mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-16 13:55:09 +08:00
d95336cf37
2002-03-06 Phil Edwards <pme@gcc.gnu.org> PR libstdc++/5734 * include/bits/stl_vector.h (vector::push_back()): Guard with _GLIBCPP_DEPRECATED. From-SVN: r50375
1072 lines
35 KiB
C++
1072 lines
35 KiB
C++
// Vector implementation -*- C++ -*-
|
|
|
|
// Copyright (C) 2001 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1996
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_vector.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef __GLIBCPP_INTERNAL_VECTOR_H
|
|
#define __GLIBCPP_INTERNAL_VECTOR_H
|
|
|
|
#include <bits/stl_iterator_base_funcs.h>
|
|
#include <bits/functexcept.h>
|
|
#include <bits/concept_check.h>
|
|
|
|
namespace std
|
|
{
|
|
|
|
// The vector base class serves two purposes. First, its constructor
|
|
// and destructor allocate (but don't initialize) storage. This makes
|
|
// exception safety easier. Second, the base class encapsulates all of
|
|
// the differences between SGI-style allocators and standard-conforming
|
|
// allocators.
|
|
|
|
// Base class for ordinary allocators.
|
|
template <class _Tp, class _Allocator, bool _IsStatic>
|
|
class _Vector_alloc_base {
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
|
|
allocator_type;
|
|
allocator_type get_allocator() const { return _M_data_allocator; }
|
|
|
|
_Vector_alloc_base(const allocator_type& __a)
|
|
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
|
|
{}
|
|
|
|
protected:
|
|
allocator_type _M_data_allocator;
|
|
_Tp* _M_start;
|
|
_Tp* _M_finish;
|
|
_Tp* _M_end_of_storage;
|
|
|
|
_Tp* _M_allocate(size_t __n)
|
|
{ return _M_data_allocator.allocate(__n); }
|
|
void _M_deallocate(_Tp* __p, size_t __n)
|
|
{ if (__p) _M_data_allocator.deallocate(__p, __n); }
|
|
};
|
|
|
|
// Specialization for allocators that have the property that we don't
|
|
// actually have to store an allocator object.
|
|
template <class _Tp, class _Allocator>
|
|
class _Vector_alloc_base<_Tp, _Allocator, true> {
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
|
|
allocator_type;
|
|
allocator_type get_allocator() const { return allocator_type(); }
|
|
|
|
_Vector_alloc_base(const allocator_type&)
|
|
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
|
|
{}
|
|
|
|
protected:
|
|
_Tp* _M_start;
|
|
_Tp* _M_finish;
|
|
_Tp* _M_end_of_storage;
|
|
|
|
typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
|
|
_Tp* _M_allocate(size_t __n)
|
|
{ return _Alloc_type::allocate(__n); }
|
|
void _M_deallocate(_Tp* __p, size_t __n)
|
|
{ _Alloc_type::deallocate(__p, __n);}
|
|
};
|
|
|
|
template <class _Tp, class _Alloc>
|
|
struct _Vector_base
|
|
: public _Vector_alloc_base<_Tp, _Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
{
|
|
typedef _Vector_alloc_base<_Tp, _Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
_Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
|
|
_Vector_base(const allocator_type& __a) : _Base(__a) {}
|
|
_Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) {
|
|
_M_start = _M_allocate(__n);
|
|
_M_finish = _M_start;
|
|
_M_end_of_storage = _M_start + __n;
|
|
}
|
|
|
|
~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief A standard container which offers fixed time access to individual
|
|
* elements in any order.
|
|
*
|
|
* In some terminology a vector can be described as a dynamic C-style array,
|
|
* it offers fast and efficient access to individual elements in any order
|
|
* and saves the user from worrying about memory and size allocation.
|
|
* Subscripting ( [] ) access is also provided as with C-style arrays.
