mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-03-21 09:20:35 +08:00
2005-04-05 Andrew MacLeod <amacleod@redhat.com> * lambda-code.c (lambda_loopnest_to_gcc_loopnest): Use update_stmt. Use immediate use iterator. (stmt_is_bumper_for_loop): Use immediate use iterator. * predict.c (strip_builtin_expect): Use update_stmt. * tree-cfg.c (update_modified_stmts): New. Call update_stmt_if_modified on all elements of a STATEMENT_LIST. (bsi_insert_before, bsi_insert_after): Call update_modified_stmts. (bsi_remove): Remove imm_use links and mark the stmt as modified. (bsi_replace): Mark stmt as modified and the update it. * tree-complex.c (update_complex_assignment): Call mark_stmt_modified. (expand_complex_libcal): Call update_stmt. (expand_complex_comparison): Call mark_stmt_modified. (expand_complex_operations_1): Call update_stmt_if_modified. (expand_vector_operations_1): Call mark_stmt_modified. * tree-dfa.c (compute_immediate_uses, free_df_for_stmt, free_df, compute_immediate_uses_for_phi, compute_immediate_uses_for_stmt, add_immediate_use, redirect_immediate_use, redirect_immediate_uses, dump_immediate_uses, debug_immediate_uses, dump_immediate_uses_for, debug_immediate_uses_for): Delete. (mark_new_vars_to_rename): Call update_stmt. * tree-dump.c (dump_option_value_in): Add "stmtaddr". * tree-flow-inline.h (modify_stmt): Rename to mark_stmt_modified. Ignore PHI nodes. (unmodify_stmt): Delete. (update_stmt): New. Force an update of a stmt. (update_stmt_if_modified): update a stmt if it is out of date. (get_stmt_operands): Verify stmt is NOT modified. (stmt_modified_p): Update comment. (delink_imm_use): Remove a use node from its immuse list. (link_imm_use_to_list): Link a use node to a specific list. (link_imm_use): Link a node to the correct list. (set_ssa_use_from_ptr): Set a use node to a specific value, and insert it in the correct list, if appropriate. (link_imm_use_stmt): Link a use node, and set the stmt pointer. (relink_imm_use): Link a use node in place of another node in a list. (relink_imm_use_stmt): LInk a node in place of another node, and set the stmt pointer. (end_safe_imm_use_traverse): New. Terminate a safe immuse iterator. (end_safe_imm_use_p): New. Check for the end of a safe immuse iterator. (first_safe_imm_use): New. Initialize a safe immuse iterator. (next_safe_imm_use): New. Proceed to next safe immuse iterator value. (end_readonly_imm_use_p): New. Check for end of a fast immuse iterator. (first_readonly_imm_use): New. Initialize a fast immuse iterator. (next_readonly_imm_use): New. Get the next fast immuse iterator value. (has_zero_uses): New. Return true if there are no uses of a var. (has_single_use): New. Return true if there is only a single use of a variable. (single_imm_use): New. Return the simgle immediate use. (num_imm_uses): New. Return the number of immediate uses. (get_v_must_def_ops): Use is now a pointer. (use_operand_p, get_v_may_def_op_ptr, get_vuse_op_ptr, get_v_must_def_kill_ptr, get_phi_arg_def_ptr): Return the address of the use node. (get_immediate_uses, num_immediate_uses, immediate_use): Delete. (delink_stmt_imm_use): Delink all immuses from a stmt. (phi_arg_index_from_use): New. Return a phi arg index for a use. * tree-flow.h (struct dataflow_d): Delete. (immediate_use_iterator_d): New. Immediate use iterator struct. (FOR_EACH_IMM_USE_FAST): New. Macro for read only immuse iteration. (FOR_EACH_IMM_USE_SAFE): New. Macro for write-safe immuse iteration. (BREAK_FROM_SAFE_IMM_USE): New. Macro for earlyu exit from write-safe iteration. (struct stmt_ann_d): Remove dataflow_t from struct. * tree-if-conv.c (tree_if_conversion). Don't call free_df. (if_convertible_phi_p): Use FAST immuse iterator. (if_convertible_loop_p): Don't call compute_immediate_uses. (replace_phi_with_cond_modify_expr): Call update_stmt. * tree-into-ssa.c (mark_def_sites, ssa_mark_def_sites): Call update_stmt_if_modified. (rewrite_all_into_ssa): Initialize ssa operands. * tree-loop-linear.c (linear_transform_loops): Don't call free_df or