mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-23 22:05:02 +08:00
621fba999d
* verify.cc (state::NO_STACK): New constant. (state::is_unmerged_ret_state): Handle case where stacktop is NO_STACK. (state::merge): Handle NO_STACK merges. (handle_jsr_insn): Invalidate PC, and use special NO_STACK state for instruction following jsr. (stacktop, stackdepth): Removed unused variables. (pop_jump): Ignore case where all remaining states are skipped. From-SVN: r50526
3089 lines
78 KiB
C++
3089 lines
78 KiB
C++
// defineclass.cc - defining a class from .class format.
|
|
|
|
/* Copyright (C) 2001, 2002 Free Software Foundation
|
|
|
|
This file is part of libgcj.
|
|
|
|
This software is copyrighted work licensed under the terms of the
|
|
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
|
details. */
|
|
|
|
// Written by Tom Tromey <tromey@redhat.com>
|
|
|
|
// Define VERIFY_DEBUG to enable debugging output.
|
|
|
|
#include <config.h>
|
|
|
|
#include <jvm.h>
|
|
#include <gcj/cni.h>
|
|
#include <java-insns.h>
|
|
#include <java-interp.h>
|
|
|
|
#ifdef INTERPRETER
|
|
|
|
#include <java/lang/Class.h>
|
|
#include <java/lang/VerifyError.h>
|
|
#include <java/lang/Throwable.h>
|
|
#include <java/lang/reflect/Modifier.h>
|
|
#include <java/lang/StringBuffer.h>
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
#include <stdio.h>
|
|
#endif /* VERIFY_DEBUG */
|
|
|
|
|
|
static void debug_print (const char *fmt, ...)
|
|
__attribute__ ((format (printf, 1, 2)));
|
|
|
|
static inline void
|
|
debug_print (const char *fmt, ...)
|
|
{
|
|
#ifdef VERIFY_DEBUG
|
|
va_list ap;
|
|
va_start (ap, fmt);
|
|
vfprintf (stderr, fmt, ap);
|
|
va_end (ap);
|
|
#endif /* VERIFY_DEBUG */
|
|
}
|
|
|
|
class _Jv_BytecodeVerifier
|
|
{
|
|
private:
|
|
|
|
static const int FLAG_INSN_START = 1;
|
|
static const int FLAG_BRANCH_TARGET = 2;
|
|
|
|
struct state;
|
|
struct type;
|
|
struct subr_info;
|
|
struct subr_entry_info;
|
|
struct linked_utf8;
|
|
|
|
// The current PC.
|
|
int PC;
|
|
// The PC corresponding to the start of the current instruction.
|
|
int start_PC;
|
|
|
|
// The current state of the stack, locals, etc.
|
|
state *current_state;
|
|
|
|
// We store the state at branch targets, for merging. This holds
|
|
// such states.
|
|
state **states;
|
|
|
|
// We keep a linked list of all the PCs which we must reverify.
|
|
// The link is done using the PC values. This is the head of the
|
|
// list.
|
|
int next_verify_pc;
|
|
|
|
// We keep some flags for each instruction. The values are the
|
|
// FLAG_* constants defined above.
|
|
char *flags;
|
|
|
|
// We need to keep track of which instructions can call a given
|
|
// subroutine. FIXME: this is inefficient. We keep a linked list
|
|
// of all calling `jsr's at at each jsr target.
|
|
subr_info **jsr_ptrs;
|
|
|
|
// We keep a linked list of entries which map each `ret' instruction
|
|
// to its unique subroutine entry point. We expect that there won't
|
|
// be many `ret' instructions, so a linked list is ok.
|
|
subr_entry_info *entry_points;
|
|
|
|
// The bytecode itself.
|
|
unsigned char *bytecode;
|
|
// The exceptions.
|
|
_Jv_InterpException *exception;
|
|
|
|
// Defining class.
|
|
jclass current_class;
|
|
// This method.
|
|
_Jv_InterpMethod *current_method;
|
|
|
|
// A linked list of utf8 objects we allocate. This is really ugly,
|
|
// but without this our utf8 objects would be collected.
|
|
linked_utf8 *utf8_list;
|
|
|
|
struct linked_utf8
|
|
{
|
|
_Jv_Utf8Const *val;
|
|
linked_utf8 *next;
|
|
};
|
|
|
|
_Jv_Utf8Const *make_utf8_const (char *s, int len)
|
|
{
|
|
_Jv_Utf8Const *val = _Jv_makeUtf8Const (s, len);
|
|
_Jv_Utf8Const *r = (_Jv_Utf8Const *) _Jv_Malloc (sizeof (_Jv_Utf8Const)
|
|
+ val->length
|
|
+ 1);
|
|
r->length = val->length;
|
|
r->hash = val->hash;
|
|
memcpy (r->data, val->data, val->length + 1);
|
|
|
|
linked_utf8 *lu = (linked_utf8 *) _Jv_Malloc (sizeof (linked_utf8));
|
|
lu->val = r;
|
|
lu->next = utf8_list;
|
|
utf8_list = lu;
|
|
|
|
return r;
|
|
}
|
|
|
|
// This enum holds a list of tags for all the different types we
|
|
// need to handle. Reference types are treated specially by the
|
|
// type class.
|
|
enum type_val
|
|
{
|
|
void_type,
|
|
|
|
// The values for primitive types are chosen to correspond to values
|
|
// specified to newarray.
|
|
boolean_type = 4,
|
|
char_type = 5,
|
|
float_type = 6,
|
|
double_type = 7,
|
|
byte_type = 8,
|
|
short_type = 9,
|
|
int_type = 10,
|
|
long_type = 11,
|
|
|
|
// Used when overwriting second word of a double or long in the
|
|
// local variables. Also used after merging local variable states
|
|
// to indicate an unusable value.
|
|
unsuitable_type,
|
|
return_address_type,
|
|
continuation_type,
|
|
|
|
// There is an obscure special case which requires us to note when
|
|
// a local variable has not been used by a subroutine. See
|
|
// push_jump_merge for more information.
|
|
unused_by_subroutine_type,
|
|
|
|
// Everything after `reference_type' must be a reference type.
|
|
reference_type,
|
|
null_type,
|
|
unresolved_reference_type,
|
|
uninitialized_reference_type,
|
|
uninitialized_unresolved_reference_type
|
|
};
|
|
|
|
// Return the type_val corresponding to a primitive signature
|
|
// character. For instance `I' returns `int.class'.
|
|
type_val get_type_val_for_signature (jchar sig)
|
|
{
|
|
type_val rt;
|
|
switch (sig)
|
|
{
|
|
case 'Z':
|
|
rt = boolean_type;
|
|
break;
|
|
case 'B':
|
|
rt = byte_type;
|
|
break;
|
|
case 'C':
|
|
rt = char_type;
|
|
break;
|
|
case 'S':
|
|
rt = short_type;
|
|
break;
|
|
case 'I':
|
|
rt = int_type;
|
|
break;
|
|
case 'J':
|
|
rt = long_type;
|
|
break;
|
|
case 'F':
|
|
rt = float_type;
|
|
break;
|
|
case 'D':
|
|
rt = double_type;
|
|
break;
|
|
case 'V':
|
|
rt = void_type;
|
|
break;
|
|
default:
|
|
verify_fail ("invalid signature");
|
|
}
|
|
return rt;
|
|
}
|
|
|
|
// Return the type_val corresponding to a primitive class.
|
|
type_val get_type_val_for_signature (jclass k)
|
|
{
|
|
return get_type_val_for_signature ((jchar) k->method_count);
|
|
}
|
|
|
|
// This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
|
|
// TARGET haven't been prepared.
|
|
static bool is_assignable_from_slow (jclass target, jclass source)
|
|
{
|
|
// This will terminate when SOURCE==Object.
|
|
while (true)
|
|
{
|
|
if (source == target)
|
|
return true;
|
|
|
|
if (target->isPrimitive () || source->isPrimitive ())
|
|
return false;
|
|
|
|
if (target->isArray ())
|
|
{
|
|
if (! source->isArray ())
|
|
return false;
|
|
target = target->getComponentType ();
|
|
source = source->getComponentType ();
|
|
}
|
|
else if (target->isInterface ())
|
|
{
|
|
for (int i = 0; i < source->interface_count; ++i)
|
|
{
|
|
// We use a recursive call because we also need to
|
|
// check superinterfaces.
|
|
if (is_assignable_from_slow (target, source->interfaces[i]))
|
|
return true;
|
|
}
|
|
source = source->getSuperclass ();
|
|
if (source == NULL)
|
|
return false;
|
|
}
|
|
// We must do this check before we check to see if SOURCE is
|
|
// an interface. This way we know that any interface is
|
|
// assignable to an Object.
|
|
else if (target == &java::lang::Object::class$)
|
|
return true;
|
|
else if (source->isInterface ())
|
|
{
|
|
for (int i = 0; i < target->interface_count; ++i)
|
|
{
|
|
// We use a recursive call because we also need to
|
|
// check superinterfaces.
|
|
if (is_assignable_from_slow (target->interfaces[i], source))
|
|
return true;
|
|
}
|
|
target = target->getSuperclass ();
|
|
if (target == NULL)
|
|
return false;
|
|
}
|
|
else if (source == &java::lang::Object::class$)
|
|
return false;
|
|
else
|
|
source = source->getSuperclass ();
|
|
}
|
|
}
|
|
|
|
// This is used to keep track of which `jsr's correspond to a given
|
|
// jsr target.
|
|
struct subr_info
|
|
{
|
|
// PC of the instruction just after the jsr.
|
|
int pc;
|
|
// Link.
|
|
subr_info *next;
|
|
};
|
|
|
|
// This is used to keep track of which subroutine entry point
|
|
// corresponds to which `ret' instruction.
|
|
struct subr_entry_info
|
|
{
|
|
// PC of the subroutine entry point.
|
|
int pc;
|
|
// PC of the `ret' instruction.
|
|
int ret_pc;
|
|
// Link.
|
|
subr_entry_info *next;
|
|
};
|
|
|
|
// The `type' class is used to represent a single type in the
|
|
// verifier.
|
|
struct type
|
|
{
|
|
// The type.
|
|
type_val key;
|
|
// Some associated data.
|
|
union
|
|
{
|
|
// For a resolved reference type, this is a pointer to the class.
|
|
jclass klass;
|
|
// For other reference types, this it the name of the class.
|
|
_Jv_Utf8Const *name;
|
|
} data;
|
|
// This is used when constructing a new object. It is the PC of the
|
|
// `new' instruction which created the object. We use the special
|
|
// value -2 to mean that this is uninitialized, and the special
|
|
// value -1 for the case where the current method is itself the
|
|
// <init> method.
|
|
int pc;
|
|
|
|
static const int UNINIT = -2;
|
|
static const int SELF = -1;
|
|
|
|
// Basic constructor.
|
|
type ()
|
|
{
|
|
key = unsuitable_type;
|
|
data.klass = NULL;
|
|
pc = UNINIT;
|
|
}
|
|
|
|
// Make a new instance given the type tag. We assume a generic
|
|
// `reference_type' means Object.
|
|
type (type_val k)
|
|
{
|
|
key = k;
|
|
data.klass = NULL;
|
|
if (key == reference_type)
|
|
data.klass = &java::lang::Object::class$;
|
|
pc = UNINIT;
|
|
}
|
|
|
|
// Make a new instance given a class.
|
|
type (jclass klass)
|
|
{
|
|
key = reference_type;
|
|
data.klass = klass;
|
|
pc = UNINIT;
|
|
}
|
|
|
|
// Make a new instance given the name of a class.
|
|
type (_Jv_Utf8Const *n)
|
|
{
|
|
key = unresolved_reference_type;
|
|
data.name = n;
|
|
pc = UNINIT;
|
|
}
|
|
|
|
// Copy constructor.
|
|
type (const type &t)
|
|
{
|
|
key = t.key;
|
|
data = t.data;
|
|
pc = t.pc;
|
|
}
|
|
|
|
// These operators are required because libgcj can't link in
|
|
// -lstdc++.