|
|
*/
|
|
template <class _Tp, class _Alloc = allocator<_Tp> >
|
|
class vector : protected _Vector_base<_Tp, _Alloc>
|
|
{
|
|
// concept requirements
|
|
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
|
|
|
|
private:
|
|
typedef _Vector_base<_Tp, _Alloc> _Base;
|
|
typedef vector<_Tp, _Alloc> vector_type;
|
|
public:
|
|
typedef _Tp value_type;
|
|
typedef value_type* pointer;
|
|
typedef const value_type* const_pointer;
|
|
typedef __normal_iterator<pointer, vector_type> iterator;
|
|
typedef __normal_iterator<const_pointer, vector_type> const_iterator;
|
|
typedef value_type& reference;
|
|
typedef const value_type& const_reference;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
allocator_type get_allocator() const { return _Base::get_allocator(); }
|
|
|
|
typedef reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef reverse_iterator<iterator> reverse_iterator;
|
|
|
|
protected:
|
|
using _Base::_M_allocate;
|
|
using _Base::_M_deallocate;
|
|
using _Base::_M_start;
|
|
using _Base::_M_finish;
|
|
using _Base::_M_end_of_storage;
|
|
|
|
protected:
|
|
void _M_insert_aux(iterator __position, const _Tp& __x);
|
|
void _M_insert_aux(iterator __position);
|
|
|
|
public:
|
|
/**
|
|
* Returns a read/write iterator that points to the first element in the
|
|
* vector. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator begin() { return iterator (_M_start); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points to the first element
|
|
* in the vector. Iteration is done in ordinary element order.
|
|
*/
|
|
const_iterator begin() const
|
|
{ return const_iterator (_M_start); }
|
|
|
|
/**
|
|
* Returns a read/write iterator that points one past the last element in
|
|
* the vector. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator end() { return iterator (_M_finish); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points one past the last
|
|
* element in the vector. Iteration is done in ordinary element order.
|
|
*/
|
|
const_iterator end() const { return const_iterator (_M_finish); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to the last element in
|
|
* the vector. Iteration is done in reverse element order.
|
|
*/
|
|
reverse_iterator rbegin()
|
|
{ return reverse_iterator(end()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to the last
|
|
* element in the vector. Iteration is done in reverse element order.
|
|
*/
|
|
const_reverse_iterator rbegin() const
|
|
{ return const_reverse_iterator(end()); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to one before the
|
|
* first element in the vector. Iteration is done in reverse element
|
|
* order.
|
|
*/
|
|
reverse_iterator rend()
|
|
{ return reverse_iterator(begin()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to one
|
|
* before the first element in the vector. Iteration is done in reverse
|
|
* element order.
|
|
*/
|
|
const_reverse_iterator rend() const
|
|
{ return const_reverse_iterator(begin()); }
|
|
|
|
/** Returns the number of elements in the vector. */
|
|
size_type size() const
|
|
{ return size_type(end() - begin()); }
|
|
|
|
/** Returns the size of the largest possible vector. */
|
|
size_type max_size() const
|
|
{ return size_type(-1) / sizeof(_Tp); }
|
|
|
|
/**
|
|
* Returns the amount of memory that has been alocated for the current
|
|
* elements (?).
|
|
*/
|
|
size_type capacity() const
|
|
{ return size_type(const_iterator(_M_end_of_storage) - begin()); }
|
|
|
|
/**
|
|
* Returns true if the vector is empty. (Thus begin() would equal end().)
|
|
*/
|
|
bool empty() const
|
|
{ return begin() == end(); }
|
|
|
|
/**
|
|
* @brief Subscript access to the data contained in the vector.
|
|
* @param n The element for which data should be accessed.
|
|
* @return Read/write reference to data.
|
|
*
|
|
* This operator allows for easy, array-style, data access.
|
|
* Note that data access with this operator is unchecked and out_of_range
|
|
* lookups are not defined. (For checked lookups see at().)
|
|
*/
|
|
reference operator[](size_type __n) { return *(begin() + __n); }
|
|
|
|
/**
|
|
* @brief Subscript access to the data contained in the vector.
|
|
* @param n The element for which data should be accessed.
|
|
* @return Read-only (constant) reference to data.
|
|
*
|
|
* This operator allows for easy, array-style, data access.
|
|
* Note that data access with this operator is unchecked and out_of_range
|
|
* lookups are not defined. (For checked lookups see at().)
|
|
*/
|
|
const_reference operator[](size_type __n) const { return *(begin() + __n); }
|
|
|
|
void _M_range_check(size_type __n) const {
|
|
if (__n >= this->size())
|
|
__throw_out_of_range("vector");
|
|
}
|
|
|
|
/**
|
|
* @brief Provides access to the data contained in the vector.
|
|
* @param n The element for which data should be accessed.
|
|
* @return Read/write reference to data.
