gcc/gcc/dfp.c
Joseph Myers 7c475d1159 diagnostic-core.h: Include bversion.h.
* diagnostic-core.h: Include bversion.h.
	* toplev.h: Don't include input.h or bversion.h.
	(parse_optimize_options): Don't declare here.
	* alias.c, auto-inc-dec.c, c-aux-info.c, c-convert.c, c-parser.c,
	caller-save.c, cfg.c, cfganal.c, cfgbuild.c, cfgcleanup.c,
	combine-stack-adj.c, config/arm/pe.c, config/darwin-c.c,
	config/host-darwin.c, config/i386/host-cygwin.c,
	config/i386/host-mingw32.c, config/i386/msformat-c.c,
	config/i386/netware.c, config/i386/nwld.c,
	config/i386/winnt-cxx.c, config/i386/winnt-stubs.c,
	config/ia64/ia64-c.c, config/m32c/m32c-pragma.c,
	config/mep/mep-pragma.c, config/microblaze/microblaze-c.c,
	config/rs6000/host-darwin.c, config/rs6000/rs6000-c.c,
	config/score/score3.c, config/score/score7.c,
	config/sh/symbian-base.c, config/sh/symbian-c.c,
	config/sh/symbian-cxx.c, config/sol2-c.c, config/sol2.c,
	config/v850/v850-c.c, config/vxworks.c, convert.c, cppbuiltin.c,
	cselib.c, dbgcnt.c, ddg.c, dfp.c, dominance.c, emit-rtl.c,
	fixed-value.c, fwprop.c, ggc-common.c, gimple.c, gimplify.c,
	graphite-blocking.c, graphite-clast-to-gimple.c,
	graphite-dependences.c, graphite-flattening.c,
	graphite-interchange.c, graphite-poly.c,
	graphite-scop-detection.c, graphite.c, haifa-sched.c,
	implicit-zee.c, integrate.c, ipa-pure-const.c, ipa-reference.c,
	ira-build.c, ira-conflicts.c, ira-costs.c, ira-lives.c, jump.c,
	lists.c, loop-doloop.c, loop-iv.c, lto-cgraph.c, lto-compress.c,
	lto-opts.c, lto-section-in.c, lto-section-out.c,
	lto-streamer-out.c, lto-symtab.c, modulo-sched.c, optabs.c,
	params.c, postreload-gcse.c, postreload.c, predict.c, profile.c,
	regcprop.c, reginfo.c, regmove.c, reorg.c, resource.c,
	sched-deps.c, sched-ebb.c, sched-rgn.c, sdbout.c,
	sel-sched-dump.c, sel-sched-ir.c, sese.c, stmt.c, targhooks.c,
	tree-cfgcleanup.c, tree-mudflap.c, tree-nomudflap.c,
	tree-object-size.c, tree-outof-ssa.c, tree-phinodes.c,
	tree-profile.c, tree-sra.c, tree-ssa-ccp.c, tree-ssa-coalesce.c,
	tree-ssa-live.c, tree-ssa-loop-prefetch.c, tree-ssa-loop.c,
	tree-ssa-operands.c, tree-ssa-structalias.c, tree-ssa-uninit.c,
	tree-vect-patterns.c, value-prof.c, var-tracking.c, web.c: Don't
	include toplev.h.
	* Makefile.in (TOPLEV_H): Remove.  All uses changed to use
	toplev.h.  Dependencies for above files and c-family files changed
	to remove $(TOPLEV_H) or toplev.h.
	(C_TREE_H): Don't include $(TOPLEV_H).
	(DIAGNOSTIC_CORE_H): Use $(INPUT_H) instead of input.h.  Add
	bversion.h.
	* config/arm/t-pe, config/arm/t-wince-pe, config/i386/t-cygming,
	config/ia64/t-ia64, config/mep/t-mep, config/score/t-score-elf,
	config/t-darwin, config/t-sol2,
	config/t-vxworks, config/v850/t-v850, config/v850/t-v850e:
	Dependencies for above files changed to remove $(TOPLEV_H) or
	toplev.h.

c-family:
	* c-common.h (parse_optimize_options): Declare.
	* c-cppbuiltin.c, c-format.c, c-gimplify.c, c-lex.c, c-omp.c,
	c-pch.c, c-pragma.c, c-semantics.c: Don't include toplev.h.

