0)
|
|||
|
{
|
|||
|
mp_limb cy;
|
|||
|
exponent ^= expbit;
|
|||
|
|
|||
|
/* FIXME: not the whole multiplication has to be done.
|
|||
|
If we have the needed number of bits we only need the
|
|||
|
information whether more non-zero bits follow. */
|
|||
|
if (numsize >= ttab->arraysize - 2)
|
|||
|
cy = __mpn_mul (pdest, psrc, numsize,
|
|||
|
&ttab->array[2], ttab->arraysize - 2);
|
|||
|
else
|
|||
|
cy = __mpn_mul (pdest, &ttab->array[2],
|
|||
|
ttab->arraysize - 2,
|
|||
|
psrc, numsize);
|
|||
|
numsize += ttab->arraysize - 2;
|
|||
|
if (cy == 0)
|
|||
|
--numsize;
|
|||
|
SWAP (psrc, pdest);
|
|||
|
}
|
|||
|
expbit <<= 1;
|
|||
|
++ttab;
|
|||
|
}
|
|||
|
while (exponent != 0);
|
|||
|
|
|||
|
if (psrc == den)
|
|||
|
memcpy (num, den, numsize * sizeof (mp_limb));
|
|||
|
}
|
|||
|
|
|||
|
/* Determine how many bits of the result we already have. */
|
|||
|
count_leading_zeros (bits, num[numsize - 1]);
|
|||
|
bits = numsize * BITS_PER_MP_LIMB - bits;
|
|||
|
|
|||
|
/* We have already the first BITS bits of the result. Together with
|
|||
|
the information whether more non-zero bits follow this is enough
|
|||
|
to determine the result. */
|
|||
|
if (bits > MANT_DIG)
|
|||
|
{
|
|||
|
const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
|
|||
|
const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
|
|||
|
const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
|
|||
|
: least_idx;
|
|||
|
const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
|
|||
|
: least_idx - 1;
|
|||
|
int i;
|
|||
|
|
|||
|
if (least_bit == 0)
|
|||
|
memcpy (retval, &num[least_idx],
|
|||
|
RETURN_LIMB_SIZE * sizeof (mp_limb));
|
|||
|
else
|
|||
|
(void) __mpn_rshift (retval, &num[least_idx],
|
|||
|
numsize - least_idx + 1, least_bit);
|
|||
|
|
|||
|
/* Check whether any limb beside the ones in RETVAL are non-zero. */
|
|||
|
for (i = 0; num[i] == 0; ++i)
|
|||
|
;
|
|||
|
|
|||
|
return round_and_return (retval, bits - 1, negative,
|
|||
|
num[round_idx], round_bit,
|
|||
|
int_no < dig_no || i < round_idx);
|
|||
|
/* NOTREACHED */
|
|||
|
}
|
|||
|
else if (dig_no == int_no)
|
|||
|
{
|
|||
|
const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
|
|||
|
const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
|
|||
|
|
|||
|
if (target_bit == is_bit)
|
|||
|
{
|
|||
|
memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
|
|||
|
numsize * sizeof (mp_limb));
|
|||
|
/* FIXME: the following loop can be avoided if we assume a
|
|||
|
maximal MANT_DIG value. */
|
|||
|
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
|
|||
|
}
|
|||
|
else if (target_bit > is_bit)
|
|||
|
{
|
|||
|
(void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
|
|||
|
num, numsize, target_bit - is_bit);
|
|||
|
/* FIXME: the following loop can be avoided if we assume a
|
|||
|
maximal MANT_DIG value. */
|
|||
|
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
mp_limb cy;
|
|||
|
assert (numsize < RETURN_LIMB_SIZE);
|
|||
|
|
|||
|
cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
|
|||
|
num, numsize, is_bit - target_bit);
|
|||
|
retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
|
|||
|
/* FIXME: the following loop can be avoided if we assume a
|
|||
|
maximal MANT_DIG value. */
|
|||
|
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
|
|||
|
}
|
|||
|
|
|||
|