|
|
*
|
|
* This function provides for safer data access. The parameter is first
|
|
* checked that it is in the range of the vector. The function throws
|
|
* out_of_range if the check fails.
|
|
*/
|
|
reference at(size_type __n)
|
|
{ _M_range_check(__n); return (*this)[__n]; }
|
|
|
|
/**
|
|
* @brief Provides access to the data contained in the vector.
|
|
* @param n The element for which data should be accessed.
|
|
* @return Read-only (constant) reference to data.
|
|
*
|
|
* This function provides for safer data access. The parameter is first
|
|
* checked that it is in the range of the vector. The function throws
|
|
* out_of_range if the check fails.
|
|
*/
|
|
const_reference at(size_type __n) const
|
|
{ _M_range_check(__n); return (*this)[__n]; }
|
|
|
|
|
|
explicit vector(const allocator_type& __a = allocator_type())
|
|
: _Base(__a) {}
|
|
|
|
vector(size_type __n, const _Tp& __value,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__n, __a)
|
|
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
|
|
|
|
explicit vector(size_type __n)
|
|
: _Base(__n, allocator_type())
|
|
{ _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
|
|
|
|
vector(const vector<_Tp, _Alloc>& __x)
|
|
: _Base(__x.size(), __x.get_allocator())
|
|
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
|
|
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
template <class _InputIterator>
|
|
vector(_InputIterator __first, _InputIterator __last,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_initialize_aux(__first, __last, _Integral());
|
|
}
|
|
|
|
template <class _Integer>
|
|
void _M_initialize_aux(_Integer __n, _Integer __value, __true_type)
|
|
{
|
|
_M_start = _M_allocate(__n);
|
|
_M_end_of_storage = _M_start + __n;
|
|
_M_finish = uninitialized_fill_n(_M_start, __n, __value);
|
|
}
|
|
|
|
template<class _InputIterator>
|
|
void
|
|
_M_initialize_aux(_InputIterator __first, _InputIterator __last, __false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
|
|
_M_range_initialize(__first, __last, _IterCategory());
|
|
}
|
|
|
|
~vector()
|
|
{ _Destroy(_M_start, _M_finish); }
|
|
|
|
vector<_Tp, _Alloc>& operator=(const vector<_Tp, _Alloc>& __x);
|
|
|
|
/**
|
|
* @brief Attempt to preallocate enough memory for specified number of
|
|
* elements.
|
|
* @param n Number of elements required
|
|
*
|
|
* This function attempts to reserve enough memory for the vector to hold
|
|
* the specified number of elements. If the number requested is more than
|
|
* max_size() length_error is thrown.
|
|
*
|
|
* The advantage of this function is that if optimal code is a necessity
|
|
* and the user can determine the number of elements that will be required
|
|
* the user can reserve the memory and thus prevent a possible
|
|
* reallocation of memory and copy of vector data.
|
|
*/
|
|
void reserve(size_type __n) {
|
|
if (capacity() < __n) {
|
|
const size_type __old_size = size();
|
|
pointer __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish);
|
|
_Destroy(_M_start, _M_finish);
|
|
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
|
|
_M_start = __tmp;
|
|
_M_finish = __tmp + __old_size;
|
|
_M_end_of_storage = _M_start + __n;
|
|
}
|
|
}
|
|
|
|
// assign(), a generalized assignment member function. Two
|
|
// versions: one that takes a count, and one that takes a range.
|
|
// The range version is a member template, so we dispatch on whether
|
|
// or not the type is an integer.
|
|
|
|
/**
|
|
* @brief Assigns a given value or range to a vector.
|
|
* @param n Number of elements to be assigned.
|
|
* @param val Value to be assigned.
|
|
*
|
|
* This function can be used to assign a range to a vector or fill it
|
|
* with a specified number of copies of the given value.
|
|
* Note that the assignment completely changes the vector and that the
|
|
* resulting vector's size is the same as the number of elements assigned.
|
|
* Old data may be lost.
|
|
*/
|
|
void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
|
|
void _M_fill_assign(size_type __n, const _Tp& __val);
|
|
|
|
template<class _InputIterator>
|
|
void
|
|
assign(_InputIterator __first, _InputIterator __last)
|
|
{
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_assign_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
template<class _Integer>
|
|
void
|
|
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
|
|
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
|
|
|
|
template<class _InputIter>
|
|
void
|
|
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
|
|
_M_assign_aux(__first, __last, _IterCategory());
|
|
}
|
|
|
|
template <class _InputIterator>
|
|
void _M_assign_aux(_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
template <class _ForwardIterator>
|
|
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag);
|
|
|
|
/**
|
|
* Returns a read/write reference to the data at the first element of the
|
|
* vector.