|
|
void *operator new[] (size_t bytes)
|
|
{
|
|
return _Jv_Malloc (bytes);
|
|
}
|
|
|
|
void operator delete[] (void *mem)
|
|
{
|
|
_Jv_Free (mem);
|
|
}
|
|
|
|
type& operator= (type_val k)
|
|
{
|
|
key = k;
|
|
data.klass = NULL;
|
|
pc = UNINIT;
|
|
return *this;
|
|
}
|
|
|
|
type& operator= (const type& t)
|
|
{
|
|
key = t.key;
|
|
data = t.data;
|
|
pc = t.pc;
|
|
return *this;
|
|
}
|
|
|
|
// Promote a numeric type.
|
|
type &promote ()
|
|
{
|
|
if (key == boolean_type || key == char_type
|
|
|| key == byte_type || key == short_type)
|
|
key = int_type;
|
|
return *this;
|
|
}
|
|
|
|
// If *THIS is an unresolved reference type, resolve it.
|
|
void resolve (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (key != unresolved_reference_type
|
|
&& key != uninitialized_unresolved_reference_type)
|
|
return;
|
|
|
|
using namespace java::lang;
|
|
java::lang::ClassLoader *loader
|
|
= verifier->current_class->getClassLoader();
|
|
// We might see either kind of name. Sigh.
|
|
if (data.name->data[0] == 'L'
|
|
&& data.name->data[data.name->length - 1] == ';')
|
|
data.klass = _Jv_FindClassFromSignature (data.name->data, loader);
|
|
else
|
|
data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
|
|
false, loader);
|
|
key = (key == unresolved_reference_type
|
|
? reference_type
|
|
: uninitialized_reference_type);
|
|
}
|
|
|
|
// Mark this type as the uninitialized result of `new'.
|
|
void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (key == reference_type)
|
|
key = uninitialized_reference_type;
|
|
else if (key == unresolved_reference_type)
|
|
key = uninitialized_unresolved_reference_type;
|
|
else
|
|
verifier->verify_fail ("internal error in type::uninitialized");
|
|
pc = npc;
|
|
}
|
|
|
|
// Mark this type as now initialized.
|
|
void set_initialized (int npc)
|
|
{
|
|
if (npc != UNINIT && pc == npc
|
|
&& (key == uninitialized_reference_type
|
|
|| key == uninitialized_unresolved_reference_type))
|
|
{
|
|
key = (key == uninitialized_reference_type
|
|
? reference_type
|
|
: unresolved_reference_type);
|
|
pc = UNINIT;
|
|
}
|
|
}
|
|
|
|
|
|
// Return true if an object of type K can be assigned to a variable
|
|
// of type *THIS. Handle various special cases too. Might modify
|
|
// *THIS or K. Note however that this does not perform numeric
|
|
// promotion.
|
|
bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// Any type is compatible with the unsuitable type.
|
|
if (key == unsuitable_type)
|
|
return true;
|
|
|
|
if (key < reference_type || k.key < reference_type)
|
|
return key == k.key;
|
|
|
|
// The `null' type is convertible to any reference type.
|
|
// FIXME: is this correct for THIS?
|
|
if (key == null_type || k.key == null_type)
|
|
return true;
|
|
|
|
// Any reference type is convertible to Object. This is a special
|
|
// case so we don't need to unnecessarily resolve a class.
|
|
if (key == reference_type
|
|
&& data.klass == &java::lang::Object::class$)
|
|
return true;
|
|
|
|
// An initialized type and an uninitialized type are not
|
|
// compatible.
|
|
if (isinitialized () != k.isinitialized ())
|
|
return false;
|
|
|
|
// Two uninitialized objects are compatible if either:
|
|
// * The PCs are identical, or
|
|
// * One PC is UNINIT.
|
|
if (! isinitialized ())
|
|
{
|
|
if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
|
|
return false;
|
|
}
|
|
|
|
// Two unresolved types are equal if their names are the same.
|
|
if (! isresolved ()
|
|
&& ! k.isresolved ()
|
|
&& _Jv_equalUtf8Consts (data.name, k.data.name))
|
|
return true;
|
|
|
|
// We must resolve both types and check assignability.
|
|
resolve (verifier);
|
|
k.resolve (verifier);
|
|
return is_assignable_from_slow (data.klass, k.data.klass);
|
|
}
|
|
|
|
bool isvoid () const
|
|
{
|
|
return key == void_type;
|
|
}
|
|
|
|
bool iswide () const
|
|
{
|
|
return key == long_type || key == double_type;
|
|
}
|
|
|
|
// Return number of stack or local variable slots taken by this
|
|
// type.
|
|
int depth () const
|
|
{
|
|
return iswide () ? 2 : 1;
|
|
}
|
|
|
|
bool isarray () const
|
|
{
|
|
// We treat null_type as not an array. This is ok based on the
|
|
// current uses of this method.
|
|
if (key == reference_type)
|
|
return data.klass->isArray ();
|
|
else if (key == unresolved_reference_type)
|
|
return data.name->data[0] == '[';
|
|
return false;
|
|
}
|
|
|
|
bool isnull () const
|
|
{
|
|
return key == null_type;
|
|
}
|
|
|
|
bool isinterface (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
resolve (verifier);
|
|
if (key != reference_type)
|
|
return false;
|
|
return data.klass->isInterface ();
|
|
}
|
|
|
|
bool isabstract (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
resolve (verifier);
|
|
if (key != reference_type)
|
|
return false;
|
|
using namespace java::lang::reflect;
|
|
return Modifier::isAbstract (data.klass->getModifiers ());
|
|
}
|
|
|
|
// Return the element type of an array.
|
|
type element_type (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// FIXME: maybe should do string manipulation here.
|
|
resolve (verifier);
|
|
if (key != reference_type)
|
|
verifier->verify_fail ("programmer error in type::element_type()", -1);
|
|
|
|
jclass k = data.klass->getComponentType ();
|
|
if (k->isPrimitive ())
|
|
return type (verifier->get_type_val_for_signature (k));
|
|
return type (k);
|
|
}
|
|
|
|
// Return the array type corresponding to an initialized
|
|
// reference. We could expand this to work for other kinds of
|
|
// types, but currently we don't need to.
|
|
type to_array (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// Resolving isn't ideal, because it might force us to load
|
|
// another class, but it's easy. FIXME?
|
|
if (key == unresolved_reference_type)
|
|
resolve (verifier);
|
|
|
|
if (key == reference_type)
|
|
return type (_Jv_GetArrayClass (data.klass,
|
|
data.klass->getClassLoader ()));
|
|
else
|
|
verifier->verify_fail ("internal error in type::to_array()");
|
|
}
|
|
|
|
bool isreference () const
|
|
{
|
|
return key >= reference_type;
|
|
}
|
|
|
|
int get_pc () const
|
|
{
|
|
return pc;
|
|
}
|
|
|
|
bool isinitialized () const
|
|
{
|
|
return (key == reference_type
|
|
|| key == null_type
|
|
|| key == unresolved_reference_type);
|
|
}
|
|
|
|
bool isresolved () const
|
|
{
|
|
return (key == reference_type
|
|
|| key == null_type
|
|
|| key == uninitialized_reference_type);
|
|
}
|
|
|
|
void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// The way this is written, we don't need to check isarray().
|
|
if (key == reference_type)
|
|
{
|
|
jclass k = data.klass;
|
|
while (k->isArray () && ndims > 0)
|
|
{
|
|
k = k->getComponentType ();
|
|
--ndims;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We know KEY == unresolved_reference_type.
|
|
char *p = data.name->data;
|
|
while (*p++ == '[' && ndims-- > 0)
|
|
;
|
|
}
|
|
|
|
if (ndims > 0)
|
|
verifier->verify_fail ("array type has fewer dimensions than required");
|
|
}
|
|
|
|
// Merge OLD_TYPE into this. On error throw exception.
|
|
bool merge (type& old_type, bool local_semantics,
|
|
_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
bool changed = false;
|
|
bool refo = old_type.isreference ();
|
|
bool refn = isreference ();
|
|
if (refo && refn)
|
|
{
|
|
if (old_type.key == null_type)
|
|
;
|
|
else if (key == null_type)
|
|
{
|
|
*this = old_type;
|
|
changed = true;
|
|
}
|
|
else if (isinitialized () != old_type.isinitialized ())
|
|
verifier->verify_fail ("merging initialized and uninitialized types");
|
|
else
|
|
{
|
|
if (! isinitialized ())
|
|
{
|
|
if (pc == UNINIT)
|
|
pc = old_type.pc;
|
|
else if (old_type.pc == UNINIT)
|
|
;
|
|
else if (pc != old_type.pc)
|
|
verifier->verify_fail ("merging different uninitialized types");
|
|
}
|
|
|
|
if (! isresolved ()
|
|
&& ! old_type.isresolved ()
|
|
&& _Jv_equalUtf8Consts (data.name, old_type.data.name))
|
|
{
|
|
// Types are identical.
|
|
}
|
|
else
|
|
{
|
|
resolve (verifier);
|
|
old_type.resolve (verifier);
|
|
|
|
jclass k = data.klass;
|
|
jclass oldk = old_type.data.klass;
|
|
|
|
int arraycount = 0;
|
|
while (k->isArray () && oldk->isArray ())
|
|
{
|
|
++arraycount;
|
|
k = k->getComponentType ();
|
|
oldk = oldk->getComponentType ();
|
|
}
|
|
|
|
// Ordinarily this terminates when we hit Object...
|
|
while (k != NULL)
|
|
{
|
|
if (is_assignable_from_slow (k, oldk))
|
|
break;
|
|
k = k->getSuperclass ();
|
|
changed = true;
|
|
}
|
|
// ... but K could have been an interface, in which
|
|
// case we'll end up here. We just convert this
|
|
// into Object.
|
|
if (k == NULL)
|
|
k = &java::lang::Object::class$;
|
|
|
|
if (changed)
|
|
{
|
|
while (arraycount > 0)
|
|
{
|
|
java::lang::ClassLoader *loader
|
|
= verifier->current_class->getClassLoader();
|
|
k = _Jv_GetArrayClass (k, loader);
|
|
--arraycount;
|
|
}
|
|
data.klass = k;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (refo || refn || key != old_type.key)
|
|
{
|
|
if (local_semantics)
|
|
{
|
|
// If we're merging into an "unused" slot, then we
|
|
// simply accept whatever we're merging from.
|
|
if (key == unused_by_subroutine_type)
|
|
{
|
|
*this = old_type;
|
|
changed = true;
|
|
}
|
|
else if (old_type.key == unused_by_subroutine_type)
|
|
{
|
|
// Do nothing.
|
|
}
|
|
// If we already have an `unsuitable' type, then we
|
|
// don't need to change again.
|
|
else if (key != unsuitable_type)
|
|
{
|
|
key = unsuitable_type;
|
|
changed = true;
|
|
}
|
|
}
|
|
else
|
|
verifier->verify_fail ("unmergeable type");
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
void print (void) const
|
|
{
|
|
char c = '?';
|
|
switch (key)
|
|
{
|
|
case boolean_type: c = 'Z'; break;
|
|
case byte_type: c = 'B'; break;
|
|
case char_type: c = 'C'; break;
|
|
case short_type: c = 'S'; break;
|
|
case int_type: c = 'I'; break;
|
|
case long_type: c = 'J'; break;
|
|
case float_type: c = 'F'; break;
|
|
case double_type: c = 'D'; break;
|
|
case void_type: c = 'V'; break;
|
|
case unsuitable_type: c = '-'; break;
|
|
case return_address_type: c = 'r'; break;
|
|
case continuation_type: c = '+'; break;
|
|
case unused_by_subroutine_type: c = '_'; break;
|
|
case reference_type: c = 'L'; break;
|
|
case null_type: c = '@'; break;
|
|
case unresolved_reference_type: c = 'l'; break;
|
|
case uninitialized_reference_type: c = 'U'; break;
|
|
case uninitialized_unresolved_reference_type: c = 'u'; break;
|
|
}
|
|
debug_print ("%c", c);
|
|
}
|
|
#endif /* VERIFY_DEBUG */
|
|
};
|
|
|
|
// This class holds all the state information we need for a given
|
|
// location.
|
|
struct state
|
|
{
|
|
// The current top of the stack, in terms of slots.
|
|
int stacktop;
|
|
// The current depth of the stack. This will be larger than
|
|
// STACKTOP when wide types are on the stack.
