mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-25 06:24:05 +08:00
aa2d5ba2c7
2002-07-20 Phil Edwards <pme@gcc.gnu.org> * docs/html/abi.txt: New file. * docs/html/23_containers/howto.html: Tweak vector-overhead text. * docs/html/ext/lwg-active.html, docs/html/ext/lwg-defects.html: Import from upstream, R22. * include/bits/char_traits.h, include/bits/stl_iterator.h, include/bits/stl_iterator_base_types.h, libsupc++/exception, libsupc++/new, libsupc++/typeinfo: Use @brief markup. * include/bits/deque.tcc, include/bits/stl_alloc.h, include/bits/stl_deque.h, include/bits/stl_list.h: Postpone removal of deprecated functions until 3.4. (Same timeframe, different text.) * include/bits/stl_vector.h: Ditto. Also do the same cleanups that the other sequence classes received. From-SVN: r55602
973 lines
32 KiB
C++
973 lines
32 KiB
C++
// Vector implementation -*- C++ -*-
|
|
|
|
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1996
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_vector.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef __GLIBCPP_INTERNAL_VECTOR_H
|
|
#define __GLIBCPP_INTERNAL_VECTOR_H
|
|
|
|
#include <bits/stl_iterator_base_funcs.h>
|
|
#include <bits/functexcept.h>
|
|
#include <bits/concept_check.h>
|
|
|
|
// Since this entire file is within namespace std, there's no reason to
|
|
// waste two spaces along the left column. Thus the leading indentation is
|
|
// slightly violated from here on.
|
|
namespace std
|
|
{
|
|
|
|
/// @if maint Primary default version. @endif
|
|
/**
|
|
* @if maint
|
|
* See bits/stl_deque.h's _Deque_alloc_base for an explanation.
|
|
* @endif
|
|
*/
|
|
template <typename _Tp, typename _Allocator, bool _IsStatic>
|
|
class _Vector_alloc_base
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
|
|
allocator_type;
|
|
|
|
allocator_type
|
|
get_allocator() const { return _M_data_allocator; }
|
|
|
|
_Vector_alloc_base(const allocator_type& __a)
|
|
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
|
|
{}
|
|
|
|
protected:
|
|
allocator_type _M_data_allocator;
|
|
_Tp* _M_start;
|
|
_Tp* _M_finish;
|
|
_Tp* _M_end_of_storage;
|
|
|
|
_Tp*
|
|
_M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
|
|
|
|
void
|
|
_M_deallocate(_Tp* __p, size_t __n)
|
|
{ if (__p) _M_data_allocator.deallocate(__p, __n); }
|
|
};
|
|
|
|
/// @if maint Specialization for instanceless allocators. @endif
|
|
template <typename _Tp, typename _Allocator>
|
|
class _Vector_alloc_base<_Tp, _Allocator, true>
|
|
{
|
|
public:
|
|
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
|
|
allocator_type;
|
|
|
|
allocator_type
|
|
get_allocator() const { return allocator_type(); }
|
|
|
|
_Vector_alloc_base(const allocator_type&)
|
|
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
|
|
{}
|
|
|
|
protected:
|
|
_Tp* _M_start;
|
|
_Tp* _M_finish;
|
|
_Tp* _M_end_of_storage;
|
|
|
|
typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
|
|
|
|
_Tp*
|
|
_M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
|
|
|
|
void
|
|
_M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
|
|
};
|
|
|
|
|
|
/**
|
|
* @if maint
|
|
* See bits/stl_deque.h's _Deque_base for an explanation.