|
|
*/
|
|
reference front() { return *begin(); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the first
|
|
* element of the vector.
|
|
*/
|
|
const_reference front() const { return *begin(); }
|
|
|
|
/**
|
|
* Returns a read/write reference to the data at the last element of the
|
|
* vector.
|
|
*/
|
|
reference back() { return *(end() - 1); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the first
|
|
* element of the vector.
|
|
*/
|
|
const_reference back() const { return *(end() - 1); }
|
|
|
|
/**
|
|
* @brief Add data to the end of the vector.
|
|
* @param x Data to be added.
|
|
*
|
|
* This is a typical stack operation. The function creates an element at
|
|
* the end of the vector and assigns the given data to it.
|
|
* Due to the nature of a vector this operation can be done in constant
|
|
* time if the vector has preallocated space available.
|
|
*/
|
|
void
|
|
push_back(const _Tp& __x)
|
|
{
|
|
if (_M_finish != _M_end_of_storage) {
|
|
_Construct(_M_finish, __x);
|
|
++_M_finish;
|
|
}
|
|
else
|
|
_M_insert_aux(end(), __x);
|
|
}
|
|
|
|
#ifdef _GLIBCPP_DEPRECATED
|
|
/**
|
|
* Add an element to the end of the vector. The element is
|
|
* default-constructed.
|
|
*
|
|
* @note You must define _GLIBCPP_DEPRECATED to make this visible; see
|
|
* c++config.h.
|
|
*/
|
|
void
|
|
push_back()
|
|
{
|
|
if (_M_finish != _M_end_of_storage) {
|
|
_Construct(_M_finish);
|
|
++_M_finish;
|
|
}
|
|
else
|
|
_M_insert_aux(end());
|
|
}
|
|
#endif
|
|
|
|
void
|
|
swap(vector<_Tp, _Alloc>& __x)
|
|
{
|
|
std::swap(_M_start, __x._M_start);
|
|
std::swap(_M_finish, __x._M_finish);
|
|
std::swap(_M_end_of_storage, __x._M_end_of_storage);
|
|
}
|
|
|
|
/**
|
|
* @brief Inserts given value into vector at specified element.
|
|
* @param position An iterator that points to the element where data
|
|
* should be inserted.
|
|
* @param x Data to be inserted.
|
|
* @return An iterator that points to the inserted data.
|
|
*
|
|
* This function will insert the given value into the specified location.
|
|
* Note that this kind of operation could be expensive for a vector and if
|
|
* it is frequently used the user should consider using std::list.
|
|
*/
|
|
iterator
|
|
insert(iterator __position, const _Tp& __x)
|
|
{
|
|
size_type __n = __position - begin();
|
|
if (_M_finish != _M_end_of_storage && __position == end()) {
|
|
_Construct(_M_finish, __x);
|
|
++_M_finish;
|
|
}
|
|
else
|
|
_M_insert_aux(iterator(__position), __x);
|
|
return begin() + __n;
|
|
}
|
|
|
|
/**
|
|
* @brief Inserts an empty element into the vector.
|
|
* @param position An iterator that points to the element where empty
|
|
* element should be inserted.
|
|
* @param x Data to be inserted.
|
|
* @return An iterator that points to the inserted element.
|
|
*
|
|
* This function will insert an empty element into the specified location.
|
|
* Note that this kind of operation could be expensive for a vector and if
|
|
* it is frequently used the user should consider using std::list.
|
|
*/
|
|
iterator
|
|
insert(iterator __position)
|
|
{
|
|
size_type __n = __position - begin();
|
|
if (_M_finish != _M_end_of_storage && __position == end()) {
|
|
_Construct(_M_finish);
|
|
++_M_finish;
|
|
}
|
|
else
|
|
_M_insert_aux(iterator(__position));
|
|
return begin() + __n;
|
|
}
|
|
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
template<class _InputIterator>
|
|
void
|
|
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
|
|
{
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_insert_dispatch(__pos, __first, __last, _Integral());
|
|
}
|
|
|
|
template <class _Integer>
|
|
void
|
|
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type)
|
|
{ _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<_Tp>(__val)); }
|
|
|
|
template<class _InputIterator>
|
|
void
|
|
_M_insert_dispatch(iterator __pos,
|
|
_InputIterator __first, _InputIterator __last,
|
|
__false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
|
|
_M_range_insert(__pos, __first, __last, _IterCategory());
|
|
}
|
|
|
|
/**
|
|
* @brief Inserts a number of copies of given data into the vector.