return round_and_return (retval, bits - 1, negative, 0, 0, 0);
|
|||
|
/* NOTREACHED */
|
|||
|
}
|
|||
|
|
|||
|
/* Store the bits we already have. */
|
|||
|
memcpy (retval, num, numsize * sizeof (mp_limb));
|
|||
|
#if RETURN_LIMB_SIZE > 1
|
|||
|
if (numsize < RETURN_LIMB_SIZE)
|
|||
|
retval[numsize] = 0;
|
|||
|
#endif
|
|||
|
}
|
|||
|
|
|||
|
/* We have to compute at least some of the fractional digits. */
|
|||
|
{
|
|||
|
/* We construct a fraction and the result of the division gives us
|
|||
|
the needed digits. The denominator is 1.0 multiplied by the
|
|||
|
exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
|
|||
|
123e6 gives 123 / 1000000. */
|
|||
|
|
|||
|
int expbit;
|
|||
|
int cnt;
|
|||
|
mp_limb cy;
|
|||
|
mp_limb *psrc = den;
|
|||
|
mp_limb *pdest = num;
|
|||
|
int neg_exp = dig_no - int_no - exponent;
|
|||
|
const struct mp_power *ttab = &_fpioconst_pow10[0];
|
|||
|
|
|||
|
assert (dig_no > int_no && exponent <= 0);
|
|||
|
|
|||
|
/* Construct the denominator. */
|
|||
|
densize = 0;
|
|||
|
expbit = 1;
|
|||
|
do
|
|||
|
{
|
|||
|
if ((neg_exp & expbit) != 0)
|
|||
|
{
|
|||
|
mp_limb cy;
|
|||
|
neg_exp ^= expbit;
|
|||
|
|
|||
|
if (densize == 0)
|
|||
|
memcpy (psrc, &ttab->array[2],
|
|||
|
(densize = ttab->arraysize - 2) * sizeof (mp_limb));
|
|||
|
else
|
|||
|
{
|
|||
|
cy = __mpn_mul (pdest, &ttab->array[2], ttab->arraysize - 2,
|
|||
|
psrc, densize);
|
|||
|
densize += ttab->arraysize - 2;
|
|||
|
if (cy == 0)
|
|||
|
--densize;
|
|||
|
SWAP (psrc, pdest);
|
|||
|
}
|
|||
|
}
|
|||
|
expbit <<= 1;
|
|||
|
++ttab;
|
|||
|
}
|
|||
|
while (neg_exp != 0);
|
|||
|
|
|||
|
if (psrc == num)
|
|||
|
memcpy (den, num, densize * sizeof (mp_limb));
|
|||
|
|
|||
|
/* Read the fractional digits from the string. */
|
|||
|
(void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent);
|
|||
|
|
|||
|
|
|||
|
/* We now have to shift both numbers so that the highest bit in the
|
|||
|
denominator is set. In the same process we copy the numerator to
|
|||
|
a high place in the array so that the division constructs the wanted
|
|||
|
digits. This is done by a "quasi fix point" number representation.
|
|||
|
|
|||
|
num: ddddddddddd . 0000000000000000000000
|
|||
|
|--- m ---|
|
|||
|
den: ddddddddddd n >= m
|
|||
|
|--- n ---|
|
|||
|
*/
|
|||
|
|
|||
|
count_leading_zeros (cnt, den[densize - 1]);
|
|||
|
|
|||
|
(void) __mpn_lshift (den, den, densize, cnt);
|
|||
|
cy = __mpn_lshift (num, num, numsize, cnt);
|
|||
|
if (cy != 0)
|
|||
|
num[numsize++] = cy;
|
|||
|
|
|||
|
/* Now we are ready for the division. But it is not necessary to
|
|||
|
do a full multi-precision division because we only need a small
|
|||
|
number of bits for the result. So we do not use __mpn_divmod
|
|||
|
here but instead do the division here by hand and stop whenever
|
|||
|
the needed number of bits is reached. The code itself comes
|
|||
|
from the GNU MP Library by Torbj\"orn Granlund. */
|
|||
|
|
|||
|
exponent = bits;
|
|||
|
|
|||
|
switch (densize)
|
|||
|
{
|
|||
|
case 1:
|
|||
|
{
|
|||
|
mp_limb d, n, quot;
|
|||
|
int used = 0;
|
|||
|
|
|||
|
n = num[0];
|
|||
|
d = den[0];
|
|||
|
assert (numsize == 1 && n < d);
|
|||
|
|
|||
|
do
|
|||
|
{
|
|||
|
udiv_qrnnd (quot, n, n, 0, d);
|
|||
|
|
|||
|
#define got_limb \
|
|||
|
if (bits == 0) \
|
|||
|
{ \
|
|||
|
register int cnt; \
|
|||
|
if (quot == 0) \
|