|
|
* @endif
|
|
*/
|
|
template <typename _Tp, typename _Alloc>
|
|
struct _Vector_base
|
|
: public _Vector_alloc_base<_Tp, _Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
{
|
|
public:
|
|
typedef _Vector_alloc_base<_Tp, _Alloc,
|
|
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
|
|
_Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
|
|
_Vector_base(const allocator_type& __a)
|
|
: _Base(__a) {}
|
|
_Vector_base(size_t __n, const allocator_type& __a)
|
|
: _Base(__a)
|
|
{
|
|
_M_start = _M_allocate(__n);
|
|
_M_finish = _M_start;
|
|
_M_end_of_storage = _M_start + __n;
|
|
}
|
|
|
|
~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief A standard container which offers fixed time access to individual
|
|
* elements in any order.
|
|
*
|
|
* @ingroup Containers
|
|
* @ingroup Sequences
|
|
*
|
|
* Meets the requirements of a <a href="tables.html#65">container</a>, a
|
|
* <a href="tables.html#66">reversible container</a>, and a
|
|
* <a href="tables.html#67">sequence</a>, including the
|
|
* <a href="tables.html#68">optional sequence requirements</a> with the
|
|
* %exception of @c push_front and @c pop_front.
|
|
*
|
|
* In some terminology a %vector can be described as a dynamic C-style array,
|
|
* it offers fast and efficient access to individual elements in any order
|
|
* and saves the user from worrying about memory and size allocation.
|
|
* Subscripting ( @c [] ) access is also provided as with C-style arrays.
|
|
*/
|
|
template <typename _Tp, typename _Alloc = allocator<_Tp> >
|
|
class vector : protected _Vector_base<_Tp, _Alloc>
|
|
{
|
|
// concept requirements
|
|
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
|
|
|
|
typedef _Vector_base<_Tp, _Alloc> _Base;
|
|
typedef vector<_Tp, _Alloc> vector_type;
|
|
|
|
public:
|
|
typedef _Tp value_type;
|
|
typedef value_type* pointer;
|
|
typedef const value_type* const_pointer;
|
|
typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
|
|
typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
|
|
const_iterator;
|
|
typedef reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef reverse_iterator<iterator> reverse_iterator;
|
|
typedef value_type& reference;
|
|
typedef const value_type& const_reference;
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
|
|
protected:
|
|
/** @if maint
|
|
* These two functions and three data members are all from the top-most
|
|
* base class, which varies depending on the type of %allocator. They
|
|
* should be pretty self-explanatory, as %vector uses a simple contiguous
|
|
* allocation scheme.
|
|
* @endif
|
|
*/
|
|
using _Base::_M_allocate;
|
|
using _Base::_M_deallocate;
|
|
using _Base::_M_start;
|
|
using _Base::_M_finish;
|
|
using _Base::_M_end_of_storage;
|
|
|
|
public:
|
|
// [23.2.4.1] construct/copy/destroy
|
|
// (assign() and get_allocator() are also listed in this section)
|
|
/**
|
|
* @brief Default constructor creates no elements.
|
|
*/
|
|
explicit
|
|
vector(const allocator_type& __a = allocator_type())
|
|
: _Base(__a) {}
|
|
|
|
/**
|
|
* @brief Create a %vector with copies of an exemplar element.
|
|
* @param n The number of elements to initially create.
|
|
* @param value An element to copy.
|
|
*
|
|
* This constructor fills the %vector with @a n copies of @a value.
|
|
*/
|
|
vector(size_type __n, const value_type& __value,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__n, __a)
|
|
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
|
|
|
|
/**
|
|
* @brief Create a %vector with default elements.
|
|
* @param n The number of elements to initially create.
|
|
*
|
|
* This constructor fills the %vector with @a n copies of a
|
|
* default-constructed element.
|
|
*/
|
|
explicit
|
|
vector(size_type __n)
|
|
: _Base(__n, allocator_type())
|
|
{ _M_finish = uninitialized_fill_n(_M_start, __n, value_type()); }
|
|
|
|
/**
|
|
* @brief %Vector copy constructor.
|
|
* @param x A %vector of identical element and allocator types.
|
|
*
|
|
* The newly-created %vector uses a copy of the allocation object used
|
|
* by @a x. All the elements of @a x are copied, but any extra memory in
|
|
* @a x (for fast expansion) will not be copied.