cp:
	* cp-gimplify.c, cp-lang.c, cvt.c, cxx-pretty-print.c, error.c,
	except.c, expr.c, friend.c, init.c, mangle.c, name-lookup.c,
	optimize.c, parser.c, rtti.c, tree.c, typeck2.c: Don't include
	toplev.h.
	* Make-lang.in: Dependencies for above files changed to remove
	toplev.h.

java:
	* expr.c, lang.c, mangle.c, mangle_name.c, typeck.c,
	verify-glue.c: Don't include toplev.h.
	* Make-lang.in: Dependencies for above files changed to remove
	toplev.h.

lto:
	* Make-lang.in (lto/lto-object.o): Depend on toplev.h instead of
	$(TOPLEV_H).

From-SVN: r167293
2010-11-30 11:41:24 +00:00

720 lines
17 KiB
C

/* Decimal floating point support.
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010 Free Software
Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "tm_p.h"
#include "dfp.h"
/* The order of the following headers is important for making sure
decNumber structure is large enough to hold decimal128 digits. */
#include "decimal128.h"
#include "decimal128Local.h"
#include "decimal64.h"
#include "decimal32.h"
#include "decNumber.h"
#ifndef WORDS_BIGENDIAN
#define WORDS_BIGENDIAN 0
#endif
/* Initialize R (a real with the decimal flag set) from DN. Can
utilize status passed in via CONTEXT, if a previous operation had
interesting status. */
static void
decimal_from_decnumber (REAL_VALUE_TYPE *r, decNumber *dn, decContext *context)
{
memset (r, 0, sizeof (REAL_VALUE_TYPE));
r->cl = rvc_normal;
if (decNumberIsNaN (dn))
r->cl = rvc_nan;
if (decNumberIsInfinite (dn))
r->cl = rvc_inf;
if (context->status & DEC_Overflow)
r->cl = rvc_inf;
if (decNumberIsNegative (dn))
r->sign = 1;
r->decimal = 1;
if (r->cl != rvc_normal)
return;
decContextDefault (context, DEC_INIT_DECIMAL128);
context->traps = 0;
decimal128FromNumber ((decimal128 *) r->sig, dn, context);
}
/* Create decimal encoded R from string S. */
void
decimal_real_from_string (REAL_VALUE_TYPE *r, const char *s)
{
decNumber dn;
decContext set;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decNumberFromString (&dn, s, &set);
/* It would be more efficient to store directly in decNumber format,
but that is impractical from current data structure size.
Encoding as a decimal128 is much more compact. */
decimal_from_decnumber (r, &dn, &set);
}
/* Initialize a decNumber from a REAL_VALUE_TYPE. */
static void
decimal_to_decnumber (const REAL_VALUE_TYPE *r, decNumber *dn)
{
decContext set;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
switch (r->cl)
{
case rvc_zero:
decNumberZero (dn);
break;
case rvc_inf:
decNumberFromString (dn, "Infinity", &set);
break;
case rvc_nan:
if (r->signalling)
decNumberFromString (dn, "snan", &set);
else
decNumberFromString (dn, "nan", &set);
break;
case rvc_normal:
gcc_assert (r->decimal);
decimal128ToNumber ((const decimal128 *) r->sig, dn);
break;
default:
gcc_unreachable ();
}
/* Fix up sign bit. */
if (r->sign != decNumberIsNegative (dn))
dn->bits ^= DECNEG;
}
/* Encode a real into an IEEE 754 decimal32 type. */
void
encode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf, const REAL_VALUE_TYPE *r)
{
decNumber dn;
decimal32 d32;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal_to_decnumber (r, &dn);
decimal32FromNumber (&d32, &dn, &set);
memcpy (&image, d32.bytes, sizeof (int32_t));
buf[0] = image;
}
/* Decode an IEEE 754 decimal32 type into a real. */
void
decode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
decNumber dn;
decimal32 d32;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
image = buf[0];
memcpy (&d32.bytes, &image, sizeof (int32_t));
decimal32ToNumber (&d32, &dn);
decimal_from_decnumber (r, &dn, &set);
}
/* Encode a real into an IEEE 754 decimal64 type. */
void
encode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf, const REAL_VALUE_TYPE *r)
{
decNumber dn;