|
|
* @param position An iterator that points to the element where data
|
|
* should be inserted.
|
|
* @param n Amount of elements to be inserted.
|
|
* @param x Data to be inserted.
|
|
*
|
|
* This function will insert a specified number of copies of the given data
|
|
* into the specified location.
|
|
*
|
|
* Note that this kind of operation could be expensive for a vector and if
|
|
* it is frequently used the user should consider using std::list.
|
|
*/
|
|
void insert (iterator __pos, size_type __n, const _Tp& __x)
|
|
{ _M_fill_insert(__pos, __n, __x); }
|
|
|
|
void _M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);
|
|
|
|
/**
|
|
* @brief Removes last element from vector.
|
|
*
|
|
* This is a typical stack operation. It allows us to shrink the vector by
|
|
* one.
|
|
*
|
|
* Note that no data is returned and if last element's data is needed it
|
|
* should be retrieved before pop_back() is called.
|
|
*/
|
|
void pop_back() {
|
|
--_M_finish;
|
|
_Destroy(_M_finish);
|
|
}
|
|
|
|
/**
|
|
* @brief Remove element at given position
|
|
* @param position Iterator pointing to element to be erased.
|
|
* @return Doc Me! (Iterator pointing to new element at old location?)
|
|
*
|
|
* This function will erase the element at the given position and thus
|
|
* shorten the vector by one.
|
|
*
|
|
* Note This operation could be expensive and if it is frequently used the
|
|
* user should consider using std::list. The user is also cautioned that
|
|
* this function only erases the element, and that if the element is itself
|
|
* a pointer, the pointed-to memory is not touched in any way. Managing
|
|
* the pointer is the user's responsibilty.
|
|
*/
|
|
iterator erase(iterator __position) {
|
|
if (__position + 1 != end())
|
|
copy(__position + 1, end(), __position);
|
|
--_M_finish;
|
|
_Destroy(_M_finish);
|
|
return __position;
|
|
}
|
|
|
|
/**
|
|
* @brief Remove a range of elements from a vector.
|
|
* @param first Iterator pointing to the first element to be erased.
|
|
* @param last Iterator pointing to the last element to be erased.
|
|
* @return Doc Me! (Iterator pointing to new element at old location?)
|
|
*
|
|
* This function will erase the elements in the given range and shorten the
|
|
* vector accordingly.
|
|
*
|
|
* Note This operation could be expensive and if it is frequently used the
|
|
* user should consider using std::list. The user is also cautioned that
|
|
* this function only erases the elements, and that if the elements
|
|
* themselves are pointers, the pointed-to memory is not touched in any
|
|
* way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
iterator erase(iterator __first, iterator __last) {
|
|
iterator __i(copy(__last, end(), __first));
|
|
_Destroy(__i, end());
|
|
_M_finish = _M_finish - (__last - __first);
|
|
return __first;
|
|
}
|
|
|
|
/**
|
|
* @brief Resizes the vector to the specified number of elements.
|
|
* @param new_size Number of elements the vector should contain.
|
|
* @param x Data with which new elements should be populated.
|
|
*
|
|
* This function will resize the vector to the specified number of
|
|
* elements. If the number is smaller than the vector's current size the
|
|
* vector is truncated, otherwise the vector is extended and new elements
|
|
* are populated with given data.
|
|
*/
|
|
void resize(size_type __new_size, const _Tp& __x) {
|
|
if (__new_size < size())
|
|
erase(begin() + __new_size, end());
|
|
else
|
|
insert(end(), __new_size - size(), __x);
|
|
}
|
|
|
|
/**
|
|
* @brief Resizes the vector to the specified number of elements.
|
|
* @param new_size Number of elements the vector should contain.
|
|
*
|
|
* This function will resize the vector to the specified number of
|
|
* elements. If the number is smaller than the vector's current size the
|
|
* vector is truncated, otherwise the vector is extended and new elements
|
|
* are left uninitialized.