|
|
*/
|
|
vector(const vector& __x)
|
|
: _Base(__x.size(), __x.get_allocator())
|
|
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
|
|
|
|
/**
|
|
* @brief Builds a %vector from a range.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* Create a %vector consisting of copies of the elements from [first,last).
|
|
*
|
|
* If the iterators are forward, bidirectional, or random-access, then
|
|
* this will call the elements' copy constructor N times (where N is
|
|
* distance(first,last)) and do no memory reallocation. But if only
|
|
* input iterators are used, then this will do at most 2N calls to the
|
|
* copy constructor, and logN memory reallocations.
|
|
*/
|
|
template <typename _InputIterator>
|
|
vector(_InputIterator __first, _InputIterator __last,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_initialize_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
/**
|
|
* The dtor only erases the elements, and note that if the elements
|
|
* themselves are pointers, the pointed-to memory is not touched in any
|
|
* way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
~vector() { _Destroy(_M_start, _M_finish); }
|
|
|
|
/**
|
|
* @brief %Vector assignment operator.
|
|
* @param x A %vector of identical element and allocator types.
|
|
*
|
|
* All the elements of @a x are copied, but any extra memory in @a x (for
|
|
* fast expansion) will not be copied. Unlike the copy constructor, the
|
|
* allocator object is not copied.
|
|
*/
|
|
vector&
|
|
operator=(const vector& __x);
|
|
|
|
/**
|
|
* @brief Assigns a given value to a %vector.
|
|
* @param n Number of elements to be assigned.
|
|
* @param val Value to be assigned.
|
|
*
|
|
* This function fills a %vector with @a n copies of the given value.
|
|
* Note that the assignment completely changes the %vector and that the
|
|
* resulting %vector's size is the same as the number of elements assigned.
|
|
* Old data may be lost.
|
|
*/
|
|
void
|
|
assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
|
|
|
|
/**
|
|
* @brief Assigns a range to a %vector.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* This function fills a %vector with copies of the elements in the
|
|
* range [first,last).
|
|
*
|
|
* Note that the assignment completely changes the %vector and that the
|
|
* resulting %vector's size is the same as the number of elements assigned.
|
|
* Old data may be lost.
|
|
*/
|
|
template<typename _InputIterator>
|
|
void
|
|
assign(_InputIterator __first, _InputIterator __last)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_assign_dispatch(__first, __last, _Integral());
|
|
}
|
|
|
|
/// Get a copy of the memory allocation object.
|
|
allocator_type
|
|
get_allocator() const { return _Base::get_allocator(); }
|
|
|
|
// iterators
|
|
/**
|
|
* Returns a read/write iterator that points to the first element in the
|
|
* %vector. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator
|
|
begin() { return iterator (_M_start); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points to the first element
|
|
* in the %vector. Iteration is done in ordinary element order.
|
|
*/
|
|
const_iterator
|
|
begin() const { return const_iterator (_M_start); }
|
|
|
|
/**
|
|
* Returns a read/write iterator that points one past the last element in
|
|
* the %vector. Iteration is done in ordinary element order.
|
|
*/
|
|
iterator
|
|
end() { return iterator (_M_finish); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points one past the last
|
|
* element in the %vector. Iteration is done in ordinary element order.
|
|
*/
|
|
const_iterator
|
|
end() const { return const_iterator (_M_finish); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to the last element in
|
|
* the %vector. Iteration is done in reverse element order.
|
|
*/
|
|
reverse_iterator
|
|
rbegin() { return reverse_iterator(end()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to the last
|
|
* element in the %vector. Iteration is done in reverse element order.
|
|
*/
|
|
const_reverse_iterator
|
|
rbegin() const { return const_reverse_iterator(end()); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to one before the
|
|
* first element in the %vector. Iteration is done in reverse element
|
|
* order.