decimal64 d64;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal_to_decnumber (r, &dn);
decimal64FromNumber (&d64, &dn, &set);
if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
{
memcpy (&image, &d64.bytes[0], sizeof (int32_t));
buf[0] = image;
memcpy (&image, &d64.bytes[4], sizeof (int32_t));
buf[1] = image;
}
else
{
memcpy (&image, &d64.bytes[4], sizeof (int32_t));
buf[0] = image;
memcpy (&image, &d64.bytes[0], sizeof (int32_t));
buf[1] = image;
}
}
/* Decode an IEEE 754 decimal64 type into a real. */
void
decode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
decNumber dn;
decimal64 d64;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
{
image = buf[0];
memcpy (&d64.bytes[0], &image, sizeof (int32_t));
image = buf[1];
memcpy (&d64.bytes[4], &image, sizeof (int32_t));
}
else
{
image = buf[1];
memcpy (&d64.bytes[0], &image, sizeof (int32_t));
image = buf[0];
memcpy (&d64.bytes[4], &image, sizeof (int32_t));
}
decimal64ToNumber (&d64, &dn);
decimal_from_decnumber (r, &dn, &set);
}
/* Encode a real into an IEEE 754 decimal128 type. */
void
encode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf, const REAL_VALUE_TYPE *r)
{
decNumber dn;
decContext set;
decimal128 d128;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal_to_decnumber (r, &dn);
decimal128FromNumber (&d128, &dn, &set);
if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
{
memcpy (&image, &d128.bytes[0], sizeof (int32_t));
buf[0] = image;
memcpy (&image, &d128.bytes[4], sizeof (int32_t));
buf[1] = image;
memcpy (&image, &d128.bytes[8], sizeof (int32_t));
buf[2] = image;
memcpy (&image, &d128.bytes[12], sizeof (int32_t));
buf[3] = image;
}
else
{
memcpy (&image, &d128.bytes[12], sizeof (int32_t));
buf[0] = image;
memcpy (&image, &d128.bytes[8], sizeof (int32_t));
buf[1] = image;
memcpy (&image, &d128.bytes[4], sizeof (int32_t));
buf[2] = image;
memcpy (&image, &d128.bytes[0], sizeof (int32_t));
buf[3] = image;
}
}
/* Decode an IEEE 754 decimal128 type into a real. */
void
decode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
decNumber dn;
decimal128 d128;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
{
image = buf[0];
memcpy (&d128.bytes[0], &image, sizeof (int32_t));
image = buf[1];
memcpy (&d128.bytes[4], &image, sizeof (int32_t));
image = buf[2];
memcpy (&d128.bytes[8], &image, sizeof (int32_t));
image = buf[3];
memcpy (&d128.bytes[12], &image, sizeof (int32_t));
}
else
{
image = buf[3];
memcpy (&d128.bytes[0], &image, sizeof (int32_t));
image = buf[2];
memcpy (&d128.bytes[4], &image, sizeof (int32_t));
image = buf[1];
memcpy (&d128.bytes[8], &image, sizeof (int32_t));
image = buf[0];
memcpy (&d128.bytes[12], &image, sizeof (int32_t));
}
decimal128ToNumber (&d128, &dn);
decimal_from_decnumber (r, &dn, &set);
}
/* Helper function to convert from a binary real internal
representation. */
static void
decimal_to_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from,
enum machine_mode mode)
{
char string[256];
const decimal128 *const d128 = (const decimal128 *) from->sig;
decimal128ToString (d128, string);
real_from_string3 (to, string, mode);
}
/* Helper function to convert from a binary real internal
representation. */
static void
decimal_from_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from)
{
char string[256];
/* We convert to string, then to decNumber then to decimal128. */
real_to_decimal (string, from, sizeof (string), 0, 1);
decimal_real_from_string (to, string);
}
/* Helper function to real.c:do_compare() to handle decimal internal
representation including when one of the operands is still in the
binary internal representation. */
int
decimal_do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
int nan_result)
{
decContext set;
decNumber dn, dn2, dn3;
REAL_VALUE_TYPE a1, b1;