|
|
int stackdepth;
|
|
// The stack.
|
|
type *stack;
|
|
// The local variables.
|
|
type *locals;
|
|
// This is used in subroutines to keep track of which local
|
|
// variables have been accessed.
|
|
bool *local_changed;
|
|
// If not 0, then we are in a subroutine. The value is the PC of
|
|
// the subroutine's entry point. We can use 0 as an exceptional
|
|
// value because PC=0 can never be a subroutine.
|
|
int subroutine;
|
|
// This is used to keep a linked list of all the states which
|
|
// require re-verification. We use the PC to keep track.
|
|
int next;
|
|
// We keep track of the type of `this' specially. This is used to
|
|
// ensure that an instance initializer invokes another initializer
|
|
// on `this' before returning. We must keep track of this
|
|
// specially because otherwise we might be confused by code which
|
|
// assigns to locals[0] (overwriting `this') and then returns
|
|
// without really initializing.
|
|
type this_type;
|
|
|
|
// INVALID marks a state which is not on the linked list of states
|
|
// requiring reverification.
|
|
static const int INVALID = -1;
|
|
// NO_NEXT marks the state at the end of the reverification list.
|
|
static const int NO_NEXT = -2;
|
|
|
|
// This is used to mark the stack depth at the instruction just
|
|
// after a `jsr' when we haven't yet processed the corresponding
|
|
// `ret'. See handle_jsr_insn for more information.
|
|
static const int NO_STACK = -1;
|
|
|
|
state ()
|
|
: this_type ()
|
|
{
|
|
stack = NULL;
|
|
locals = NULL;
|
|
local_changed = NULL;
|
|
}
|
|
|
|
state (int max_stack, int max_locals)
|
|
: this_type ()
|
|
{
|
|
stacktop = 0;
|
|
stackdepth = 0;
|
|
stack = new type[max_stack];
|
|
for (int i = 0; i < max_stack; ++i)
|
|
stack[i] = unsuitable_type;
|
|
locals = new type[max_locals];
|
|
local_changed = (bool *) _Jv_Malloc (sizeof (bool) * max_locals);
|
|
for (int i = 0; i < max_locals; ++i)
|
|
{
|
|
locals[i] = unsuitable_type;
|
|
local_changed[i] = false;
|
|
}
|
|
next = INVALID;
|
|
subroutine = 0;
|
|
}
|
|
|
|
state (const state *orig, int max_stack, int max_locals,
|
|
bool ret_semantics = false)
|
|
{
|
|
stack = new type[max_stack];
|
|
locals = new type[max_locals];
|
|
local_changed = (bool *) _Jv_Malloc (sizeof (bool) * max_locals);
|
|
copy (orig, max_stack, max_locals, ret_semantics);
|
|
next = INVALID;
|
|
}
|
|
|
|
~state ()
|
|
{
|
|
if (stack)
|
|
delete[] stack;
|
|
if (locals)
|
|
delete[] locals;
|
|
if (local_changed)
|
|
_Jv_Free (local_changed);
|
|
}
|
|
|
|
void *operator new[] (size_t bytes)
|
|
{
|
|
return _Jv_Malloc (bytes);
|
|
}
|
|
|
|
void operator delete[] (void *mem)
|
|
{
|
|
_Jv_Free (mem);
|
|
}
|
|
|
|
void *operator new (size_t bytes)
|
|
{
|
|
return _Jv_Malloc (bytes);
|
|
}
|
|
|
|
void operator delete (void *mem)
|
|
{
|
|
_Jv_Free (mem);
|
|
}
|
|
|
|
void copy (const state *copy, int max_stack, int max_locals,
|
|
bool ret_semantics = false)
|
|
{
|
|
stacktop = copy->stacktop;
|
|
stackdepth = copy->stackdepth;
|
|
subroutine = copy->subroutine;
|
|
for (int i = 0; i < max_stack; ++i)
|
|
stack[i] = copy->stack[i];
|
|
for (int i = 0; i < max_locals; ++i)
|
|
{
|
|
// See push_jump_merge to understand this case.
|
|
if (ret_semantics)
|
|
locals[i] = type (copy->local_changed[i]
|
|
? unsuitable_type
|
|
: unused_by_subroutine_type);
|
|
else
|
|
locals[i] = copy->locals[i];
|
|
local_changed[i] = copy->local_changed[i];
|
|
}
|
|
this_type = copy->this_type;
|
|
// Don't modify `next'.
|
|
}
|
|
|
|
// Modify this state to reflect entry to an exception handler.
|
|
void set_exception (type t, int max_stack)
|
|
{
|
|
stackdepth = 1;
|
|
stacktop = 1;
|
|
stack[0] = t;
|
|
for (int i = stacktop; i < max_stack; ++i)
|
|
stack[i] = unsuitable_type;
|
|
}
|
|
|
|
// Modify this state to reflect entry into a subroutine.
|
|
void enter_subroutine (int npc, int max_locals)
|
|
{
|
|
subroutine = npc;
|
|
// Mark all items as unchanged. Each subroutine needs to keep
|
|
// track of its `changed' state independently. In the case of
|
|
// nested subroutines, this information will be merged back into
|
|
// parent by the `ret'.
|
|
for (int i = 0; i < max_locals; ++i)
|
|
local_changed[i] = false;
|
|
}
|
|
|
|
// Merge STATE_OLD into this state. Destructively modifies this
|
|
// state. Returns true if the new state was in fact changed.
|
|
// Will throw an exception if the states are not mergeable.
|
|
bool merge (state *state_old, bool ret_semantics,
|
|
int max_locals, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
bool changed = false;
|
|
|
|
// Special handling for `this'. If one or the other is
|
|
// uninitialized, then the merge is uninitialized.
|
|
if (this_type.isinitialized ())
|
|
this_type = state_old->this_type;
|
|
|
|
// Merge subroutine states. Here we just keep track of what
|
|
// subroutine we think we're in. We only check for a merge
|
|
// (which is invalid) when we see a `ret'.
|
|
if (subroutine == state_old->subroutine)
|
|
{
|
|
// Nothing.
|
|
}
|
|
else if (subroutine == 0)
|
|
{
|
|
subroutine = state_old->subroutine;
|
|
changed = true;
|
|
}
|
|
else
|
|
{
|
|
// If the subroutines differ, indicate that the state
|
|
// changed. This is needed to detect when subroutines have
|
|
// merged.
|
|
changed = true;
|
|
}
|
|
|
|
// Merge stacks. Special handling for NO_STACK case.
|
|
if (state_old->stacktop == NO_STACK)
|
|
{
|
|
// Nothing to do in this case; we don't care about modifying
|
|
// the old state.
|
|
}
|
|
else if (stacktop == NO_STACK)
|
|
{
|
|
stacktop = state_old->stacktop;
|
|
stackdepth = state_old->stackdepth;
|
|
for (int i = 0; i < stacktop; ++i)
|
|
stack[i] = state_old->stack[i];
|
|
changed = true;
|
|
}
|
|
else if (state_old->stacktop != stacktop)
|
|
verifier->verify_fail ("stack sizes differ");
|
|
else
|
|
{
|
|
for (int i = 0; i < state_old->stacktop; ++i)
|
|
{
|
|
if (stack[i].merge (state_old->stack[i], false, verifier))
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
// Merge local variables.
|
|
for (int i = 0; i < max_locals; ++i)
|
|
{
|
|
// If we're not processing a `ret', then we merge every
|
|
// local variable. If we are processing a `ret', then we
|
|
// only merge locals which changed in the subroutine. When
|
|
// processing a `ret', STATE_OLD is the state at the point
|
|
// of the `ret', and THIS is the state just after the `jsr'.
|
|
if (! ret_semantics || state_old->local_changed[i])
|
|
{
|
|
if (locals[i].merge (state_old->locals[i], true, verifier))
|
|
{
|
|
// Note that we don't call `note_variable' here.
|
|
// This change doesn't represent a real change to a
|
|
// local, but rather a merge artifact. If we're in
|
|
// a subroutine which is called with two
|
|
// incompatible types in a slot that is unused by
|
|
// the subroutine, then we don't want to mark that
|
|
// variable as having been modified.
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
// If we're in a subroutine, we must compute the union of
|
|
// all the changed local variables.
|
|
if (state_old->local_changed[i])
|
|
note_variable (i);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
// Throw an exception if there is an uninitialized object on the
|
|
// stack or in a local variable. EXCEPTION_SEMANTICS controls
|
|
// whether we're using backwards-branch or exception-handing
|
|
// semantics.
|
|
void check_no_uninitialized_objects (int max_locals,
|
|
_Jv_BytecodeVerifier *verifier,
|
|
bool exception_semantics = false)
|
|
{
|
|
if (! exception_semantics)
|
|
{
|
|
for (int i = 0; i < stacktop; ++i)
|
|
if (stack[i].isreference () && ! stack[i].isinitialized ())
|
|
verifier->verify_fail ("uninitialized object on stack");
|
|
}
|
|
|
|
for (int i = 0; i < max_locals; ++i)
|
|
if (locals[i].isreference () && ! locals[i].isinitialized ())
|
|
verifier->verify_fail ("uninitialized object in local variable");
|
|
|
|
check_this_initialized (verifier);
|
|
}
|
|
|
|
// Ensure that `this' has been initialized.
|
|
void check_this_initialized (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (this_type.isreference () && ! this_type.isinitialized ())
|
|
verifier->verify_fail ("`this' is uninitialized");
|
|
}
|
|
|
|
// Set type of `this'.
|
|
void set_this_type (const type &k)
|
|
{
|
|
this_type = k;
|
|
}
|
|
|
|
// Note that a local variable was modified.
|
|
void note_variable (int index)
|
|
{
|
|
if (subroutine > 0)
|
|
local_changed[index] = true;
|
|
}
|
|
|
|
// Mark each `new'd object we know of that was allocated at PC as
|
|
// initialized.
|
|
void set_initialized (int pc, int max_locals)
|
|
{
|
|
for (int i = 0; i < stacktop; ++i)
|
|
stack[i].set_initialized (pc);
|
|
for (int i = 0; i < max_locals; ++i)
|
|
locals[i].set_initialized (pc);
|
|
this_type.set_initialized (pc);
|
|
}
|
|
|
|
// Return true if this state is the unmerged result of a `ret'.
|
|
bool is_unmerged_ret_state (int max_locals) const
|
|
{
|
|
if (stacktop == NO_STACK)
|
|
return true;
|
|
for (int i = 0; i < max_locals; ++i)
|
|
{
|
|
if (locals[i].key == unused_by_subroutine_type)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
void print (const char *leader, int pc,
|
|
int max_stack, int max_locals) const
|
|
{
|
|
debug_print ("%s [%4d]: [stack] ", leader, pc);
|
|
int i;
|
|
for (i = 0; i < stacktop; ++i)
|
|
stack[i].print ();
|
|
for (; i < max_stack; ++i)
|
|
debug_print (".");
|
|
debug_print (" [local] ");
|
|
for (i = 0; i < max_locals; ++i)
|
|
{
|
|
locals[i].print ();
|
|
debug_print (local_changed[i] ? "+" : " ");
|
|
}
|
|
if (subroutine == 0)
|
|
debug_print (" | None");
|
|
else
|
|
debug_print (" | %4d", subroutine);
|
|
debug_print (" | %p\n", this);
|
|
}
|
|
#else
|
|
inline void print (const char *, int, int, int) const
|
|
{
|
|
}
|
|
#endif /* VERIFY_DEBUG */
|
|
};
|
|
|
|
type pop_raw ()
|
|
{
|
|
if (current_state->stacktop <= 0)
|
|
verify_fail ("stack empty");
|
|
type r = current_state->stack[--current_state->stacktop];
|
|
current_state->stackdepth -= r.depth ();
|
|
if (current_state->stackdepth < 0)
|
|
verify_fail ("stack empty", start_PC);
|
|
return r;
|
|
}
|
|
|
|
type pop32 ()
|
|
{
|
|
type r = pop_raw ();
|
|
if (r.iswide ())
|
|
verify_fail ("narrow pop of wide type");
|
|
return r;
|
|
}
|
|
|
|
type pop64 ()
|
|
{
|
|
type r = pop_raw ();
|
|
if (! r.iswide ())
|
|
verify_fail ("wide pop of narrow type");
|
|
return r;
|
|
}
|
|
|
|
type pop_type (type match)
|
|
{
|
|
match.promote ();
|
|
type t = pop_raw ();
|
|
if (! match.compatible (t, this))
|
|
verify_fail ("incompatible type on stack");
|
|
return t;
|
|
}
|
|
|
|
// Pop a reference type or a return address.