|
|
*/
|
|
reverse_iterator
|
|
rend() { return reverse_iterator(begin()); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to one
|
|
* before the first element in the %vector. Iteration is done in reverse
|
|
* element order.
|
|
*/
|
|
const_reverse_iterator
|
|
rend() const { return const_reverse_iterator(begin()); }
|
|
|
|
// [23.2.4.2] capacity
|
|
/** Returns the number of elements in the %vector. */
|
|
size_type
|
|
size() const { return size_type(end() - begin()); }
|
|
|
|
/** Returns the size() of the largest possible %vector. */
|
|
size_type
|
|
max_size() const { return size_type(-1) / sizeof(value_type); }
|
|
|
|
/**
|
|
* @brief Resizes the %vector to the specified number of elements.
|
|
* @param new_size Number of elements the %vector should contain.
|
|
* @param x Data with which new elements should be populated.
|
|
*
|
|
* This function will %resize the %vector to the specified number of
|
|
* elements. If the number is smaller than the %vector's current size the
|
|
* %vector is truncated, otherwise the %vector is extended and new elements
|
|
* are populated with given data.
|
|
*/
|
|
void
|
|
resize(size_type __new_size, const value_type& __x)
|
|
{
|
|
if (__new_size < size())
|
|
erase(begin() + __new_size, end());
|
|
else
|
|
insert(end(), __new_size - size(), __x);
|
|
}
|
|
|
|
/**
|
|
* @brief Resizes the %vector to the specified number of elements.
|
|
* @param new_size Number of elements the %vector should contain.
|
|
*
|
|
* This function will resize the %vector to the specified number of
|
|
* elements. If the number is smaller than the %vector's current size the
|
|
* %vector is truncated, otherwise the %vector is extended and new elements
|
|
* are default-constructed.
|
|
*/
|
|
void
|
|
resize(size_type __new_size) { resize(__new_size, value_type()); }
|
|
|
|
/**
|
|
* Returns the total number of elements that the %vector can hold before
|
|
* needing to allocate more memory.
|
|
*/
|
|
size_type
|
|
capacity() const
|
|
{ return size_type(const_iterator(_M_end_of_storage) - begin()); }
|
|
|
|
/**
|
|
* Returns true if the %vector is empty. (Thus begin() would equal end().)
|
|
*/
|
|
bool
|
|
empty() const { return begin() == end(); }
|
|
|
|
/**
|
|
* @brief Attempt to preallocate enough memory for specified number of
|
|
* elements.
|
|
* @param n Number of elements required.
|
|
* @throw std::length_error If @a n exceeds @c max_size().
|
|
*
|
|
* This function attempts to reserve enough memory for the %vector to hold
|
|
* the specified number of elements. If the number requested is more than
|
|
* max_size(), length_error is thrown.
|
|
*
|
|
* The advantage of this function is that if optimal code is a necessity
|
|
* and the user can determine the number of elements that will be required,
|
|
* the user can reserve the memory in %advance, and thus prevent a possible
|
|
* reallocation of memory and copying of %vector data.
|
|
*/
|
|
void
|
|
reserve(size_type __n);
|
|
|
|
// element access
|
|
/**
|
|
* @brief Subscript access to the data contained in the %vector.
|
|
* @param n The index of the element for which data should be accessed.
|
|
* @return Read/write reference to data.
|
|
*
|
|
* This operator allows for easy, array-style, data access.
|
|
* Note that data access with this operator is unchecked and out_of_range
|
|
* lookups are not defined. (For checked lookups see at().)
|
|
*/
|
|
reference
|
|
operator[](size_type __n) { return *(begin() + __n); }
|
|
|
|
/**
|
|
* @brief Subscript access to the data contained in the %vector.
|
|
* @param n The index of the element for which data should be accessed.
|
|
* @return Read-only (constant) reference to data.
|
|
*
|
|
* This operator allows for easy, array-style, data access.