|
|
*/
|
|
void resize(size_type __new_size) { resize(__new_size, _Tp()); }
|
|
|
|
/**
|
|
* Erases all elements in vector. Note that this function only erases the
|
|
* elements, and that if the elements themselves are pointers, the
|
|
* pointed-to memory is not touched in any way. Managing the pointer is
|
|
* the user's responsibilty.
|
|
*/
|
|
void clear() { erase(begin(), end()); }
|
|
|
|
protected:
|
|
|
|
template <class _ForwardIterator>
|
|
pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first,
|
|
_ForwardIterator __last)
|
|
{
|
|
pointer __result = _M_allocate(__n);
|
|
try {
|
|
uninitialized_copy(__first, __last, __result);
|
|
return __result;
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_deallocate(__result, __n);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template <class _InputIterator>
|
|
void _M_range_initialize(_InputIterator __first,
|
|
_InputIterator __last, input_iterator_tag)
|
|
{
|
|
for ( ; __first != __last; ++__first)
|
|
push_back(*__first);
|
|
}
|
|
|
|
// This function is only called by the constructor.
|
|
template <class _ForwardIterator>
|
|
void _M_range_initialize(_ForwardIterator __first,
|
|
_ForwardIterator __last, forward_iterator_tag)
|
|
{
|
|
size_type __n = distance(__first, __last);
|
|
_M_start = _M_allocate(__n);
|
|
_M_end_of_storage = _M_start + __n;
|
|
_M_finish = uninitialized_copy(__first, __last, _M_start);
|
|
}
|
|
|
|
template <class _InputIterator>
|
|
void _M_range_insert(iterator __pos,
|
|
_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
template <class _ForwardIterator>
|
|
void _M_range_insert(iterator __pos,
|
|
_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag);
|
|
};
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool
|
|
operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
|
|
{
|
|
return __x.size() == __y.size() &&
|
|
equal(__x.begin(), __x.end(), __y.begin());
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool
|
|
operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
|
|
{
|
|
return lexicographical_compare(__x.begin(), __x.end(),
|
|
__y.begin(), __y.end());
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
|
|
{
|
|
__x.swap(__y);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool
|
|
operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
|
|
return !(__x == __y);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool
|
|
operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
|
|
return __y < __x;
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool
|
|
operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
|
|
return !(__y < __x);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
inline bool
|
|
operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
|
|
return !(__x < __y);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
vector<_Tp,_Alloc>&
|
|
vector<_Tp,_Alloc>::operator=(const vector<_Tp, _Alloc>& __x)
|
|
{
|
|
if (&__x != this) {
|
|
const size_type __xlen = __x.size();
|
|
if (__xlen > capacity()) {
|
|
pointer __tmp = _M_allocate_and_copy(__xlen, __x.begin(), __x.end());
|
|
_Destroy(_M_start, _M_finish);
|
|
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
|
|
_M_start = __tmp;
|
|
_M_end_of_storage = _M_start + __xlen;
|
|
}
|
|
else if (size() >= __xlen) {
|
|
iterator __i(copy(__x.begin(), __x.end(), begin()));
|
|
_Destroy(__i, end());
|
|
}
|
|
else {
|
|
copy(__x.begin(), __x.begin() + size(), _M_start);
|
|
uninitialized_copy(__x.begin() + size(), __x.end(), _M_finish);
|
|
}
|
|
_M_finish = _M_start + __xlen;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void vector<_Tp, _Alloc>::_M_fill_assign(size_t __n, const value_type& __val)