/* If either operand is non-decimal, create temporary versions. */
if (!a->decimal)
{
decimal_from_binary (&a1, a);
a = &a1;
}
if (!b->decimal)
{
decimal_from_binary (&b1, b);
b = &b1;
}
/* Convert into decNumber form for comparison operation. */
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
decimal128ToNumber ((const decimal128 *) b->sig, &dn3);
/* Finally, do the comparison. */
decNumberCompare (&dn, &dn2, &dn3, &set);
/* Return the comparison result. */
if (decNumberIsNaN (&dn))
return nan_result;
else if (decNumberIsZero (&dn))
return 0;
else if (decNumberIsNegative (&dn))
return -1;
else
return 1;
}
/* Helper to round_for_format, handling decimal float types. */
void
decimal_round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
{
decNumber dn;
decContext set;
/* Real encoding occurs later. */
if (r->cl != rvc_normal)
return;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal128ToNumber ((decimal128 *) r->sig, &dn);
if (fmt == &decimal_quad_format)
{
/* The internal format is already in this format. */
return;
}
else if (fmt == &decimal_single_format)
{
decimal32 d32;
decContextDefault (&set, DEC_INIT_DECIMAL32);
set.traps = 0;
decimal32FromNumber (&d32, &dn, &set);
decimal32ToNumber (&d32, &dn);
}
else if (fmt == &decimal_double_format)
{
decimal64 d64;
decContextDefault (&set, DEC_INIT_DECIMAL64);
set.traps = 0;
decimal64FromNumber (&d64, &dn, &set);
decimal64ToNumber (&d64, &dn);
}
else
gcc_unreachable ();
decimal_from_decnumber (r, &dn, &set);
}
/* Extend or truncate to a new mode. Handles conversions between
binary and decimal types. */
void
decimal_real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
const REAL_VALUE_TYPE *a)
{
const struct real_format *fmt = REAL_MODE_FORMAT (mode);
if (a->decimal && fmt->b == 10)
return;
if (a->decimal)
decimal_to_binary (r, a, mode);
else
decimal_from_binary (r, a);
}
/* Render R_ORIG as a decimal floating point constant. Emit DIGITS
significant digits in the result, bounded by BUF_SIZE. If DIGITS
is 0, choose the maximum for the representation. If
CROP_TRAILING_ZEROS, strip trailing zeros. Currently, not honoring
DIGITS or CROP_TRAILING_ZEROS. */
void
decimal_real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig,
size_t buf_size,
size_t digits ATTRIBUTE_UNUSED,
int crop_trailing_zeros ATTRIBUTE_UNUSED)
{
const decimal128 *const d128 = (const decimal128*) r_orig->sig;
/* decimal128ToString requires space for at least 24 characters;
Require two more for suffix. */
gcc_assert (buf_size >= 24);
decimal128ToString (d128, str);
}
static bool
decimal_do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1, int subtract_p)
{
decNumber dn;
decContext set;
decNumber dn2, dn3;
decimal_to_decnumber (op0, &dn2);
decimal_to_decnumber (op1, &dn3);
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
if (subtract_p)
decNumberSubtract (&dn, &dn2, &dn3, &set);
else
decNumberAdd (&dn, &dn2, &dn3, &set);
decimal_from_decnumber (r, &dn, &set);
/* Return true, if inexact. */
return (set.status & DEC_Inexact);
}
/* Compute R = OP0 * OP1. */
static bool
decimal_do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1)
{
decContext set;
decNumber dn, dn2, dn3;
decimal_to_decnumber (op0, &dn2);
decimal_to_decnumber (op1, &dn3);
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decNumberMultiply (&dn, &dn2, &dn3, &set);
decimal_from_decnumber (r, &dn, &set);
/* Return true, if inexact. */
return (set.status & DEC_Inexact);
}
/* Compute R = OP0 / OP1. */
static bool
decimal_do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1)
{
decContext set;
decNumber dn, dn2, dn3;
decimal_to_decnumber (op0, &dn2);
decimal_to_decnumber (op1, &dn3);
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decNumberDivide (&dn, &dn2, &dn3, &set);