|
|
* Note that data access with this operator is unchecked and out_of_range
|
|
* lookups are not defined. (For checked lookups see at().)
|
|
*/
|
|
const_reference
|
|
operator[](size_type __n) const { return *(begin() + __n); }
|
|
|
|
protected:
|
|
/// @if maint Safety check used only from at(). @endif
|
|
void
|
|
_M_range_check(size_type __n) const
|
|
{
|
|
if (__n >= this->size())
|
|
__throw_out_of_range("vector [] access out of range");
|
|
}
|
|
|
|
public:
|
|
/**
|
|
* @brief Provides access to the data contained in the %vector.
|
|
* @param n The index of the element for which data should be accessed.
|
|
* @return Read/write reference to data.
|
|
* @throw std::out_of_range If @a n is an invalid index.
|
|
*
|
|
* This function provides for safer data access. The parameter is first
|
|
* checked that it is in the range of the vector. The function throws
|
|
* out_of_range if the check fails.
|
|
*/
|
|
reference
|
|
at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
|
|
|
|
/**
|
|
* @brief Provides access to the data contained in the %vector.
|
|
* @param n The index of the element for which data should be accessed.
|
|
* @return Read-only (constant) reference to data.
|
|
* @throw std::out_of_range If @a n is an invalid index.
|
|
*
|
|
* This function provides for safer data access. The parameter is first
|
|
* checked that it is in the range of the vector. The function throws
|
|
* out_of_range if the check fails.
|
|
*/
|
|
const_reference
|
|
at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
|
|
|
|
/**
|
|
* Returns a read/write reference to the data at the first element of the
|
|
* %vector.
|
|
*/
|
|
reference
|
|
front() { return *begin(); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the first
|
|
* element of the %vector.
|
|
*/
|
|
const_reference
|
|
front() const { return *begin(); }
|
|
|
|
/**
|
|
* Returns a read/write reference to the data at the last element of the
|
|
* %vector.
|
|
*/
|
|
reference
|
|
back() { return *(end() - 1); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reference to the data at the last
|
|
* element of the %vector.
|
|
*/
|
|
const_reference
|
|
back() const { return *(end() - 1); }
|
|
|
|
// [23.2.4.3] modifiers
|
|
/**
|
|
* @brief Add data to the end of the %vector.
|
|
* @param x Data to be added.
|
|
*
|
|
* This is a typical stack operation. The function creates an element at
|
|
* the end of the %vector and assigns the given data to it.
|
|
* Due to the nature of a %vector this operation can be done in constant
|
|
* time if the %vector has preallocated space available.
|
|
*/
|
|
void
|
|
push_back(const value_type& __x)
|
|
{
|
|
if (_M_finish != _M_end_of_storage)
|
|
{
|
|
_Construct(_M_finish, __x);
|
|
++_M_finish;
|
|
}
|
|
else
|
|
_M_insert_aux(end(), __x);
|
|
}
|
|
|
|
/**
|
|
* @brief Removes last element.
|
|
*
|
|
* This is a typical stack operation. It shrinks the %vector by one.
|
|
*
|
|
* Note that no data is returned, and if the last element's data is
|
|
* needed, it should be retrieved before pop_back() is called.
|
|
*/
|
|
void
|
|
pop_back()
|
|
{
|
|
--_M_finish;
|
|
_Destroy(_M_finish);
|
|
}
|
|
|
|
/**
|
|
* @brief Inserts given value into %vector before specified iterator.
|
|
* @param position An iterator into the %vector.
|
|
* @param x Data to be inserted.
|
|
* @return An iterator that points to the inserted data.
|
|
*
|
|
* This function will insert a copy of the given value before the specified
|
|
* location.
|
|
* Note that this kind of operation could be expensive for a %vector and if
|
|
* it is frequently used the user should consider using std::list.
|
|
*/
|
|
iterator
|
|
insert(iterator __position, const value_type& __x);
|
|
|
|
#ifdef _GLIBCPP_DEPRECATED
|
|
/**
|
|
* @brief Inserts an element into the %vector.