|
|
type pop_ref_or_return ()
|
|
{
|
|
type t = pop_raw ();
|
|
if (! t.isreference () && t.key != return_address_type)
|
|
verify_fail ("expected reference or return address on stack");
|
|
return t;
|
|
}
|
|
|
|
void push_type (type t)
|
|
{
|
|
// If T is a numeric type like short, promote it to int.
|
|
t.promote ();
|
|
|
|
int depth = t.depth ();
|
|
if (current_state->stackdepth + depth > current_method->max_stack)
|
|
verify_fail ("stack overflow");
|
|
current_state->stack[current_state->stacktop++] = t;
|
|
current_state->stackdepth += depth;
|
|
}
|
|
|
|
void set_variable (int index, type t)
|
|
{
|
|
// If T is a numeric type like short, promote it to int.
|
|
t.promote ();
|
|
|
|
int depth = t.depth ();
|
|
if (index > current_method->max_locals - depth)
|
|
verify_fail ("invalid local variable");
|
|
current_state->locals[index] = t;
|
|
current_state->note_variable (index);
|
|
|
|
if (depth == 2)
|
|
{
|
|
current_state->locals[index + 1] = continuation_type;
|
|
current_state->note_variable (index + 1);
|
|
}
|
|
if (index > 0 && current_state->locals[index - 1].iswide ())
|
|
{
|
|
current_state->locals[index - 1] = unsuitable_type;
|
|
// There's no need to call note_variable here.
|
|
}
|
|
}
|
|
|
|
type get_variable (int index, type t)
|
|
{
|
|
int depth = t.depth ();
|
|
if (index > current_method->max_locals - depth)
|
|
verify_fail ("invalid local variable");
|
|
if (! t.compatible (current_state->locals[index], this))
|
|
verify_fail ("incompatible type in local variable");
|
|
if (depth == 2)
|
|
{
|
|
type t (continuation_type);
|
|
if (! current_state->locals[index + 1].compatible (t, this))
|
|
verify_fail ("invalid local variable");
|
|
}
|
|
return current_state->locals[index];
|
|
}
|
|
|
|
// Make sure ARRAY is an array type and that its elements are
|
|
// compatible with type ELEMENT. Returns the actual element type.
|
|
type require_array_type (type array, type element)
|
|
{
|
|
// An odd case. Here we just pretend that everything went ok. If
|
|
// the requested element type is some kind of reference, return
|
|
// the null type instead.
|
|
if (array.isnull ())
|
|
return element.isreference () ? type (null_type) : element;
|
|
|
|
if (! array.isarray ())
|
|
verify_fail ("array required");
|
|
|
|
type t = array.element_type (this);
|
|
if (! element.compatible (t, this))
|
|
{
|
|
// Special case for byte arrays, which must also be boolean
|
|
// arrays.
|
|
bool ok = true;
|
|
if (element.key == byte_type)
|
|
{
|
|
type e2 (boolean_type);
|
|
ok = e2.compatible (t, this);
|
|
}
|
|
if (! ok)
|
|
verify_fail ("incompatible array element type");
|
|
}
|
|
|
|
// Return T and not ELEMENT, because T might be specialized.
|
|
return t;
|
|
}
|
|
|
|
jint get_byte ()
|
|
{
|
|
if (PC >= current_method->code_length)
|
|
verify_fail ("premature end of bytecode");
|
|
return (jint) bytecode[PC++] & 0xff;
|
|
}
|
|
|
|
jint get_ushort ()
|
|
{
|
|
jint b1 = get_byte ();
|
|
jint b2 = get_byte ();
|
|
return (jint) ((b1 << 8) | b2) & 0xffff;
|
|
}
|
|
|
|
jint get_short ()
|
|
{
|
|
jint b1 = get_byte ();
|
|
jint b2 = get_byte ();
|
|
jshort s = (b1 << 8) | b2;
|
|
return (jint) s;
|
|
}
|
|
|
|
jint get_int ()
|
|
{
|
|
jint b1 = get_byte ();
|
|
jint b2 = get_byte ();
|
|
jint b3 = get_byte ();
|
|
jint b4 = get_byte ();
|
|
return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
|
|
}
|
|
|
|
int compute_jump (int offset)
|
|
{
|
|
int npc = start_PC + offset;
|
|
if (npc < 0 || npc >= current_method->code_length)
|
|
verify_fail ("branch out of range", start_PC);
|
|
return npc;
|
|
}
|
|
|
|
// Merge the indicated state into the state at the branch target and
|
|
// schedule a new PC if there is a change. If RET_SEMANTICS is
|
|
// true, then we are merging from a `ret' instruction into the
|
|
// instruction after a `jsr'. This is a special case with its own
|
|
// modified semantics.
|
|
void push_jump_merge (int npc, state *nstate, bool ret_semantics = false)
|
|
{
|
|
bool changed = true;
|
|
if (states[npc] == NULL)
|
|
{
|
|
// There's a weird situation here. If are examining the
|
|
// branch that results from a `ret', and there is not yet a
|
|
// state available at the branch target (the instruction just
|
|
// after the `jsr'), then we have to construct a special kind
|
|
// of state at that point for future merging. This special
|
|
// state has the type `unused_by_subroutine_type' in each slot
|
|
// which was not modified by the subroutine.
|
|
states[npc] = new state (nstate, current_method->max_stack,
|
|
current_method->max_locals, ret_semantics);
|
|
debug_print ("== New state in push_jump_merge\n");
|
|
states[npc]->print ("New", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
}
|
|
else
|
|
{
|
|
debug_print ("== Merge states in push_jump_merge\n");
|
|
nstate->print ("Frm", start_PC, current_method->max_stack,
|
|
current_method->max_locals);
|
|
states[npc]->print (" To", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
changed = states[npc]->merge (nstate, ret_semantics,
|
|
current_method->max_locals, this);
|
|
states[npc]->print ("New", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
}
|
|
|
|
if (changed && states[npc]->next == state::INVALID)
|
|
{
|
|
// The merge changed the state, and the new PC isn't yet on our
|
|
// list of PCs to re-verify.
|
|
states[npc]->next = next_verify_pc;
|
|
next_verify_pc = npc;
|
|
}
|
|
}
|
|
|
|
void push_jump (int offset)
|
|
{
|
|
int npc = compute_jump (offset);
|
|
if (npc < PC)
|
|
current_state->check_no_uninitialized_objects (current_method->max_locals, this);
|
|
push_jump_merge (npc, current_state);
|
|
}
|
|
|
|
void push_exception_jump (type t, int pc)
|
|
{
|
|
current_state->check_no_uninitialized_objects (current_method->max_locals,
|
|
this, true);
|
|
state s (current_state, current_method->max_stack,
|
|
current_method->max_locals);
|
|
if (current_method->max_stack < 1)
|
|
verify_fail ("stack overflow at exception handler");
|
|
s.set_exception (t, current_method->max_stack);
|
|
push_jump_merge (pc, &s);
|
|
}
|
|
|
|
int pop_jump ()
|
|
{
|
|
int *prev_loc = &next_verify_pc;
|
|
int npc = next_verify_pc;
|
|
bool skipped = false;
|
|
|
|
while (npc != state::NO_NEXT)
|
|
{
|
|
// If the next available PC is an unmerged `ret' state, then
|
|
// we aren't yet ready to handle it. That's because we would
|
|
// need all kind of special cases to do so. So instead we
|
|
// defer this jump until after we've processed it via a
|
|
// fall-through. This has to happen because the instruction
|
|
// before this one must be a `jsr'.
|
|
if (! states[npc]->is_unmerged_ret_state (current_method->max_locals))
|
|
{
|
|
*prev_loc = states[npc]->next;
|
|
states[npc]->next = state::INVALID;
|
|
return npc;
|
|
}
|
|
|
|
skipped = true;
|
|
prev_loc = &states[npc]->next;
|
|
npc = states[npc]->next;
|
|
}
|
|
|
|
// Note that we might have gotten here even when there are
|
|
// remaining states to process. That can happen if we find a
|
|
// `jsr' without a `ret'.
|
|
return state::NO_NEXT;
|
|
}
|
|
|
|
void invalidate_pc ()
|
|
{
|
|
PC = state::NO_NEXT;
|
|
}
|
|
|
|
void note_branch_target (int pc, bool is_jsr_target = false)
|
|
{
|
|
// Don't check `pc <= PC', because we've advanced PC after
|
|
// fetching the target and we haven't yet checked the next
|
|
// instruction.
|
|
if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
|
|
verify_fail ("branch not to instruction start", start_PC);
|
|
flags[pc] |= FLAG_BRANCH_TARGET;
|
|
if (is_jsr_target)
|
|
{
|
|
// Record the jsr which called this instruction.
|
|
subr_info *info = (subr_info *) _Jv_Malloc (sizeof (subr_info));
|
|
info->pc = PC;
|
|
info->next = jsr_ptrs[pc];
|
|
jsr_ptrs[pc] = info;
|
|
}
|
|
}
|
|
|
|
void skip_padding ()
|
|
{
|
|
while ((PC % 4) > 0)
|
|
if (get_byte () != 0)
|
|
verify_fail ("found nonzero padding byte");
|
|
}
|
|
|
|
// Return the subroutine to which the instruction at PC belongs.
|
|
int get_subroutine (int pc)
|
|
{
|
|
if (states[pc] == NULL)
|
|
return 0;
|
|
return states[pc]->subroutine;
|
|
}
|
|
|
|
// Do the work for a `ret' instruction. INDEX is the index into the
|
|
// local variables.
|
|
void handle_ret_insn (int index)
|
|
{
|
|
get_variable (index, return_address_type);
|
|
|
|
int csub = current_state->subroutine;
|
|
if (csub == 0)
|
|
verify_fail ("no subroutine");
|
|
|
|
// Check to see if we've merged subroutines.
|
|
subr_entry_info *entry;
|
|
for (entry = entry_points; entry != NULL; entry = entry->next)
|
|
{
|
|
if (entry->ret_pc == start_PC)
|
|
break;
|
|
}
|
|
if (entry == NULL)
|
|
{
|
|
entry = (subr_entry_info *) _Jv_Malloc (sizeof (subr_entry_info));
|
|
entry->pc = csub;
|
|
entry->ret_pc = start_PC;
|
|
entry->next = entry_points;
|
|
entry_points = entry;
|
|
}
|
|
else if (entry->pc != csub)
|
|
verify_fail ("subroutines merged");
|
|
|
|
for (subr_info *subr = jsr_ptrs[csub]; subr != NULL; subr = subr->next)
|
|
{
|
|
// Temporarily modify the current state so it looks like we're
|
|
// in the enclosing context.
|
|
current_state->subroutine = get_subroutine (subr->pc);
|
|
if (subr->pc < PC)
|
|
current_state->check_no_uninitialized_objects (current_method->max_locals, this);
|
|
push_jump_merge (subr->pc, current_state, true);
|
|
}
|
|
|
|
current_state->subroutine = csub;
|
|
invalidate_pc ();
|
|
}
|
|
|
|
// We're in the subroutine SUB, calling a subroutine at DEST. Make
|
|
// sure this subroutine isn't already on the stack.
|
|
void check_nonrecursive_call (int sub, int dest)
|
|
{
|
|
if (sub == 0)
|
|
return;
|
|
if (sub == dest)
|
|
verify_fail ("recursive subroutine call");
|
|
for (subr_info *info = jsr_ptrs[sub]; info != NULL; info = info->next)
|
|
check_nonrecursive_call (get_subroutine (info->pc), dest);
|
|
}
|
|
|
|
void handle_jsr_insn (int offset)
|
|
{
|
|
int npc = compute_jump (offset);
|
|
|
|
if (npc < PC)
|
|
current_state->check_no_uninitialized_objects (current_method->max_locals, this);
|
|
check_nonrecursive_call (current_state->subroutine, npc);
|
|
|
|
// Modify our state as appropriate for entry into a subroutine.