|||
|
cnt = BITS_PER_MP_LIMB; \
|
|||
|
else \
|
|||
|
count_leading_zeros (cnt, quot); \
|
|||
|
exponent -= cnt; \
|
|||
|
if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
|
|||
|
{ \
|
|||
|
used = cnt + MANT_DIG; \
|
|||
|
retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
|
|||
|
bits -= BITS_PER_MP_LIMB - used; \
|
|||
|
} \
|
|||
|
else \
|
|||
|
{ \
|
|||
|
/* Note that we only clear the second element. */ \
|
|||
|
retval[1] = 0; \
|
|||
|
retval[0] = quot; \
|
|||
|
bits -= cnt; \
|
|||
|
} \
|
|||
|
} \
|
|||
|
else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
|
|||
|
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
|
|||
|
quot); \
|
|||
|
else \
|
|||
|
{ \
|
|||
|
used = MANT_DIG - bits; \
|
|||
|
if (used > 0) \
|
|||
|
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
|
|||
|
} \
|
|||
|
bits += BITS_PER_MP_LIMB
|
|||
|
|
|||
|
got_limb;
|
|||
|
}
|
|||
|
while (bits <= MANT_DIG);
|
|||
|
|
|||
|
return round_and_return (retval, exponent - 1, negative,
|
|||
|
quot, BITS_PER_MP_LIMB - 1 - used,
|
|||
|
n != 0);
|
|||
|
}
|
|||
|
case 2:
|
|||
|
{
|
|||
|
mp_limb d0, d1, n0, n1;
|
|||
|
mp_limb quot = 0;
|
|||
|
int used = 0;
|
|||
|
|
|||
|
d0 = den[0];
|
|||
|
d1 = den[1];
|
|||
|
|
|||
|
if (numsize < densize)
|
|||
|
{
|
|||
|
if (bits <= 0)
|
|||
|
exponent -= BITS_PER_MP_LIMB;
|
|||
|
else
|
|||
|
{
|
|||
|
if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
|
|||
|
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
|
|||
|
BITS_PER_MP_LIMB, 0);
|
|||
|
else
|
|||
|
{
|
|||
|
used = MANT_DIG - bits;
|
|||
|
if (used > 0)
|
|||
|
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
|
|||
|
}
|
|||
|
bits += BITS_PER_MP_LIMB;
|
|||
|
}
|
|||
|
n1 = num[0];
|
|||
|
n0 = 0;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
n1 = num[1];
|
|||
|
n0 = num[0];
|
|||
|
}
|
|||
|
|
|||
|
while (bits <= MANT_DIG)
|
|||
|
{
|
|||
|
mp_limb r;
|
|||
|
|
|||
|
if (n1 == d1)
|
|||
|
{
|
|||
|
/* QUOT should be either 111..111 or 111..110. We need
|
|||
|
special treatment of this rare case as normal division
|
|||
|
would give overflow. */
|
|||
|
quot = ~(mp_limb) 0;
|
|||
|
|
|||
|
r = n0 + d1;
|
|||
|
if (r < d1) /* Carry in the addition? */
|
|||
|
{
|
|||
|
add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
|
|||
|
goto have_quot;
|
|||
|
}
|
|||
|
n1 = d0 - (d0 != 0);
|
|||
|
n0 = -d0;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
udiv_qrnnd (quot, r, n1, n0, d1);
|
|||
|
umul_ppmm (n1, n0, d0, quot);
|
|||
|
}
|
|||
|
|
|||
|
q_test:
|
|||
|
if (n1 > r || (n1 == r && n0 > 0))
|
|||
|
{
|
|||
|
/* The estimated QUOT was too large. */
|
|||
|
--quot;
|
|||
|
|
|||
|
sub_ddmmss (n1, n0, n1, n0, 0, d0);
|
|||
|
r += d1;
|
|||
|
if (r >= d1) /* If not carry, test QUOT again. */
|
|||
|
goto q_test;
|
|||
|
}
|
|||
|
sub_ddmmss (n1, n0, r, 0, n1, n0);
|
|||
|
|
|||
|
have_quot:
|
|||
|
got_limb;
|
|||
|
}
|
|||
|
|
|||
|
return round_and_return (retval, exponent - 1, negative,
|
|||
|
quot, BITS_PER_MP_LIMB - 1 - used,
|
|||
|
n1 != 0 || n0 != 0);
|
|||
|
}
|
|||
|
default:
|
|||
|
{
|
|||
|
int i;
|
|||
|
mp_limb cy, dX, d1, n0, n1;
|
|||
|
mp_limb quot = 0;
|
|||
|
int used = 0;
|
|||
|
|
|||
|
dX = den[densize - 1];
|
|||
|
d1 = den[densize - 2];
|
|||
|
|
|||
|
/* The division does not work if the upper limb of the two-limb
|
|||
|