|
|
* @param position An iterator into the %vector.
|
|
* @return An iterator that points to the inserted element.
|
|
*
|
|
* This function will insert a default-constructed element before the
|
|
* specified location. You should consider using
|
|
* insert(position,value_type()) instead.
|
|
* Note that this kind of operation could be expensive for a vector and if
|
|
* it is frequently used the user should consider using std::list.
|
|
*
|
|
* @note This was deprecated in 3.2 and will be removed in 3.4. You must
|
|
* define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
|
|
* c++config.h.
|
|
*/
|
|
iterator
|
|
insert(iterator __position)
|
|
{ return insert(__position, value_type()); }
|
|
#endif
|
|
|
|
/**
|
|
* @brief Inserts a number of copies of given data into the %vector.
|
|
* @param position An iterator into the %vector.
|
|
* @param n Number of elements to be inserted.
|
|
* @param x Data to be inserted.
|
|
*
|
|
* This function will insert a specified number of copies of the given data
|
|
* before the location specified by @a position.
|
|
*
|
|
* Note that this kind of operation could be expensive for a %vector and if
|
|
* it is frequently used the user should consider using std::list.
|
|
*/
|
|
void
|
|
insert (iterator __pos, size_type __n, const value_type& __x)
|
|
{ _M_fill_insert(__pos, __n, __x); }
|
|
|
|
/**
|
|
* @brief Inserts a range into the %vector.
|
|
* @param pos An iterator into the %vector.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* This function will insert copies of the data in the range [first,last)
|
|
* into the %vector before the location specified by @a pos.
|
|
*
|
|
* Note that this kind of operation could be expensive for a %vector and if
|
|
* it is frequently used the user should consider using std::list.
|
|
*/
|
|
template<typename _InputIterator>
|
|
void
|
|
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
|
|
{
|
|
// Check whether it's an integral type. If so, it's not an iterator.
|
|
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
|
|
_M_insert_dispatch(__pos, __first, __last, _Integral());
|
|
}
|
|
|
|
/**
|
|
* @brief Remove element at given position.
|
|
* @param position Iterator pointing to element to be erased.
|
|
* @return An iterator pointing to the next element (or end()).
|
|
*
|
|
* This function will erase the element at the given position and thus
|
|
* shorten the %vector by one.
|
|
*
|
|
* Note This operation could be expensive and if it is frequently used the
|
|
* user should consider using std::list. The user is also cautioned that
|
|
* this function only erases the element, and that if the element is itself
|
|
* a pointer, the pointed-to memory is not touched in any way. Managing
|
|
* the pointer is the user's responsibilty.
|
|
*/
|
|
iterator
|
|
erase(iterator __position);
|
|
|
|
/**
|
|
* @brief Remove a range of elements.
|
|
* @param first Iterator pointing to the first element to be erased.
|
|
* @param last Iterator pointing to one past the last element to be erased.
|
|
* @return An iterator pointing to the element pointed to by @a last
|
|
* prior to erasing (or end()).
|
|
*
|
|
* This function will erase the elements in the range [first,last) and
|
|
* shorten the %vector accordingly.
|
|
*
|
|
* Note This operation could be expensive and if it is frequently used the
|
|
* user should consider using std::list. The user is also cautioned that
|
|
* this function only erases the elements, and that if the elements
|
|
* themselves are pointers, the pointed-to memory is not touched in any
|
|
* way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
iterator
|
|
erase(iterator __first, iterator __last);
|
|
|
|
/**
|
|
* @brief Swaps data with another %vector.
|
|
* @param x A %vector of the same element and allocator types.
|
|
*
|
|
* This exchanges the elements between two vectors in constant time.
|
|
* (Three pointers, so it should be quite fast.)
|
|
* Note that the global std::swap() function is specialized such that
|
|
* std::swap(v1,v2) will feed to this function.