|
|
push_type (return_address_type);
|
|
push_jump_merge (npc, current_state);
|
|
// Clean up.
|
|
pop_type (return_address_type);
|
|
|
|
// On entry to the subroutine, the subroutine number must be set
|
|
// and the locals must be marked as cleared. We do this after
|
|
// merging state so that we don't erroneously "notice" a variable
|
|
// change merely on entry.
|
|
states[npc]->enter_subroutine (npc, current_method->max_locals);
|
|
|
|
// Indicate that we don't know the stack depth of the instruction
|
|
// following the `jsr'. The idea here is that we need to merge
|
|
// the local variable state across the jsr, but the subroutine
|
|
// might change the stack depth, so we can't make any assumptions
|
|
// about it. So we have yet another special case. We know that
|
|
// at this point PC points to the instruction after the jsr.
|
|
|
|
// FIXME: what if we have a jsr at the end of the code, but that
|
|
// jsr has no corresponding ret? Is this verifiable, or is it
|
|
// not? If it is then we need a special case here.
|
|
if (PC >= current_method->code_length)
|
|
verify_fail ("fell off end");
|
|
|
|
current_state->stacktop = state::NO_STACK;
|
|
push_jump_merge (PC, current_state);
|
|
invalidate_pc ();
|
|
}
|
|
|
|
jclass construct_primitive_array_type (type_val prim)
|
|
{
|
|
jclass k = NULL;
|
|
switch (prim)
|
|
{
|
|
case boolean_type:
|
|
k = JvPrimClass (boolean);
|
|
break;
|
|
case char_type:
|
|
k = JvPrimClass (char);
|
|
break;
|
|
case float_type:
|
|
k = JvPrimClass (float);
|
|
break;
|
|
case double_type:
|
|
k = JvPrimClass (double);
|
|
break;
|
|
case byte_type:
|
|
k = JvPrimClass (byte);
|
|
break;
|
|
case short_type:
|
|
k = JvPrimClass (short);
|
|
break;
|
|
case int_type:
|
|
k = JvPrimClass (int);
|
|
break;
|
|
case long_type:
|
|
k = JvPrimClass (long);
|
|
break;
|
|
default:
|
|
verify_fail ("unknown type in construct_primitive_array_type");
|
|
}
|
|
k = _Jv_GetArrayClass (k, NULL);
|
|
return k;
|
|
}
|
|
|
|
// This pass computes the location of branch targets and also
|
|
// instruction starts.
|
|
void branch_prepass ()
|
|
{
|
|
flags = (char *) _Jv_Malloc (current_method->code_length);
|
|
jsr_ptrs = (subr_info **) _Jv_Malloc (sizeof (subr_info *)
|
|
* current_method->code_length);
|
|
|
|
for (int i = 0; i < current_method->code_length; ++i)
|
|
{
|
|
flags[i] = 0;
|
|
jsr_ptrs[i] = NULL;
|
|
}
|
|
|
|
bool last_was_jsr = false;
|
|
|
|
PC = 0;
|
|
while (PC < current_method->code_length)
|
|
{
|
|
// Set `start_PC' early so that error checking can have the
|
|
// correct value.
|
|
start_PC = PC;
|
|
flags[PC] |= FLAG_INSN_START;
|
|
|
|
// If the previous instruction was a jsr, then the next
|
|
// instruction is a branch target -- the branch being the
|
|
// corresponding `ret'.
|
|
if (last_was_jsr)
|
|
note_branch_target (PC);
|
|
last_was_jsr = false;
|
|
|
|
java_opcode opcode = (java_opcode) bytecode[PC++];
|
|
switch (opcode)
|
|
{
|
|
case op_nop:
|
|
case op_aconst_null:
|
|
case op_iconst_m1:
|
|
case op_iconst_0:
|
|
case op_iconst_1:
|
|
case op_iconst_2:
|
|
case op_iconst_3:
|
|
case op_iconst_4:
|
|
case op_iconst_5:
|
|
case op_lconst_0:
|
|
case op_lconst_1:
|
|
case op_fconst_0:
|
|
case op_fconst_1:
|
|
case op_fconst_2:
|
|
case op_dconst_0:
|
|
case op_dconst_1:
|
|
case op_iload_0:
|
|
case op_iload_1:
|
|
case op_iload_2:
|
|
case op_iload_3:
|
|
case op_lload_0:
|
|
case op_lload_1:
|
|
case op_lload_2:
|
|
case op_lload_3:
|
|
case op_fload_0:
|
|
case op_fload_1:
|
|
case op_fload_2:
|
|
case op_fload_3:
|
|
case op_dload_0:
|
|
case op_dload_1:
|
|
case op_dload_2:
|
|
case op_dload_3:
|
|
case op_aload_0:
|
|
case op_aload_1:
|
|
case op_aload_2:
|
|
case op_aload_3:
|
|
case op_iaload:
|
|
case op_laload:
|
|
case op_faload:
|
|
case op_daload:
|
|
case op_aaload:
|
|
case op_baload:
|
|
case op_caload:
|
|
case op_saload:
|
|
case op_istore_0:
|
|
case op_istore_1:
|
|
case op_istore_2:
|
|
case op_istore_3:
|
|
case op_lstore_0:
|
|
case op_lstore_1:
|
|
case op_lstore_2:
|
|
case op_lstore_3:
|
|
case op_fstore_0:
|
|
case op_fstore_1:
|
|
case op_fstore_2:
|
|
case op_fstore_3:
|
|
case op_dstore_0:
|
|
case op_dstore_1:
|
|
case op_dstore_2:
|
|
case op_dstore_3:
|
|
case op_astore_0:
|
|
case op_astore_1:
|
|
case op_astore_2:
|
|
case op_astore_3:
|
|
case op_iastore:
|
|
case op_lastore:
|
|
case op_fastore:
|
|
case op_dastore:
|
|
case op_aastore:
|
|
case op_bastore:
|
|
case op_castore:
|
|
case op_sastore:
|
|
case op_pop:
|
|
case op_pop2:
|
|
case op_dup:
|
|
case op_dup_x1:
|
|
case op_dup_x2:
|
|
case op_dup2:
|
|
case op_dup2_x1:
|
|
case op_dup2_x2:
|
|
case op_swap:
|
|
case op_iadd:
|
|
case op_isub:
|
|
case op_imul:
|
|
case op_idiv:
|
|
case op_irem:
|
|
case op_ishl:
|
|
case op_ishr:
|
|
case op_iushr:
|
|
case op_iand:
|
|
case op_ior:
|
|
case op_ixor:
|
|
case op_ladd:
|
|
case op_lsub:
|
|
case op_lmul:
|
|
case op_ldiv:
|
|
case op_lrem:
|
|
case op_lshl:
|
|
case op_lshr:
|
|
case op_lushr:
|
|
case op_land:
|
|
case op_lor:
|
|
case op_lxor:
|
|
case op_fadd:
|
|
case op_fsub:
|
|
case op_fmul:
|
|
case op_fdiv:
|
|
case op_frem:
|
|
case op_dadd:
|
|
case op_dsub:
|
|
case op_dmul:
|
|
case op_ddiv:
|
|
case op_drem:
|
|
case op_ineg:
|
|
case op_i2b:
|
|
case op_i2c:
|
|
case op_i2s:
|
|
case op_lneg:
|
|
case op_fneg:
|
|
case op_dneg:
|
|
case op_i2l:
|
|
case op_i2f:
|
|
case op_i2d:
|
|
case op_l2i:
|
|
case op_l2f:
|
|
case op_l2d:
|
|
case op_f2i:
|
|
case op_f2l:
|
|
case op_f2d:
|
|
case op_d2i:
|
|
case op_d2l:
|
|
case op_d2f:
|
|
case op_lcmp:
|
|
case op_fcmpl:
|
|
case op_fcmpg:
|
|
case op_dcmpl:
|
|
case op_dcmpg:
|
|
case op_monitorenter:
|
|
case op_monitorexit:
|
|
case op_ireturn:
|
|
case op_lreturn:
|
|
case op_freturn:
|
|
case op_dreturn:
|
|
case op_areturn:
|
|
case op_return:
|
|
case op_athrow:
|
|
case op_arraylength:
|
|
break;
|
|
|
|
case op_bipush:
|
|
case op_ldc:
|
|
case op_iload:
|
|
case op_lload:
|
|
case op_fload:
|
|
case op_dload:
|
|
case op_aload:
|
|
case op_istore:
|
|
case op_lstore:
|
|
case op_fstore:
|
|
case op_dstore:
|
|
case op_astore:
|
|
case op_ret:
|
|
case op_newarray:
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_iinc:
|
|
case op_sipush:
|
|
case op_ldc_w:
|
|
case op_ldc2_w:
|
|
case op_getstatic:
|
|
case op_getfield:
|
|
case op_putfield:
|
|
case op_putstatic:
|
|
case op_new:
|
|
case op_anewarray:
|
|
case op_instanceof:
|
|
case op_checkcast:
|
|
case op_invokespecial:
|
|
case op_invokestatic:
|
|
case op_invokevirtual:
|
|
get_short ();
|
|
break;
|
|
|
|
case op_multianewarray:
|
|
get_short ();
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_jsr:
|
|
last_was_jsr = true;
|
|
// Fall through.
|
|
case op_ifeq:
|
|
case op_ifne:
|
|
case op_iflt:
|
|
case op_ifge:
|
|
case op_ifgt:
|
|
case op_ifle:
|
|
case op_if_icmpeq:
|
|
case op_if_icmpne:
|
|
case op_if_icmplt:
|
|
case op_if_icmpge:
|
|
case op_if_icmpgt:
|
|
case op_if_icmple:
|
|
case op_if_acmpeq:
|
|
case op_if_acmpne:
|
|
case op_ifnull:
|
|
case op_ifnonnull:
|
|
case op_goto:
|
|
note_branch_target (compute_jump (get_short ()), last_was_jsr);
|
|
break;
|
|
|
|
case op_tableswitch:
|
|
{
|
|
skip_padding ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
jint low = get_int ();
|
|
jint hi = get_int ();
|
|
if (low > hi)
|
|
verify_fail ("invalid tableswitch", start_PC);
|
|
for (int i = low; i <= hi; ++i)
|
|
note_branch_target (compute_jump (get_int ()));
|
|
}
|
|
break;
|
|
|
|
case op_lookupswitch:
|
|
{
|
|
skip_padding ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
int npairs = get_int ();
|
|
if (npairs < 0)
|
|
verify_fail ("too few pairs in lookupswitch", start_PC);
|
|
while (npairs-- > 0)
|
|
{
|
|
get_int ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case op_invokeinterface:
|
|
get_short ();
|
|
get_byte ();
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_wide:
|
|
{
|
|
opcode = (java_opcode) get_byte ();
|
|
get_short ();
|
|
if (opcode == op_iinc)
|
|
get_short ();
|
|
}
|
|
break;
|
|
|
|
case op_jsr_w:
|
|
last_was_jsr = true;
|
|
// Fall through.
|
|
case op_goto_w:
|
|
note_branch_target (compute_jump (get_int ()), last_was_jsr);
|
|
break;
|
|
|
|
default:
|
|
verify_fail ("unrecognized instruction in branch_prepass",
|
|
start_PC);
|
|
}
|
|
|
|
// See if any previous branch tried to branch to the middle of
|
|
// this instruction.
|
|
for (int pc = start_PC + 1; pc < PC; ++pc)
|
|
{
|
|
if ((flags[pc] & FLAG_BRANCH_TARGET))
|
|
verify_fail ("branch to middle of instruction", pc);
|
|
}
|
|
}
|
|
|
|
// Verify exception handlers.