|
|
{
|
|
if (__n > capacity()) {
|
|
vector<_Tp, _Alloc> __tmp(__n, __val, get_allocator());
|
|
__tmp.swap(*this);
|
|
}
|
|
else if (__n > size()) {
|
|
fill(begin(), end(), __val);
|
|
_M_finish = uninitialized_fill_n(_M_finish, __n - size(), __val);
|
|
}
|
|
else
|
|
erase(fill_n(begin(), __n, __val), end());
|
|
}
|
|
|
|
template <class _Tp, class _Alloc> template <class _InputIter>
|
|
void vector<_Tp, _Alloc>::_M_assign_aux(_InputIter __first, _InputIter __last,
|
|
input_iterator_tag) {
|
|
iterator __cur(begin());
|
|
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
|
|
*__cur = *__first;
|
|
if (__first == __last)
|
|
erase(__cur, end());
|
|
else
|
|
insert(end(), __first, __last);
|
|
}
|
|
|
|
template <class _Tp, class _Alloc> template <class _ForwardIter>
|
|
void
|
|
vector<_Tp, _Alloc>::_M_assign_aux(_ForwardIter __first, _ForwardIter __last,
|
|
forward_iterator_tag) {
|
|
size_type __len = distance(__first, __last);
|
|
|
|
if (__len > capacity()) {
|
|
pointer __tmp(_M_allocate_and_copy(__len, __first, __last));
|
|
_Destroy(_M_start, _M_finish);
|
|
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
|
|
_M_start = __tmp;
|
|
_M_end_of_storage = _M_finish = _M_start + __len;
|
|
}
|
|
else if (size() >= __len) {
|
|
iterator __new_finish(copy(__first, __last, _M_start));
|
|
_Destroy(__new_finish, end());
|
|
_M_finish = __new_finish.base();
|
|
}
|
|
else {
|
|
_ForwardIter __mid = __first;
|
|
advance(__mid, size());
|
|
copy(__first, __mid, _M_start);
|
|
_M_finish = uninitialized_copy(__mid, __last, _M_finish);
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void
|
|
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position, const _Tp& __x)
|
|
{
|
|
if (_M_finish != _M_end_of_storage) {
|
|
_Construct(_M_finish, *(_M_finish - 1));
|
|
++_M_finish;
|
|
_Tp __x_copy = __x;
|
|
copy_backward(__position, iterator(_M_finish - 2), iterator(_M_finish- 1));
|
|
*__position = __x_copy;
|
|
}
|
|
else {
|
|
const size_type __old_size = size();
|
|
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
|
|
iterator __new_start(_M_allocate(__len));
|
|
iterator __new_finish(__new_start);
|
|
try {
|
|
__new_finish = uninitialized_copy(iterator(_M_start), __position,
|
|
__new_start);
|
|
_Construct(__new_finish.base(), __x);
|
|
++__new_finish;
|
|
__new_finish = uninitialized_copy(__position, iterator(_M_finish),
|
|
__new_finish);
|
|
}
|
|
catch(...)
|
|
{
|
|
_Destroy(__new_start,__new_finish);
|
|
_M_deallocate(__new_start.base(),__len);
|
|
__throw_exception_again;
|
|
}
|
|
_Destroy(begin(), end());
|
|
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
|
|
_M_start = __new_start.base();
|
|
_M_finish = __new_finish.base();
|
|
_M_end_of_storage = __new_start.base() + __len;
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void
|
|
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position)
|
|
{
|
|
if (_M_finish != _M_end_of_storage) {
|
|
_Construct(_M_finish, *(_M_finish - 1));
|
|
++_M_finish;
|
|
copy_backward(__position, iterator(_M_finish - 2),
|
|
iterator(_M_finish - 1));
|
|
*__position = _Tp();
|
|
}
|
|
else {
|
|
const size_type __old_size = size();
|
|
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
|
|
pointer __new_start = _M_allocate(__len);
|
|
pointer __new_finish = __new_start;
|
|
try {
|
|
__new_finish = uninitialized_copy(iterator(_M_start), __position,
|
|
__new_start);
|
|
_Construct(__new_finish);
|
|
++__new_finish;
|
|
__new_finish = uninitialized_copy(__position, iterator(_M_finish),
|
|
__new_finish);
|
|
}
|
|
catch(...)