decimal_from_decnumber (r, &dn, &set);
/* Return true, if inexact. */
return (set.status & DEC_Inexact);
}
/* Set R to A truncated to an integral value toward zero (decimal
floating point). */
void
decimal_do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
{
decNumber dn, dn2;
decContext set;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
set.round = DEC_ROUND_DOWN;
decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
decNumberToIntegralValue (&dn, &dn2, &set);
decimal_from_decnumber (r, &dn, &set);
}
/* Render decimal float value R as an integer. */
HOST_WIDE_INT
decimal_real_to_integer (const REAL_VALUE_TYPE *r)
{
decContext set;
decNumber dn, dn2, dn3;
REAL_VALUE_TYPE to;
char string[256];
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
set.round = DEC_ROUND_DOWN;
decimal128ToNumber ((const decimal128 *) r->sig, &dn);
decNumberToIntegralValue (&dn2, &dn, &set);
decNumberZero (&dn3);
decNumberRescale (&dn, &dn2, &dn3, &set);
/* Convert to REAL_VALUE_TYPE and call appropriate conversion
function. */
decNumberToString (&dn, string);
real_from_string (&to, string);
return real_to_integer (&to);
}
/* Likewise, but to an integer pair, HI+LOW. */
void
decimal_real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
const REAL_VALUE_TYPE *r)
{
decContext set;
decNumber dn, dn2, dn3;
REAL_VALUE_TYPE to;
char string[256];
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
set.round = DEC_ROUND_DOWN;
decimal128ToNumber ((const decimal128 *) r->sig, &dn);
decNumberToIntegralValue (&dn2, &dn, &set);
decNumberZero (&dn3);
decNumberRescale (&dn, &dn2, &dn3, &set);
/* Convert to REAL_VALUE_TYPE and call appropriate conversion
function. */
decNumberToString (&dn, string);
real_from_string (&to, string);
real_to_integer2 (plow, phigh, &to);
}
/* Perform the decimal floating point operation described by CODE.
For a unary operation, OP1 will be NULL. This function returns
true if the result may be inexact due to loss of precision. */
bool
decimal_real_arithmetic (REAL_VALUE_TYPE *r, enum tree_code code,
const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1)
{
REAL_VALUE_TYPE a, b;
/* If either operand is non-decimal, create temporaries. */
if (!op0->decimal)
{
decimal_from_binary (&a, op0);
op0 = &a;
}
if (op1 && !op1->decimal)
{
decimal_from_binary (&b, op1);
op1 = &b;
}
switch (code)
{
case PLUS_EXPR:
return decimal_do_add (r, op0, op1, 0);
case MINUS_EXPR:
return decimal_do_add (r, op0, op1, 1);
case MULT_EXPR:
return decimal_do_multiply (r, op0, op1);
case RDIV_EXPR:
return decimal_do_divide (r, op0, op1);
case MIN_EXPR:
if (op1->cl == rvc_nan)
*r = *op1;
else if (real_compare (UNLT_EXPR, op0, op1))
*r = *op0;
else
*r = *op1;
return false;
case MAX_EXPR:
if (op1->cl == rvc_nan)
*r = *op1;
else if (real_compare (LT_EXPR, op0, op1))
*r = *op1;
else
*r = *op0;
return false;
case NEGATE_EXPR:
{
*r = *op0;
/* Flip sign bit. */
decimal128FlipSign ((decimal128 *) r->sig);
/* Keep sign field in sync. */
r->sign ^= 1;
}
return false;
case ABS_EXPR:
{
*r = *op0;
/* Clear sign bit. */
decimal128ClearSign ((decimal128 *) r->sig);
/* Keep sign field in sync. */
r->sign = 0;
}
return false;
case FIX_TRUNC_EXPR:
decimal_do_fix_trunc (r, op0);
return false;
default:
gcc_unreachable ();
}
}
/* Fills R with the largest finite value representable in mode MODE.
If SIGN is nonzero, R is set to the most negative finite value. */
void
decimal_real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
{
const char *max;
switch (mode)
{
case SDmode:
max = "9.999999E96";
break;
case DDmode:
max = "9.999999999999999E384";
break;
case TDmode:
max = "9.999999999999999999999999999999999E6144";
break;
default:
gcc_unreachable ();
}
decimal_real_from_string (r, max);
if (sign)
decimal128SetSign ((decimal128 *) r->sig, 1);
}