|
|
*/
|
|
void
|
|
swap(vector& __x)
|
|
{
|
|
std::swap(_M_start, __x._M_start);
|
|
std::swap(_M_finish, __x._M_finish);
|
|
std::swap(_M_end_of_storage, __x._M_end_of_storage);
|
|
}
|
|
|
|
/**
|
|
* Erases all the elements. Note that this function only erases the
|
|
* elements, and that if the elements themselves are pointers, the
|
|
* pointed-to memory is not touched in any way. Managing the pointer is
|
|
* the user's responsibilty.
|
|
*/
|
|
void
|
|
clear() { erase(begin(), end()); }
|
|
|
|
protected:
|
|
/**
|
|
* @if maint
|
|
* Memory expansion handler. Uses the member allocation function to
|
|
* obtain @a n bytes of memory, and then copies [first,last) into it.
|
|
* @endif
|
|
*/
|
|
template <typename _ForwardIterator>
|
|
pointer
|
|
_M_allocate_and_copy(size_type __n,
|
|
_ForwardIterator __first, _ForwardIterator __last)
|
|
{
|
|
pointer __result = _M_allocate(__n);
|
|
try
|
|
{
|
|
uninitialized_copy(__first, __last, __result);
|
|
return __result;
|
|
}
|
|
catch(...)
|
|
{
|
|
_M_deallocate(__result, __n);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
|
|
// Internal constructor functions follow.
|
|
|
|
// called by the range constructor to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
|
|
{
|
|
_M_start = _M_allocate(__n);
|
|
_M_end_of_storage = _M_start + __n;
|
|
_M_finish = uninitialized_fill_n(_M_start, __n, __value);
|
|
}
|
|
|
|
// called by the range constructor to implement [23.1.1]/9
|
|
template<typename _InputIter>
|
|
void
|
|
_M_initialize_dispatch(_InputIter __first, _InputIter __last, __false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIter>::iterator_category
|
|
_IterCategory;
|
|
_M_range_initialize(__first, __last, _IterCategory());
|
|
}
|
|
|
|
// called by the second initialize_dispatch above
|
|
template <typename _InputIterator>
|
|
void
|
|
_M_range_initialize(_InputIterator __first,
|
|
_InputIterator __last, input_iterator_tag)
|
|
{
|
|
for ( ; __first != __last; ++__first)
|
|
push_back(*__first);
|
|
}
|
|
|
|
// called by the second initialize_dispatch above
|
|
template <typename _ForwardIterator>
|
|
void _M_range_initialize(_ForwardIterator __first,
|
|
_ForwardIterator __last, forward_iterator_tag)
|
|
{
|
|
size_type __n = distance(__first, __last);
|
|
_M_start = _M_allocate(__n);
|
|
_M_end_of_storage = _M_start + __n;
|
|
_M_finish = uninitialized_copy(__first, __last, _M_start);
|
|
}
|
|
|
|
|
|
// Internal assign functions follow. The *_aux functions do the actual
|
|
// assignment work for the range versions.
|
|
|
|
// called by the range assign to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
|
|
{
|
|
_M_fill_assign(static_cast<size_type>(__n),
|
|
static_cast<value_type>(__val));
|
|
}
|
|
|
|
// called by the range assign to implement [23.1.1]/9
|
|
template<typename _InputIter>
|
|
void
|
|
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIter>::iterator_category
|
|
_IterCategory;
|
|
_M_assign_aux(__first, __last, _IterCategory());
|
|
}
|
|
|
|
// called by the second assign_dispatch above
|
|
template <typename _InputIterator>
|
|
void
|
|
_M_assign_aux(_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
// called by the second assign_dispatch above
|
|
template <typename _ForwardIterator>
|
|
void
|
|
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag);
|
|
|
|
// Called by assign(n,t), and the range assign when it turns out to be the
|
|
// same thing.