compute_immediate_uses. * tree-optimize.c (execute_todo): Call verify_ssa whenever the ssa_property is available. (execute_one_pass): Change parameters passed to execute_todo. * tree-outof-ssa.c (rewrite_trees): Don't call modify_stmt. (remove_ssa_form): Call fini_ssa_operands. (insert_backedge_copies): Delete call to modify_stmt. * tree-phinodes.c (make_phi_node): Initialize use nodes. (release_phi_node): Delink any use nodes before releasing. (resize_phi_node): Relink any use nodes. (remove_phi_arg_num): Delink the use node. (remove_phi_node): Release the ssa_name AFTER releasing the phi node. (remove_all_phi_nodes_for): Release phi node first. * tree-pretty-print.c (dump_generic_node): Print stmt address. * tree-sra.c (mark_all_v_defs): Call update_stmt_if_modified. (scalarize_use, scalarize_copy): Call update_stmt. * tree-ssa-alias.c (compute_may_aliases): Update all modified stmts. (compute_points_to_and_addr_escape): Call mark_stmt_modified. * tree-ssa-cpp.c (need_imm_uses_for): Delete. (ccp_initialize): Remove call to compute_immediate_uses. (substitute_and_fold, execute_fold_all_builtins): Call update_stmt. * tree-ssa-dom.c (tree_ssa_dominator_optimize): Update all modified stmts. (simplify_cond_and_lookup_avail_expr): Call mark_stmt_modified. (simplify_switch_and_lookup_avail_expr): Call mark_stmt_modified. (eliminate_redundant_computations): Call mark_stmt_modified. (cprop_operand): Call mark_stmt_modified. (optimize_stmt): Call update_stmt_if_modified and mark_stmt_modified. * tree-ssa-dse.c (fix_phi_uses, fix_stmt_v_may_defs): Delete. (dse_optimize_stmt): Use new immuse interface. (tree_ssa_dse): Remove calls to compute_immediate_uses and free_df. * tree-ssa-forwprop.c (need_imm_uses_for): Delete. (substitute_single_use_vars): Use new immuse interface. (tree_ssa_forward_propagate_single_use_vars): Remove calls to free_df and compute_immediate_uses. * tree-ssa-loop-im.c (single_reachable_address): Use new immuse interface. (rewrite_mem_refs): Call update_stmt. (determine_lsm): Remove call to compute_imm_uses and free_df. * tree-ssa-loop-ivcanon.c (create_canonical_iv): Call update_stmt. (try_unroll_loop_completely): Call update_stmt. * tree-ssa-loop-ivopts.c (rewrite_address_base): Call update_stmt. (rewrite_use_compare): Call update_stmt. (compute_phi_arg_on_exit): Insert each stmt before trying to process. (rewrite_use) : Call update_stmt. * tree-ssa-loop-manip.c (verify_loop_closed_ssa): Add arg to call. * tree-ssa-loop-unswitch.c (tree_unswitch_single_loop): Call update_stmt. * tree-ssa-operands.c (NULL_USE_OPERAND_P): Remove declaration. (allocate_use_optype, allocate_vuse_optype): Adjust allocation size. (free_uses, free_vuses, free_v_may_defs, free_v_must_defs): Delink use nodes. (initialize_vuse_operand): New. Initialize a vuse operand. (initialize_v_may_def_operand): New. Initialize a maydef operand. (initialize_v_must_def_operand): New. Initialize a mustdef operand. (finalize_ssa_defs): Use stmt parameter. (correct_use_link): Ensure a use node is in the correct list, and has the correct stmt pointer. (finalize_ssa_uses, finalize_ssa_v_may_defs, finalize_ssa_vuses, finalize_ssa_v_must_defs): Also initialize use nodes. (finalize_ssa_stmt_operands): Pass extra stmt operands. (build_ssa_operands): Seperate parsing from final operand construction. (parse_ssa_operands): New. Parse entry point for operand building. (swap_tree_operands): New. Swap 2 tree operands. (update_stmt_operands): Ranamed from get_stmt_operands. Always builds operands. (get_expr_operands): Call swap_tree_operands when needed. (copy_virtual_operands): Use initialize routines for virtual use ops. (create_ssa_artficial_load_stmt): Add extra stmt parameter. (verify_abort): New. Issue imm_use error. (verify_imm_links): New Verify imm_use links for a var. (dump_immediate_uses_for): New. Dump imm_uses for a var to file. (dump_immediate_uses): New. Dump imm_uses for all vars to file. (debug_immediate_uses): New. Dump imm_uses for all vars to stderr. (debug_immediate_uses_for): New. Dump