|
|
{
|
|
_Destroy(__new_start,__new_finish);
|
|
_M_deallocate(__new_start,__len);
|
|
__throw_exception_again;
|
|
}
|
|
_Destroy(begin(), end());
|
|
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
|
|
_M_start = __new_start;
|
|
_M_finish = __new_finish;
|
|
_M_end_of_storage = __new_start + __len;
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc>
|
|
void vector<_Tp, _Alloc>::_M_fill_insert(iterator __position, size_type __n,
|
|
const _Tp& __x)
|
|
{
|
|
if (__n != 0) {
|
|
if (size_type(_M_end_of_storage - _M_finish) >= __n) {
|
|
_Tp __x_copy = __x;
|
|
const size_type __elems_after = end() - __position;
|
|
iterator __old_finish(_M_finish);
|
|
if (__elems_after > __n) {
|
|
uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
|
|
_M_finish += __n;
|
|
copy_backward(__position, __old_finish - __n, __old_finish);
|
|
fill(__position, __position + __n, __x_copy);
|
|
}
|
|
else {
|
|
uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
|
|
_M_finish += __n - __elems_after;
|
|
uninitialized_copy(__position, __old_finish, _M_finish);
|
|
_M_finish += __elems_after;
|
|
fill(__position, __old_finish, __x_copy);
|
|
}
|
|
}
|
|
else {
|
|
const size_type __old_size = size();
|
|
const size_type __len = __old_size + max(__old_size, __n);
|
|
iterator __new_start(_M_allocate(__len));
|
|
iterator __new_finish(__new_start);
|
|
try {
|
|
__new_finish = uninitialized_copy(begin(), __position, __new_start);
|
|
__new_finish = uninitialized_fill_n(__new_finish, __n, __x);
|
|
__new_finish
|
|
= uninitialized_copy(__position, end(), __new_finish);
|
|
}
|
|
catch(...)
|
|
{
|
|
_Destroy(__new_start,__new_finish);
|
|
_M_deallocate(__new_start.base(),__len);
|
|
__throw_exception_again;
|
|
}
|
|
_Destroy(_M_start, _M_finish);
|
|
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
|
|
_M_start = __new_start.base();
|
|
_M_finish = __new_finish.base();
|
|
_M_end_of_storage = __new_start.base() + __len;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc> template <class _InputIterator>
|
|
void
|
|
vector<_Tp, _Alloc>::_M_range_insert(iterator __pos,
|
|
_InputIterator __first,
|
|
_InputIterator __last,
|
|
input_iterator_tag)
|
|
{
|
|
for ( ; __first != __last; ++__first) {
|
|
__pos = insert(__pos, *__first);
|
|
++__pos;
|
|
}
|
|
}
|
|
|
|
template <class _Tp, class _Alloc> template <class _ForwardIterator>
|
|
void
|
|
vector<_Tp, _Alloc>::_M_range_insert(iterator __position,
|
|
_ForwardIterator __first,
|
|
_ForwardIterator __last,
|
|
forward_iterator_tag)
|
|
{
|
|
if (__first != __last) {
|
|
size_type __n = distance(__first, __last);
|
|
if (size_type(_M_end_of_storage - _M_finish) >= __n) {
|
|
const size_type __elems_after = end() - __position;
|
|
iterator __old_finish(_M_finish);
|
|
if (__elems_after > __n) {
|
|
uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
|
|
_M_finish += __n;
|
|
copy_backward(__position, __old_finish - __n, __old_finish);
|
|
copy(__first, __last, __position);
|
|
}
|
|
else {
|
|
_ForwardIterator __mid = __first;
|
|
advance(__mid, __elems_after);
|
|
uninitialized_copy(__mid, __last, _M_finish);
|
|
_M_finish += __n - __elems_after;
|
|
uninitialized_copy(__position, __old_finish, _M_finish);
|
|
_M_finish += __elems_after;
|
|
copy(__first, __mid, __position);
|
|
}
|
|
}
|
|
else {
|
|
const size_type __old_size = size();
|
|
const size_type __len = __old_size + max(__old_size, __n);
|
|
iterator __new_start(_M_allocate(__len));
|
|
iterator __new_finish(__new_start);
|
|
try {
|
|
__new_finish = uninitialized_copy(iterator(_M_start),
|
|
__position, __new_start);
|
|
__new_finish = uninitialized_copy(__first, __last, __new_finish);
|
|
__new_finish
|
|
= uninitialized_copy(__position, iterator(_M_finish), __new_finish);
|
|
}
|
|
catch(...)
|
|
{
|
|
_Destroy(__new_start,__new_finish);
|
|
_M_deallocate(__new_start.base(), __len);
|
|
__throw_exception_again;
|
|
}
|
|
_Destroy(_M_start, _M_finish);
|
|
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
|
|
_M_start = __new_start.base();
|
|
_M_finish = __new_finish.base();
|
|
_M_end_of_storage = __new_start.base() + __len;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace std
|
|
|
|
#endif /* __GLIBCPP_INTERNAL_VECTOR_H */
|
|
|
|
// Local Variables:
|
|
// mode:C++
|
|
// End:
|