|
|
for (int i = 0; i < current_method->exc_count; ++i)
|
|
{
|
|
if (! (flags[exception[i].handler_pc] & FLAG_INSN_START))
|
|
verify_fail ("exception handler not at instruction start",
|
|
exception[i].handler_pc);
|
|
if (! (flags[exception[i].start_pc] & FLAG_INSN_START))
|
|
verify_fail ("exception start not at instruction start",
|
|
exception[i].start_pc);
|
|
if (exception[i].end_pc != current_method->code_length
|
|
&& ! (flags[exception[i].end_pc] & FLAG_INSN_START))
|
|
verify_fail ("exception end not at instruction start",
|
|
exception[i].end_pc);
|
|
|
|
flags[exception[i].handler_pc] |= FLAG_BRANCH_TARGET;
|
|
}
|
|
}
|
|
|
|
void check_pool_index (int index)
|
|
{
|
|
if (index < 0 || index >= current_class->constants.size)
|
|
verify_fail ("constant pool index out of range", start_PC);
|
|
}
|
|
|
|
type check_class_constant (int index)
|
|
{
|
|
check_pool_index (index);
|
|
_Jv_Constants *pool = ¤t_class->constants;
|
|
if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
|
|
return type (pool->data[index].clazz);
|
|
else if (pool->tags[index] == JV_CONSTANT_Class)
|
|
return type (pool->data[index].utf8);
|
|
verify_fail ("expected class constant", start_PC);
|
|
}
|
|
|
|
type check_constant (int index)
|
|
{
|
|
check_pool_index (index);
|
|
_Jv_Constants *pool = ¤t_class->constants;
|
|
if (pool->tags[index] == JV_CONSTANT_ResolvedString
|
|
|| pool->tags[index] == JV_CONSTANT_String)
|
|
return type (&java::lang::String::class$);
|
|
else if (pool->tags[index] == JV_CONSTANT_Integer)
|
|
return type (int_type);
|
|
else if (pool->tags[index] == JV_CONSTANT_Float)
|
|
return type (float_type);
|
|
verify_fail ("String, int, or float constant expected", start_PC);
|
|
}
|
|
|
|
type check_wide_constant (int index)
|
|
{
|
|
check_pool_index (index);
|
|
_Jv_Constants *pool = ¤t_class->constants;
|
|
if (pool->tags[index] == JV_CONSTANT_Long)
|
|
return type (long_type);
|
|
else if (pool->tags[index] == JV_CONSTANT_Double)
|
|
return type (double_type);
|
|
verify_fail ("long or double constant expected", start_PC);
|
|
}
|
|
|
|
// Helper for both field and method. These are laid out the same in
|
|
// the constant pool.
|
|
type handle_field_or_method (int index, int expected,
|
|
_Jv_Utf8Const **name,
|
|
_Jv_Utf8Const **fmtype)
|
|
{
|
|
check_pool_index (index);
|
|
_Jv_Constants *pool = ¤t_class->constants;
|
|
if (pool->tags[index] != expected)
|
|
verify_fail ("didn't see expected constant", start_PC);
|
|
// Once we know we have a Fieldref or Methodref we assume that it
|
|
// is correctly laid out in the constant pool. I think the code
|
|
// in defineclass.cc guarantees this.
|
|
_Jv_ushort class_index, name_and_type_index;
|
|
_Jv_loadIndexes (&pool->data[index],
|
|
class_index,
|
|
name_and_type_index);
|
|
_Jv_ushort name_index, desc_index;
|
|
_Jv_loadIndexes (&pool->data[name_and_type_index],
|
|
name_index, desc_index);
|
|
|
|
*name = pool->data[name_index].utf8;
|
|
*fmtype = pool->data[desc_index].utf8;
|
|
|
|
return check_class_constant (class_index);
|
|
}
|
|
|
|
// Return field's type, compute class' type if requested.
|
|
type check_field_constant (int index, type *class_type = NULL)
|
|
{
|
|
_Jv_Utf8Const *name, *field_type;
|
|
type ct = handle_field_or_method (index,
|
|
JV_CONSTANT_Fieldref,
|
|
&name, &field_type);
|
|
if (class_type)
|
|
*class_type = ct;
|
|
if (field_type->data[0] == '[' || field_type->data[0] == 'L')
|
|
return type (field_type);
|
|
return get_type_val_for_signature (field_type->data[0]);
|
|
}
|
|
|
|
type check_method_constant (int index, bool is_interface,
|
|
_Jv_Utf8Const **method_name,
|
|
_Jv_Utf8Const **method_signature)
|
|
{
|
|
return handle_field_or_method (index,
|
|
(is_interface
|
|
? JV_CONSTANT_InterfaceMethodref
|
|
: JV_CONSTANT_Methodref),
|
|
method_name, method_signature);
|
|
}
|
|
|
|
type get_one_type (char *&p)
|
|
{
|
|
char *start = p;
|
|
|
|
int arraycount = 0;
|
|
while (*p == '[')
|
|
{
|
|
++arraycount;
|
|
++p;
|
|
}
|
|
|
|
char v = *p++;
|
|
|
|
if (v == 'L')
|
|
{
|
|
while (*p != ';')
|
|
++p;
|
|
++p;
|
|
_Jv_Utf8Const *name = make_utf8_const (start, p - start);
|
|
return type (name);
|
|
}
|
|
|
|
// Casting to jchar here is ok since we are looking at an ASCII
|
|
// character.
|
|
type_val rt = get_type_val_for_signature (jchar (v));
|
|
|
|
if (arraycount == 0)
|
|
{
|
|
// Callers of this function eventually push their arguments on
|
|
// the stack. So, promote them here.
|
|
return type (rt).promote ();
|
|
}
|
|
|
|
jclass k = construct_primitive_array_type (rt);
|
|
while (--arraycount > 0)
|
|
k = _Jv_GetArrayClass (k, NULL);
|
|
return type (k);
|
|
}
|
|
|
|
void compute_argument_types (_Jv_Utf8Const *signature,
|
|
type *types)
|
|
{
|
|
char *p = signature->data;
|
|
// Skip `('.
|
|
++p;
|
|
|
|
int i = 0;
|
|
while (*p != ')')
|
|
types[i++] = get_one_type (p);
|
|
}
|
|
|
|
type compute_return_type (_Jv_Utf8Const *signature)
|
|
{
|
|
char *p = signature->data;
|
|
while (*p != ')')
|
|
++p;
|
|
++p;
|
|
return get_one_type (p);
|
|
}
|
|
|
|
void check_return_type (type onstack)
|
|
{
|
|
type rt = compute_return_type (current_method->self->signature);
|
|
if (! rt.compatible (onstack, this))
|
|
verify_fail ("incompatible return type");
|
|
}
|
|
|
|
// Initialize the stack for the new method. Returns true if this
|
|
// method is an instance initializer.
|
|
bool initialize_stack ()
|
|
{
|
|
int var = 0;
|
|
bool is_init = false;
|
|
|
|
using namespace java::lang::reflect;
|
|
if (! Modifier::isStatic (current_method->self->accflags))
|
|
{
|
|
type kurr (current_class);
|
|
if (_Jv_equalUtf8Consts (current_method->self->name, gcj::init_name))
|
|
{
|
|
kurr.set_uninitialized (type::SELF, this);
|
|
is_init = true;
|
|
}
|
|
set_variable (0, kurr);
|
|
current_state->set_this_type (kurr);
|
|
++var;
|
|
}
|
|
|
|
// We have to handle wide arguments specially here.
|
|
int arg_count = _Jv_count_arguments (current_method->self->signature);
|
|
type arg_types[arg_count];
|
|
compute_argument_types (current_method->self->signature, arg_types);
|
|
for (int i = 0; i < arg_count; ++i)
|
|
{
|
|
set_variable (var, arg_types[i]);
|
|
++var;
|
|
if (arg_types[i].iswide ())
|
|
++var;
|
|
}
|
|
|
|
return is_init;
|
|
}
|
|
|
|
void verify_instructions_0 ()
|
|
{
|
|
current_state = new state (current_method->max_stack,
|
|
current_method->max_locals);
|
|
|
|
PC = 0;
|
|
start_PC = 0;
|
|
|
|
// True if we are verifying an instance initializer.
|
|
bool this_is_init = initialize_stack ();
|
|
|
|
states = (state **) _Jv_Malloc (sizeof (state *)
|
|
* current_method->code_length);
|
|
for (int i = 0; i < current_method->code_length; ++i)
|
|
states[i] = NULL;
|
|
|
|
next_verify_pc = state::NO_NEXT;
|
|
|
|
while (true)
|
|
{
|
|
// If the PC was invalidated, get a new one from the work list.
|
|
if (PC == state::NO_NEXT)
|
|
{
|
|
PC = pop_jump ();
|
|
if (PC == state::INVALID)
|
|
verify_fail ("can't happen: saw state::INVALID");
|
|
if (PC == state::NO_NEXT)
|
|
break;
|
|
debug_print ("== State pop from pending list\n");
|
|
// Set up the current state.
|
|
current_state->copy (states[PC], current_method->max_stack,
|
|
current_method->max_locals);
|
|
}
|
|
else
|
|
{
|
|
// Control can't fall off the end of the bytecode. We
|
|
// only need to check this in the fall-through case,
|
|
// because branch bounds are checked when they are
|
|
// pushed.
|
|
if (PC >= current_method->code_length)
|
|
verify_fail ("fell off end");
|
|
|
|
// We only have to do this checking in the situation where
|
|
// control flow falls through from the previous
|
|
// instruction. Otherwise merging is done at the time we
|
|
// push the branch.
|
|
if (states[PC] != NULL)
|
|
{
|
|
// We've already visited this instruction. So merge
|
|
// the states together. If this yields no change then
|
|
// we don't have to re-verify. However, if the new
|
|
// state is an the result of an unmerged `ret', we
|
|
// must continue through it.
|
|
debug_print ("== Fall through merge\n");
|
|
states[PC]->print ("Old", PC, current_method->max_stack,
|
|
current_method->max_locals);
|
|
current_state->print ("Cur", PC, current_method->max_stack,
|
|
current_method->max_locals);
|
|
if (! current_state->merge (states[PC], false,
|
|
current_method->max_locals, this)
|
|
&& ! states[PC]->is_unmerged_ret_state (current_method->max_locals))
|
|
{
|
|
debug_print ("== Fall through optimization\n");
|
|
invalidate_pc ();
|
|
continue;
|
|
}
|
|
// Save a copy of it for later.
|
|
states[PC]->copy (current_state, current_method->max_stack,
|
|
current_method->max_locals);
|
|
current_state->print ("New", PC, current_method->max_stack,
|
|
current_method->max_locals);
|
|
}
|
|
}
|
|
|
|
// We only have to keep saved state at branch targets. If
|
|
// we're at a branch target and the state here hasn't been set
|
|
// yet, we set it now.
|
|
if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
|
|
{
|
|
states[PC] = new state (current_state, current_method->max_stack,
|
|
current_method->max_locals);
|
|
}
|
|
|
|
// Set this before handling exceptions so that debug output is
|
|
// sane.
|
|
start_PC = PC;
|
|
|
|
// Update states for all active exception handlers. Ordinarily
|
|
// there are not many exception handlers. So we simply run
|
|
// through them all.