numerator is greater than the denominator. */
|
|||
|
if (num[numsize - 1] > dX)
|
|||
|
num[numsize++] = 0;
|
|||
|
|
|||
|
if (numsize < densize)
|
|||
|
{
|
|||
|
mp_size_t empty = densize - numsize;
|
|||
|
|
|||
|
if (bits <= 0)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
for (i = numsize; i > 0; --i)
|
|||
|
num[i + empty] = num[i - 1];
|
|||
|
MPN_ZERO (num, empty + 1);
|
|||
|
exponent -= empty * BITS_PER_MP_LIMB;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
|
|||
|
{
|
|||
|
/* We make a difference here because the compiler
|
|||
|
cannot optimize the `else' case that good and
|
|||
|
this reflects all currently used FLOAT types
|
|||
|
and GMP implementations. */
|
|||
|
register int i;
|
|||
|
#if RETURN_LIMB_SIZE <= 2
|
|||
|
assert (empty == 1);
|
|||
|
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
|
|||
|
BITS_PER_MP_LIMB, 0);
|
|||
|
#else
|
|||
|
for (i = RETURN_LIMB_SIZE; i > empty; --i)
|
|||
|
retval[i] = retval[i - empty];
|
|||
|
#endif
|
|||
|
retval[1] = 0;
|
|||
|
for (i = numsize; i > 0; --i)
|
|||
|
num[i + empty] = num[i - 1];
|
|||
|
MPN_ZERO (num, empty + 1);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
used = MANT_DIG - bits;
|
|||
|
if (used >= BITS_PER_MP_LIMB)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
(void) __mpn_lshift (&retval[used
|
|||
|
/ BITS_PER_MP_LIMB],
|
|||
|
retval, RETURN_LIMB_SIZE,
|
|||
|
used % BITS_PER_MP_LIMB);
|
|||
|
for (i = used / BITS_PER_MP_LIMB; i >= 0; --i)
|
|||
|
retval[i] = 0;
|
|||
|
}
|
|||
|
else if (used > 0)
|
|||
|
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
|
|||
|
}
|
|||
|
bits += empty * BITS_PER_MP_LIMB;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
int i;
|
|||
|
assert (numsize == densize);
|
|||
|
for (i = numsize; i > 0; --i)
|
|||
|
num[i] = num[i - 1];
|
|||
|
}
|
|||
|
|
|||
|
den[densize] = 0;
|
|||
|
n0 = num[densize];
|
|||
|
|
|||
|
while (bits <= MANT_DIG)
|
|||
|
{
|
|||
|
if (n0 == dX)
|
|||
|
/* This might over-estimate QUOT, but it's probably not
|
|||
|
worth the extra code here to find out. */
|
|||
|
quot = ~(mp_limb) 0;
|
|||
|
else
|
|||
|
{
|
|||
|
mp_limb r;
|
|||
|
|
|||
|
udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
|
|||
|
umul_ppmm (n1, n0, d1, quot);
|
|||
|
|
|||
|
while (n1 > r || (n1 == r && n0 > num[densize - 2]))
|
|||
|
{
|
|||
|
--quot;
|
|||
|
r += dX;
|
|||
|
if (r < dX) /* I.e. "carry in previous addition?" */
|
|||
|
break;
|
|||
|
n1 -= n0 < d1;
|
|||
|
n0 -= d1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Possible optimization: We already have (q * n0) and (1 * n1)
|
|||
|
after the calculation of QUOT. Taking advantage of this, we
|
|||
|
could make this loop make two iterations less. */
|
|||
|
|
|||
|
cy = __mpn_submul_1 (num, den, densize + 1, quot);
|
|||
|
|
|||
|
if (num[densize] != cy)
|
|||
|
{
|
|||
|
cy = __mpn_add_n (num, num, den, densize);
|
|||
|
assert (cy != 0);
|
|||
|
--quot;
|
|||
|
}
|
|||
|
n0 = num[densize] = num[densize - 1];
|
|||
|
for (i = densize - 1; i > 0; --i)
|
|||
|
num[i] = num[i - 1];
|
|||
|
|
|||
|
got_limb;
|
|||
|
}
|
|||
|
|
|||
|
for (i = densize - 1; num[i] != 0 && i >= 0; --i)
|
|||
|
;
|
|||
|
return round_and_return (retval, exponent - 1, negative,
|
|||
|
quot, BITS_PER_MP_LIMB - 1 - used,
|
|||
|
i >= 0);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* NOTREACHED */
|
|||
|
}
|