mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-24 18:34:40 +08:00
e297eb600d
From-SVN: r193756
110 lines
3.6 KiB
C++
110 lines
3.6 KiB
C++
//===-- tsan_clock.cc -----------------------------------------------------===//
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "tsan_clock.h"
|
|
#include "tsan_rtl.h"
|
|
|
|
// It's possible to optimize clock operations for some important cases
|
|
// so that they are O(1). The cases include singletons, once's, local mutexes.
|
|
// First, SyncClock must be re-implemented to allow indexing by tid.
|
|
// It must not necessarily be a full vector clock, though. For example it may
|
|
// be a multi-level table.
|
|
// Then, each slot in SyncClock must contain a dirty bit (it's united with
|
|
// the clock value, so no space increase). The acquire algorithm looks
|
|
// as follows:
|
|
// void acquire(thr, tid, thr_clock, sync_clock) {
|
|
// if (!sync_clock[tid].dirty)
|
|
// return; // No new info to acquire.
|
|
// // This handles constant reads of singleton pointers and
|
|
// // stop-flags.
|
|
// acquire_impl(thr_clock, sync_clock); // As usual, O(N).
|
|
// sync_clock[tid].dirty = false;
|
|
// sync_clock.dirty_count--;
|
|
// }
|
|
// The release operation looks as follows:
|
|
// void release(thr, tid, thr_clock, sync_clock) {
|
|
// // thr->sync_cache is a simple fixed-size hash-based cache that holds
|
|
// // several previous sync_clock's.
|
|
// if (thr->sync_cache[sync_clock] >= thr->last_acquire_epoch) {
|
|
// // The thread did no acquire operations since last release on this clock.
|
|
// // So update only the thread's slot (other slots can't possibly change).
|
|
// sync_clock[tid].clock = thr->epoch;
|
|
// if (sync_clock.dirty_count == sync_clock.cnt
|
|
// || (sync_clock.dirty_count == sync_clock.cnt - 1
|
|
// && sync_clock[tid].dirty == false))
|
|
// // All dirty flags are set, bail out.
|
|
// return;
|
|
// set all dirty bits, but preserve the thread's bit. // O(N)
|
|
// update sync_clock.dirty_count;
|
|
// return;
|
|
// }
|
|
// release_impl(thr_clock, sync_clock); // As usual, O(N).
|
|
// set all dirty bits, but preserve the thread's bit.
|
|
// // The previous step is combined with release_impl(), so that
|
|
// // we scan the arrays only once.
|
|
// update sync_clock.dirty_count;
|
|
// }
|
|
|
|
namespace __tsan {
|
|
|
|
ThreadClock::ThreadClock() {
|
|
nclk_ = 0;
|
|
for (uptr i = 0; i < (uptr)kMaxTidInClock; i++)
|
|
clk_[i] = 0;
|
|
}
|
|
|
|
void ThreadClock::acquire(const SyncClock *src) {
|
|
DCHECK(nclk_ <= kMaxTid);
|
|
DCHECK(src->clk_.Size() <= kMaxTid);
|
|
|
|
const uptr nclk = src->clk_.Size();
|
|
if (nclk == 0)
|
|
return;
|
|
nclk_ = max(nclk_, nclk);
|
|
for (uptr i = 0; i < nclk; i++) {
|
|
if (clk_[i] < src->clk_[i])
|
|
clk_[i] = src->clk_[i];
|
|
}
|
|
}
|
|
|
|
void ThreadClock::release(SyncClock *dst) const {
|
|
DCHECK(nclk_ <= kMaxTid);
|
|
DCHECK(dst->clk_.Size() <= kMaxTid);
|
|
|
|
if (dst->clk_.Size() < nclk_)
|
|
dst->clk_.Resize(nclk_);
|
|
for (uptr i = 0; i < nclk_; i++) {
|
|
if (dst->clk_[i] < clk_[i])
|
|
dst->clk_[i] = clk_[i];
|
|
}
|
|
}
|
|
|
|
void ThreadClock::ReleaseStore(SyncClock *dst) const {
|
|
DCHECK(nclk_ <= kMaxTid);
|
|
DCHECK(dst->clk_.Size() <= kMaxTid);
|
|
|
|
if (dst->clk_.Size() < nclk_)
|
|
dst->clk_.Resize(nclk_);
|
|
for (uptr i = 0; i < nclk_; i++)
|
|
dst->clk_[i] = clk_[i];
|
|
for (uptr i = nclk_; i < dst->clk_.Size(); i++)
|
|
dst->clk_[i] = 0;
|
|
}
|
|
|
|
void ThreadClock::acq_rel(SyncClock *dst) {
|
|
acquire(dst);
|
|
release(dst);
|
|
}
|
|
|
|
SyncClock::SyncClock()
|
|
: clk_(MBlockClock) {
|
|
}
|
|
} // namespace __tsan
|