|
|
for (int i = 0; i < current_method->exc_count; ++i)
|
|
{
|
|
if (PC >= exception[i].start_pc && PC < exception[i].end_pc)
|
|
{
|
|
type handler (&java::lang::Throwable::class$);
|
|
if (exception[i].handler_type != 0)
|
|
handler = check_class_constant (exception[i].handler_type);
|
|
push_exception_jump (handler, exception[i].handler_pc);
|
|
}
|
|
}
|
|
|
|
current_state->print (" ", PC, current_method->max_stack,
|
|
current_method->max_locals);
|
|
java_opcode opcode = (java_opcode) bytecode[PC++];
|
|
switch (opcode)
|
|
{
|
|
case op_nop:
|
|
break;
|
|
|
|
case op_aconst_null:
|
|
push_type (null_type);
|
|
break;
|
|
|
|
case op_iconst_m1:
|
|
case op_iconst_0:
|
|
case op_iconst_1:
|
|
case op_iconst_2:
|
|
case op_iconst_3:
|
|
case op_iconst_4:
|
|
case op_iconst_5:
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_lconst_0:
|
|
case op_lconst_1:
|
|
push_type (long_type);
|
|
break;
|
|
|
|
case op_fconst_0:
|
|
case op_fconst_1:
|
|
case op_fconst_2:
|
|
push_type (float_type);
|
|
break;
|
|
|
|
case op_dconst_0:
|
|
case op_dconst_1:
|
|
push_type (double_type);
|
|
break;
|
|
|
|
case op_bipush:
|
|
get_byte ();
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_sipush:
|
|
get_short ();
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_ldc:
|
|
push_type (check_constant (get_byte ()));
|
|
break;
|
|
case op_ldc_w:
|
|
push_type (check_constant (get_ushort ()));
|
|
break;
|
|
case op_ldc2_w:
|
|
push_type (check_wide_constant (get_ushort ()));
|
|
break;
|
|
|
|
case op_iload:
|
|
push_type (get_variable (get_byte (), int_type));
|
|
break;
|
|
case op_lload:
|
|
push_type (get_variable (get_byte (), long_type));
|
|
break;
|
|
case op_fload:
|
|
push_type (get_variable (get_byte (), float_type));
|
|
break;
|
|
case op_dload:
|
|
push_type (get_variable (get_byte (), double_type));
|
|
break;
|
|
case op_aload:
|
|
push_type (get_variable (get_byte (), reference_type));
|
|
break;
|
|
|
|
case op_iload_0:
|
|
case op_iload_1:
|
|
case op_iload_2:
|
|
case op_iload_3:
|
|
push_type (get_variable (opcode - op_iload_0, int_type));
|
|
break;
|
|
case op_lload_0:
|
|
case op_lload_1:
|
|
case op_lload_2:
|
|
case op_lload_3:
|
|
push_type (get_variable (opcode - op_lload_0, long_type));
|
|
break;
|
|
case op_fload_0:
|
|
case op_fload_1:
|
|
case op_fload_2:
|
|
case op_fload_3:
|
|
push_type (get_variable (opcode - op_fload_0, float_type));
|
|
break;
|
|
case op_dload_0:
|
|
case op_dload_1:
|
|
case op_dload_2:
|
|
case op_dload_3:
|
|
push_type (get_variable (opcode - op_dload_0, double_type));
|
|
break;
|
|
case op_aload_0:
|
|
case op_aload_1:
|
|
case op_aload_2:
|
|
case op_aload_3:
|
|
push_type (get_variable (opcode - op_aload_0, reference_type));
|
|
break;
|
|
case op_iaload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_type (reference_type),
|
|
int_type));
|
|
break;
|
|
case op_laload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_type (reference_type),
|
|
long_type));
|
|
break;
|
|
case op_faload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_type (reference_type),
|
|
float_type));
|
|
break;
|
|
case op_daload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_type (reference_type),
|
|
double_type));
|
|
break;
|
|
case op_aaload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_type (reference_type),
|
|
reference_type));
|
|
break;
|
|
case op_baload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), byte_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_caload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), char_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_saload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), short_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_istore:
|
|
set_variable (get_byte (), pop_type (int_type));
|
|
break;
|
|
case op_lstore:
|
|
set_variable (get_byte (), pop_type (long_type));
|
|
break;
|
|
case op_fstore:
|
|
set_variable (get_byte (), pop_type (float_type));
|
|
break;
|
|
case op_dstore:
|
|
set_variable (get_byte (), pop_type (double_type));
|
|
break;
|
|
case op_astore:
|
|
set_variable (get_byte (), pop_ref_or_return ());
|
|
break;
|
|
case op_istore_0:
|
|
case op_istore_1:
|
|
case op_istore_2:
|
|
case op_istore_3:
|
|
set_variable (opcode - op_istore_0, pop_type (int_type));
|
|
break;
|
|
case op_lstore_0:
|
|
case op_lstore_1:
|
|
case op_lstore_2:
|
|
case op_lstore_3:
|
|
set_variable (opcode - op_lstore_0, pop_type (long_type));
|
|
break;
|
|
case op_fstore_0:
|
|
case op_fstore_1:
|
|
case op_fstore_2:
|
|
case op_fstore_3:
|
|
set_variable (opcode - op_fstore_0, pop_type (float_type));
|
|
break;
|
|
case op_dstore_0:
|
|
case op_dstore_1:
|
|
case op_dstore_2:
|
|
case op_dstore_3:
|
|
set_variable (opcode - op_dstore_0, pop_type (double_type));
|
|
break;
|
|
case op_astore_0:
|
|
case op_astore_1:
|
|
case op_astore_2:
|
|
case op_astore_3:
|
|
set_variable (opcode - op_astore_0, pop_ref_or_return ());
|
|
break;
|
|
case op_iastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), int_type);
|
|
break;
|
|
case op_lastore:
|
|
pop_type (long_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), long_type);
|
|
break;
|
|
case op_fastore:
|
|
pop_type (float_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), float_type);
|
|
break;
|
|
case op_dastore:
|
|
pop_type (double_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), double_type);
|
|
break;
|
|
case op_aastore:
|
|
pop_type (reference_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), reference_type);
|
|
break;
|
|
case op_bastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), byte_type);
|
|
break;
|
|
case op_castore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), char_type);
|
|
break;
|
|
case op_sastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_type (reference_type), short_type);
|
|
break;
|
|
case op_pop:
|
|
pop32 ();
|
|
break;
|
|
case op_pop2:
|
|
pop64 ();
|
|
break;
|
|
case op_dup:
|
|
{
|
|
type t = pop32 ();
|
|
push_type (t);
|
|
push_type (t);
|
|
}
|
|
break;
|
|
case op_dup_x1:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop32 ();
|
|
push_type (t1);
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
break;
|
|
case op_dup_x2:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop_raw ();
|
|
if (! t2.iswide ())
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type (t1);
|
|
push_type (t3);
|
|
}
|
|
else
|
|
push_type (t1);
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
break;
|
|
case op_dup2:
|
|
{
|
|
type t = pop_raw ();
|
|
if (! t.iswide ())
|
|
{
|
|
type t2 = pop32 ();
|
|
push_type (t2);
|
|
push_type (t);
|
|
push_type (t2);
|
|
}
|
|
else
|
|
push_type (t);
|
|
push_type (t);
|
|
}
|
|
break;
|
|
case op_dup2_x1:
|
|
{
|
|
type t1 = pop_raw ();
|
|
type t2 = pop32 ();
|
|
if (! t1.iswide ())
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type (t2);
|
|
push_type (t1);
|
|
push_type (t3);
|
|
}
|
|
else
|
|
push_type (t1);
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
break;
|
|
case op_dup2_x2:
|
|
{
|
|
type t1 = pop_raw ();
|
|
if (t1.iswide ())
|
|
{
|
|
type t2 = pop_raw ();
|
|
if (t2.iswide ())
|
|
{
|
|
push_type (t1);
|
|
push_type (t2);
|
|
}
|
|
else
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type (t1);
|
|
push_type (t3);
|
|
push_type (t2);
|
|
}
|
|
push_type (t1);
|
|
}
|
|
else
|
|
{
|
|
type t2 = pop32 ();
|
|
type t3 = pop_raw ();
|
|
if (t3.iswide ())
|
|
{
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
else
|
|
{
|
|
type t4 = pop32 ();
|
|
push_type (t2);
|
|
push_type (t1);
|
|
push_type (t4);
|
|
}
|
|
push_type (t3);
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
}
|
|
break;
|
|
case op_swap:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop32 ();
|
|
push_type (t1);
|
|
push_type (t2);
|
|
}
|
|
break;
|
|
case op_iadd:
|
|
case op_isub:
|
|
case op_imul:
|
|
case op_idiv:
|
|
case op_irem:
|
|
case op_ishl:
|
|
case op_ishr:
|
|
case op_iushr:
|
|
case op_iand:
|
|
case op_ior:
|
|
case op_ixor:
|
|
pop_type (int_type);
|
|
push_type (pop_type (int_type));
|
|
break;
|
|
case op_ladd:
|
|
case op_lsub:
|
|
case op_lmul:
|
|
case op_ldiv:
|
|
case op_lrem:
|
|
case op_land:
|
|
case op_lor:
|
|
case op_lxor:
|
|
pop_type (long_type);
|
|
push_type (pop_type (long_type));
|
|
break;
|
|
case op_lshl:
|
|
case op_lshr:
|
|
case op_lushr:
|
|
pop_type (int_type);
|
|
push_type (pop_type (long_type));
|
|
break;
|
|
case op_fadd:
|
|
case op_fsub:
|
|
case op_fmul:
|
|
case op_fdiv:
|
|
case op_frem:
|
|
pop_type (float_type);
|
|
push_type (pop_type (float_type));
|
|
break;
|
|
case op_dadd:
|
|
case op_dsub:
|
|
case op_dmul:
|
|
case op_ddiv:
|
|
case op_drem:
|
|
pop_type (double_type);
|
|
push_type (pop_type (double_type));
|
|
break;
|
|
case op_ineg:
|
|
case op_i2b:
|
|
case op_i2c:
|
|
case op_i2s:
|
|
push_type (pop_type (int_type));
|
|
break;
|
|
case op_lneg:
|
|
push_type (pop_type (long_type));
|
|
break;
|
|
case op_fneg:
|
|
push_type (pop_type (float_type));
|
|
break;
|
|
case op_dneg:
|
|
push_type (pop_type (double_type));
|
|
break;
|
|
case op_iinc:
|
|
get_variable (get_byte (), int_type);
|
|
get_byte ();
|
|
break;
|
|
case op_i2l:
|
|
pop_type (int_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_i2f:
|
|
pop_type (int_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_i2d:
|
|
pop_type (int_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_l2i:
|
|
pop_type (long_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_l2f:
|
|
pop_type (long_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_l2d:
|
|
pop_type (long_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_f2i:
|
|
pop_type (float_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_f2l:
|
|
pop_type (float_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_f2d:
|
|
pop_type (float_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_d2i:
|
|
pop_type (double_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_d2l:
|
|
pop_type (double_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_d2f:
|
|
pop_type (double_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_lcmp:
|
|
pop_type (long_type);
|
|
pop_type (long_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_fcmpl:
|
|
case op_fcmpg:
|
|
pop_type (float_type);
|
|
pop_type (float_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_dcmpl:
|
|
case op_dcmpg:
|
|
pop_type (double_type);
|
|
pop_type (double_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_ifeq:
|
|
case op_ifne:
|
|
case op_iflt:
|
|
case op_ifge:
|
|
case op_ifgt:
|
|
case op_ifle:
|
|
pop_type (int_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_if_icmpeq:
|
|
case op_if_icmpne:
|
|
case op_if_icmplt:
|
|
case op_if_icmpge:
|
|
case op_if_icmpgt:
|
|
case op_if_icmple:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_if_acmpeq:
|
|
case op_if_acmpne:
|
|
pop_type (reference_type);
|
|
pop_type (reference_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_goto:
|
|
push_jump (get_short ());
|
|
invalidate_pc ();
|
|
break;
|
|
case op_jsr:
|
|
handle_jsr_insn (get_short ());
|
|
break;
|
|
case op_ret:
|
|
handle_ret_insn (get_byte ());
|
|
break;
|
|
case op_tableswitch:
|
|
{
|
|
pop_type (int_type);
|
|
skip_padding ();
|
|
push_jump (get_int ());
|
|
jint low = get_int ();
|
|
jint high = get_int ();
|
|
// Already checked LOW -vs- HIGH.
|
|
for (int i = low; i <= high; ++i)
|
|
push_jump (get_int ());
|
|
invalidate_pc ();
|
|
}
|
|
break;
|
|
|
|
case op_lookupswitch:
|
|
{
|
|
pop_type (int_type);
|
|
skip_padding ();
|
|
push_jump (get_int ());
|
|
jint npairs = get_int ();
|
|
// Already checked NPAIRS >= 0.
|
|
jint lastkey = 0;
|
|
for (int i = 0; i < npairs; ++i)
|
|
{
|
|
jint key = get_int ();
|
|
if (i > 0 && key <= lastkey)
|
|
verify_fail ("lookupswitch pairs unsorted", start_PC);
|
|
lastkey = key;
|
|
push_jump (get_int ());
|
|
}
|
|
invalidate_pc ();
|
|
}
|
|
break;
|
|
case op_ireturn:
|
|
check_return_type (pop_type (int_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_lreturn:
|
|
check_return_type (pop_type (long_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_freturn:
|
|
check_return_type (pop_type (float_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_dreturn:
|
|
check_return_type (pop_type (double_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_areturn:
|
|
check_return_type (pop_type (reference_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_return:
|
|
// We only need to check this when the return type is
|
|
// void, because all instance initializers return void.