|
|
void
|
|
_M_fill_assign(size_type __n, const value_type& __val);
|
|
|
|
|
|
// Internal insert functions follow.
|
|
|
|
// called by the range insert to implement [23.1.1]/9
|
|
template<typename _Integer>
|
|
void
|
|
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
|
|
__true_type)
|
|
{
|
|
_M_fill_insert(__pos, static_cast<size_type>(__n),
|
|
static_cast<value_type>(__val));
|
|
}
|
|
|
|
// called by the range insert to implement [23.1.1]/9
|
|
template<typename _InputIterator>
|
|
void
|
|
_M_insert_dispatch(iterator __pos, _InputIterator __first,
|
|
_InputIterator __last, __false_type)
|
|
{
|
|
typedef typename iterator_traits<_InputIterator>::iterator_category
|
|
_IterCategory;
|
|
_M_range_insert(__pos, __first, __last, _IterCategory());
|
|
}
|
|
|
|
// called by the second insert_dispatch above
|
|
template <typename _InputIterator>
|
|
void
|
|
_M_range_insert(iterator __pos,
|
|
_InputIterator __first, _InputIterator __last,
|
|
input_iterator_tag);
|
|
|
|
// called by the second insert_dispatch above
|
|
template <typename _ForwardIterator>
|
|
void
|
|
_M_range_insert(iterator __pos,
|
|
_ForwardIterator __first, _ForwardIterator __last,
|
|
forward_iterator_tag);
|
|
|
|
// Called by insert(p,n,x), and the range insert when it turns out to be
|
|
// the same thing.
|
|
void
|
|
_M_fill_insert (iterator __pos, size_type __n, const value_type& __x);
|
|
|
|
// called by insert(p,x)
|
|
void
|
|
_M_insert_aux(iterator __position, const value_type& __x);
|
|
|
|
#ifdef _GLIBCPP_DEPRECATED
|
|
// unused now (same situation as in deque)
|
|
void _M_insert_aux(iterator __position);
|
|
#endif
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief Vector equality comparison.
|
|
* @param x A %vector.
|
|
* @param y A %vector of the same type as @a x.
|
|
* @return True iff the size and elements of the vectors are equal.
|
|
*
|
|
* This is an equivalence relation. It is linear in the size of the
|
|
* vectors. Vectors are considered equivalent if their sizes are equal,
|
|
* and if corresponding elements compare equal.
|
|
*/
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
|
|
{
|
|
return __x.size() == __y.size() &&
|
|
equal(__x.begin(), __x.end(), __y.begin());
|
|
}
|
|
|
|
/**
|
|
* @brief Vector ordering relation.
|
|
* @param x A %vector.
|
|
* @param y A %vector of the same type as @a x.
|
|
* @return True iff @a x is lexographically less than @a y.
|
|
*
|
|
* This is a total ordering relation. It is linear in the size of the
|
|
* vectors. The elements must be comparable with @c <.
|
|
*
|
|
* See std::lexographical_compare() for how the determination is made.
|
|
*/
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
|
|
{
|
|
return lexicographical_compare(__x.begin(), __x.end(),
|
|
__y.begin(), __y.end());
|
|
}
|
|
|
|
/// Based on operator==
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
|
|
{ return !(__x == __y); }
|
|
|
|
/// Based on operator<
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
|
|
{ return __y < __x; }
|
|
|
|
/// Based on operator<
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
|
|
{ return !(__y < __x); }
|
|
|
|
/// Based on operator<
|
|
template <typename _Tp, typename _Alloc>
|
|
inline bool
|
|
operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
|
|
{ return !(__x < __y); }
|
|
|
|
/// See std::vector::swap().
|
|
template <typename _Tp, typename _Alloc>
|
|
inline void
|
|
swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y)
|
|
{ __x.swap(__y); }
|
|
|
|
} // namespace std
|
|
|
|
#endif /* __GLIBCPP_INTERNAL_VECTOR_H */
|