imm_uses for a var to stderr. * tree-ssa-operands.h (struct use_operand_ptr): Delete. (NULL_USE_OPERAND_P) Define. (use_optype_d, v_def_use_operand_type, vuse_optype_d): Add immediate use node. (struct vuse_operand_type): New struct. (SET_USE): Call set_ssa_use_from_ptr. (USE_STMT): Define. (PHI_ARG_INDEX_FROM_USE): Define. * tree-ssa-phiopt.c (replace_phi_edge_with_variable): Set the phi argument via SET_USE, not PHI_ARG_DEF_TREE. * tree-ssa-pre.c (eliminate): Call update_stmt. * tree-ssa-propagate.c (cfg_blocks_get): Use imm_use iterators. Don't call free_df. * tree-ssa-sink.c (all_immediate_uses_same_place): Use imm_use iterator. (nearest_common_dominator_of_uses): Use imm_use iterator. (statement_sink_location): Use imm_use iterator and interface. (execute_sink_code): Don't call compute_immediate_uses or free-df. * tree-ssa-threadupdate.c (create_edge_and_update_destination_phis): Use PHI_ARG_DEF, not PHI_ARG_DEF_TREE. * tree-ssa.c (verify_use, verify_phi_args): Verify some imm_use info. (verify_ssa): Ensure no stmt is marked modify after optimization pass if new parameter is true. (init_tree_ssa): Don't initialize operand cache here. (delete_tree_ssa): Don't destroy operand cache here. (propagate_into_addr): Pass in a use pointer, return true if anything was changed. (replace_immediate_uses): Use imm_use iterator, call update_stmt. (check_phi_redundancy): Use imm_use iterator. (kill_redundant_phi_nodes): Don't call compute_immediate_uses or free_df. * tree-ssanames.c (make_ssa_name): Initialize imm_use node. (release_ssa_name): Delink node and all elements in its imm_use list. * tree-tailcall.c (adjust_return_value): Call update_stmt. * tree-vect-analyze.c (vect_stmt_relevant_p): Use imm_use iterator. * tree-vectorizer.c (need_imm_uses_for): Delete. (vectorize_loops): Dont call compute_immediate_uses or free_df. * tree.h (struct ssa_imm_use_d): Define. (SSA_NAME_IMM_USE_NODE): Define. (struct tree_ssa_name): Add imm_use node. (PHI_DF): Delete. (PHI_ARG_IMM_USE_NODE): Define. (struct phi_arg_d): Add imm_use node. (struct tree_phi_node): Remove struct dataflow_d element. (TDF_STMTADDR): Define. From-SVN: r97648
Copyright (C) 2000, 2003 Free Software Foundation, Inc. This file is intended to contain a few notes about writing C code within GCC so that it compiles without error on the full range of compilers GCC needs to be able to compile on. The problem is that many ISO-standard constructs are not accepted by either old or buggy compilers, and we keep getting bitten by them. This knowledge until know has been sparsely spread around, so I thought I'd collect it in one useful place. Please add and correct any problems as you come across them. I'm going to start from a base of the ISO C90 standard, since that is probably what most people code to naturally. Obviously using constructs introduced after that is not a good idea. For the complete coding style conventions used in GCC, please read http://gcc.gnu.org/codingconventions.html String literals --------------- Irix6 "cc -n32" and OSF4 "cc" have problems with constant string initializers with parens around it, e.g. const char string[] = ("A string"); This is unfortunate since this is what the GNU gettext macro N_ produces. You need to find a different way to code it. Some compilers like MSVC++ have fairly low limits on the maximum length of a string literal; 509 is the lowest we've come across. You may need to break up a long printf statement into many smaller ones. Empty macro arguments --------------------- ISO C (6.8.3 in the 1990 standard) specifies the following: If (before argument substitution) any argument consists of no preprocessing tokens, the behavior is undefined. This was relaxed by ISO C99, but some older compilers emit an error, so code like #define foo(x, y) x y foo (bar, ) needs to be coded in some other way. free and realloc ---------------- Some implementations crash upon attempts to free or realloc the null pointer. Thus if mem might be null, you need to write if (mem) free (mem); Trigraphs --------- You weren't going to use them anyway, but some otherwise ISO C compliant compilers do not accept trigraphs. Suffixes on Integer Constants ----------------------------- You should never use a 'l' suffix on integer constants ('L' is fine), since it can easily be confused with the number '1'. Common Coding Pitfalls ====================== errno ----- errno might be declared as a macro. Implicit int ------------ In C, the 'int' keyword can often be omitted from type declarations. For instance, you can write unsigned variable; as shorthand for unsigned int variable; There are several places where this can cause trouble. First, suppose 'variable' is a long; then you might think (unsigned) variable would convert it to unsigned long. It does not. It converts to unsigned int. This mostly causes problems on 64-bit platforms, where long and int are not the same size. Second, if you write a function definition with no return type at all: operate (int a, int b) { ... } that function is expected to return int, *not* void. GCC will warn about this. Implicit function declarations always have return type int. So if you correct the above definition to void operate (int a, int b) ... but operate() is called above its definition, you will get an error about a "type mismatch with previous implicit declaration". The cure is to prototype all functions at the top of the file, or in an appropriate header. Char vs unsigned char vs int ---------------------------- In C, unqualified 'char' may be either signed or unsigned; it is the implementation's choice. When you are processing 7-bit ASCII, it does not matter. But when your program must handle arbitrary binary data, or fully 8-bit character sets, you have a problem. The most obvious issue is if you have a look-up table indexed by characters. For instance, the character '\341' in ISO Latin 1 is SMALL LETTER A WITH ACUTE ACCENT. In the proper locale, isalpha('\341') will be true. But if you read '\341' from a file and store it in a plain char, isalpha(c) may look up character 225, or it may look up character -31. And the ctype table has no entry at offset -31, so your program will crash. (If you're lucky.) It is wise to use unsigned char everywhere you possibly can. This avoids all these problems. Unfortunately, the routines in <string.h> take plain char arguments, so you have to remember to cast them back and forth - or avoid the use of strxxx() functions, which is probably a good idea anyway. Another common mistake is to use either char or unsigned char to receive the result of getc() or related stdio functions. They may return EOF, which is outside the range of values representable by char. If you use char, some legal character value may be confused with EOF, such as '\377' (SMALL LETTER Y WITH UMLAUT, in Latin-1). The correct choice is int. A more subtle version of the same mistake might look like this: unsigned char pushback[NPUSHBACK]; int pbidx; #define unget(c) (assert(pbidx < NPUSHBACK), pushback[pbidx++] = (c)) #define get(c) (pbidx ? pushback[--pbidx] : getchar()) ... unget(EOF); which will mysteriously turn a pushed-back EOF into a SMALL LETTER Y WITH UMLAUT. Other common pitfalls --------------------- o Expecting 'plain' char to be either sign or unsigned extending. o Shifting an item by a negative amount or by greater than or equal to the number of bits in a type (expecting shifts by 32 to be sensible has caused quite a number of bugs at least in the early days). o Expecting ints shifted right to be sign extended. o Modifying the same value twice within one sequence point. o Host vs. target floating point representation, including emitting NaNs and Infinities in a form that the assembler handles. o qsort being an unstable sort function (unstable in the sense that multiple items that sort the same may be sorted in different orders by different qsort functions). o Passing incorrect types to fprintf and friends. o Adding a function declaration for a module declared in another file to a .c file instead of to a .h file.