|
|
if (this_is_init)
|
|
current_state->check_this_initialized (this);
|
|
check_return_type (void_type);
|
|
invalidate_pc ();
|
|
break;
|
|
case op_getstatic:
|
|
push_type (check_field_constant (get_ushort ()));
|
|
break;
|
|
case op_putstatic:
|
|
pop_type (check_field_constant (get_ushort ()));
|
|
break;
|
|
case op_getfield:
|
|
{
|
|
type klass;
|
|
type field = check_field_constant (get_ushort (), &klass);
|
|
pop_type (klass);
|
|
push_type (field);
|
|
}
|
|
break;
|
|
case op_putfield:
|
|
{
|
|
type klass;
|
|
type field = check_field_constant (get_ushort (), &klass);
|
|
pop_type (field);
|
|
|
|
// We have an obscure special case here: we can use
|
|
// `putfield' on a field declared in this class, even if
|
|
// `this' has not yet been initialized.
|
|
if (! current_state->this_type.isinitialized ()
|
|
&& current_state->this_type.pc == type::SELF)
|
|
klass.set_uninitialized (type::SELF, this);
|
|
pop_type (klass);
|
|
}
|
|
break;
|
|
|
|
case op_invokevirtual:
|
|
case op_invokespecial:
|
|
case op_invokestatic:
|
|
case op_invokeinterface:
|
|
{
|
|
_Jv_Utf8Const *method_name, *method_signature;
|
|
type class_type
|
|
= check_method_constant (get_ushort (),
|
|
opcode == op_invokeinterface,
|
|
&method_name,
|
|
&method_signature);
|
|
// NARGS is only used when we're processing
|
|
// invokeinterface. It is simplest for us to compute it
|
|
// here and then verify it later.
|
|
int nargs = 0;
|
|
if (opcode == op_invokeinterface)
|
|
{
|
|
nargs = get_byte ();
|
|
if (get_byte () != 0)
|
|
verify_fail ("invokeinterface dummy byte is wrong");
|
|
}
|
|
|
|
bool is_init = false;
|
|
if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
|
|
{
|
|
is_init = true;
|
|
if (opcode != op_invokespecial)
|
|
verify_fail ("can't invoke <init>");
|
|
}
|
|
else if (method_name->data[0] == '<')
|
|
verify_fail ("can't invoke method starting with `<'");
|
|
|
|
// Pop arguments and check types.
|
|
int arg_count = _Jv_count_arguments (method_signature);
|
|
type arg_types[arg_count];
|
|
compute_argument_types (method_signature, arg_types);
|
|
for (int i = arg_count - 1; i >= 0; --i)
|
|
{
|
|
// This is only used for verifying the byte for
|
|
// invokeinterface.
|
|
nargs -= arg_types[i].depth ();
|
|
pop_type (arg_types[i]);
|
|
}
|
|
|
|
if (opcode == op_invokeinterface
|
|
&& nargs != 1)
|
|
verify_fail ("wrong argument count for invokeinterface");
|
|
|
|
if (opcode != op_invokestatic)
|
|
{
|
|
type t = class_type;
|
|
if (is_init)
|
|
{
|
|
// In this case the PC doesn't matter.
|
|
t.set_uninitialized (type::UNINIT, this);
|
|
}
|
|
type raw = pop_raw ();
|
|
bool ok = false;
|
|
if (t.compatible (raw, this))
|
|
{
|
|
ok = true;
|
|
}
|
|
else if (opcode == op_invokeinterface)
|
|
{
|
|
// This is a hack. We might have merged two
|
|
// items and gotten `Object'. This can happen
|
|
// because we don't keep track of where merges
|
|
// come from. This is safe as long as the
|
|
// interpreter checks interfaces at runtime.
|
|
type obj (&java::lang::Object::class$);
|
|
ok = raw.compatible (obj, this);
|
|
}
|
|
|
|
if (! ok)
|
|
verify_fail ("incompatible type on stack");
|
|
|
|
if (is_init)
|
|
current_state->set_initialized (raw.get_pc (),
|
|
current_method->max_locals);
|
|
}
|
|
|
|
type rt = compute_return_type (method_signature);
|
|
if (! rt.isvoid ())
|
|
push_type (rt);
|
|
}
|
|
break;
|
|
|
|
case op_new:
|
|
{
|
|
type t = check_class_constant (get_ushort ());
|
|
if (t.isarray () || t.isinterface (this) || t.isabstract (this))
|
|
verify_fail ("type is array, interface, or abstract");
|
|
t.set_uninitialized (start_PC, this);
|
|
push_type (t);
|
|
}
|
|
break;
|
|
|
|
case op_newarray:
|
|
{
|
|
int atype = get_byte ();
|
|
// We intentionally have chosen constants to make this
|
|
// valid.
|
|
if (atype < boolean_type || atype > long_type)
|
|
verify_fail ("type not primitive", start_PC);
|
|
pop_type (int_type);
|
|
push_type (construct_primitive_array_type (type_val (atype)));
|
|
}
|
|
break;
|
|
case op_anewarray:
|
|
pop_type (int_type);
|
|
push_type (check_class_constant (get_ushort ()).to_array (this));
|
|
break;
|
|
case op_arraylength:
|
|
{
|
|
type t = pop_type (reference_type);
|
|
if (! t.isarray () && ! t.isnull ())
|
|
verify_fail ("array type expected");
|
|
push_type (int_type);
|
|
}
|
|
break;
|
|
case op_athrow:
|
|
pop_type (type (&java::lang::Throwable::class$));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_checkcast:
|
|
pop_type (reference_type);
|
|
push_type (check_class_constant (get_ushort ()));
|
|
break;
|
|
case op_instanceof:
|
|
pop_type (reference_type);
|
|
check_class_constant (get_ushort ());
|
|
push_type (int_type);
|
|
break;
|
|
case op_monitorenter:
|
|
pop_type (reference_type);
|
|
break;
|
|
case op_monitorexit:
|
|
pop_type (reference_type);
|
|
break;
|
|
case op_wide:
|
|
{
|
|
switch (get_byte ())
|
|
{
|
|
case op_iload:
|
|
push_type (get_variable (get_ushort (), int_type));
|
|
break;
|
|
case op_lload:
|
|
push_type (get_variable (get_ushort (), long_type));
|
|
break;
|
|
case op_fload:
|
|
push_type (get_variable (get_ushort (), float_type));
|
|
break;
|
|
case op_dload:
|
|
push_type (get_variable (get_ushort (), double_type));
|
|
break;
|
|
case op_aload:
|
|
push_type (get_variable (get_ushort (), reference_type));
|
|
break;
|
|
case op_istore:
|
|
set_variable (get_ushort (), pop_type (int_type));
|
|
break;
|
|
case op_lstore:
|
|
set_variable (get_ushort (), pop_type (long_type));
|
|
break;
|
|
case op_fstore:
|
|
set_variable (get_ushort (), pop_type (float_type));
|
|
break;
|
|
case op_dstore:
|
|
set_variable (get_ushort (), pop_type (double_type));
|
|
break;
|
|
case op_astore:
|
|
set_variable (get_ushort (), pop_type (reference_type));
|
|
break;
|
|
case op_ret:
|
|
handle_ret_insn (get_short ());
|
|
break;
|
|
case op_iinc:
|
|
get_variable (get_ushort (), int_type);
|
|
get_short ();
|
|
break;
|
|
default:
|
|
verify_fail ("unrecognized wide instruction", start_PC);
|
|
}
|
|
}
|
|
break;
|
|
case op_multianewarray:
|
|
{
|
|
type atype = check_class_constant (get_ushort ());
|
|
int dim = get_byte ();
|
|
if (dim < 1)
|
|
verify_fail ("too few dimensions to multianewarray", start_PC);
|
|
atype.verify_dimensions (dim, this);
|
|
for (int i = 0; i < dim; ++i)
|
|
pop_type (int_type);
|
|
push_type (atype);
|
|
}
|
|
break;
|
|
case op_ifnull:
|
|
case op_ifnonnull:
|
|
pop_type (reference_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_goto_w:
|
|
push_jump (get_int ());
|
|
invalidate_pc ();
|
|
break;
|
|
case op_jsr_w:
|
|
handle_jsr_insn (get_int ());
|
|
break;
|
|
|
|
default:
|
|
// Unrecognized opcode.
|
|
verify_fail ("unrecognized instruction in verify_instructions_0",
|
|
start_PC);
|
|
}
|
|
}
|
|
}
|
|
|
|
__attribute__ ((__noreturn__)) void verify_fail (char *s, jint pc = -1)
|
|
{
|
|
using namespace java::lang;
|
|
StringBuffer *buf = new StringBuffer ();
|
|
|
|
buf->append (JvNewStringLatin1 ("verification failed"));
|
|
if (pc == -1)
|
|
pc = start_PC;
|
|
if (pc != -1)
|
|
{
|
|
buf->append (JvNewStringLatin1 (" at PC "));
|
|
buf->append (pc);
|
|
}
|
|
|
|
_Jv_InterpMethod *method = current_method;
|
|
buf->append (JvNewStringLatin1 (" in "));
|
|
buf->append (current_class->getName());
|
|
buf->append ((jchar) ':');
|
|
buf->append (JvNewStringUTF (method->get_method()->name->data));
|
|
buf->append ((jchar) '(');
|
|
buf->append (JvNewStringUTF (method->get_method()->signature->data));
|
|
buf->append ((jchar) ')');
|
|
|
|
buf->append (JvNewStringLatin1 (": "));
|
|
buf->append (JvNewStringLatin1 (s));
|
|
throw new java::lang::VerifyError (buf->toString ());
|
|
}
|
|
|
|
public:
|
|
|
|
void verify_instructions ()
|
|
{
|
|
branch_prepass ();
|
|
verify_instructions_0 ();
|
|
}
|
|
|
|
_Jv_BytecodeVerifier (_Jv_InterpMethod *m)
|
|
{
|
|
// We just print the text as utf-8. This is just for debugging
|
|
// anyway.
|
|
debug_print ("--------------------------------\n");
|
|
debug_print ("-- Verifying method `%s'\n", m->self->name->data);
|
|
|
|
current_method = m;
|
|
bytecode = m->bytecode ();
|
|
exception = m->exceptions ();
|
|
current_class = m->defining_class;
|
|
|
|
states = NULL;
|
|
flags = NULL;
|
|
jsr_ptrs = NULL;
|
|
utf8_list = NULL;
|
|
entry_points = NULL;
|
|
}
|
|
|
|
~_Jv_BytecodeVerifier ()
|
|
{
|
|
if (states)
|
|
_Jv_Free (states);
|
|
if (flags)
|
|
_Jv_Free (flags);
|
|
|
|
if (jsr_ptrs)
|
|
{
|
|
for (int i = 0; i < current_method->code_length; ++i)
|
|
{
|
|
if (jsr_ptrs[i] != NULL)
|
|
{
|
|
subr_info *info = jsr_ptrs[i];
|
|
while (info != NULL)
|
|
{
|
|
subr_info *next = info->next;
|
|
_Jv_Free (info);
|
|
info = next;
|
|
}
|
|
}
|
|
}
|
|
_Jv_Free (jsr_ptrs);
|
|
}
|
|
|
|
while (utf8_list != NULL)
|
|
{
|
|
linked_utf8 *n = utf8_list->next;
|
|
_Jv_Free (utf8_list->val);
|
|
_Jv_Free (utf8_list);
|
|
utf8_list = n;
|
|
}
|
|
|
|
while (entry_points != NULL)
|
|
{
|
|
subr_entry_info *next = entry_points->next;
|
|
_Jv_Free (entry_points);
|
|
entry_points = next;
|
|
}
|
|
}
|
|
};
|
|
|
|
void
|
|
_Jv_VerifyMethod (_Jv_InterpMethod *meth)
|
|
{
|
|
_Jv_BytecodeVerifier v (meth);
|
|
v.verify_instructions ();
|
|
}
|
|
#endif /* INTERPRETER */
|