mirror of
git://gcc.gnu.org/git/gcc.git
synced 2024-12-30 11:24:56 +08:00
5bb11b2e20
* class.c (make_class_data): Push initial value for "arrayclass". * decl.c (init_decl_processing): Add new class field "arrayclass". In libjava: * java/lang/Class.h (_Jv_InitClass): Use __builtin_expect. (_Jv_NewArrayClass): Renamed from _Jv_FindArrayClass. (_Jv_GetArrayClass): New inline function. (arrayclass): New field. * prims.cc (_Jv_NewObjectArray): Use _Jv_GetArrayClass. Don't use _Jv_GetArrayElementFromElementType. (_Jv_NewPrimArray): Ditto. (_Jv_PrimClass constructor): Initialize "depth", "ancestors", and "idt" for completeness. Initialze "arrayclass" using _Jv_NewArrayClass. Set Modifier::ABSTRACT. * java/lang/natClassLoader.cc (_Jv_NewClass): Initialize "arrayclass". (_Jv_NewArrayClass): Renamed from _Jv_FindArrayClass. Now void. Now synchronized. Array classes are now referenced from elementClass->arrayclass. Don't use _Jv_FindClassInCache. Set array classes' accessibility flags correctly. Optimize so that all array classes share the same IDT. * java/lang/reflect/natArray.cc (newInstance): Use _Jv_GetArrayClass. * java/lang/reflect/natMethod.cc (_Jv_GetTypesFromSignature): Ditto. * java/lang/natClass.cc (_getFields): Increment offset. Prevent fields in superclasses from overwriting classes own fields. (_Jv_IsAssignableFrom): Check for NULL source idt instead of calling Modifier::isAbstract(). (null_idt): New static field. (_Jv_PrepareConstantTimeTables): Optimize case where class implements no interfaces. (_Jv_IndexOf): Made inline. * boehm.cc (_Jv_MarkObj): Mark "arrayclass" field. From-SVN: r38808
573 lines
16 KiB
C++
573 lines
16 KiB
C++
// boehm.cc - interface between libjava and Boehm GC.
|
||
|
||
/* Copyright (C) 1998, 1999, 2000 Free Software Foundation
|
||
|
||
This file is part of libgcj.
|
||
|
||
This software is copyrighted work licensed under the terms of the
|
||
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
||
details. */
|
||
|
||
#include <config.h>
|
||
|
||
#include <stdio.h>
|
||
|
||
#include <jvm.h>
|
||
#include <gcj/cni.h>
|
||
|
||
#include <java/lang/Class.h>
|
||
#include <java/lang/reflect/Modifier.h>
|
||
#include <java-interp.h>
|
||
|
||
// More nastiness: the GC wants to define TRUE and FALSE. We don't
|
||
// need the Java definitions (themselves a hack), so we undefine them.
|
||
#undef TRUE
|
||
#undef FALSE
|
||
|
||
extern "C"
|
||
{
|
||
#include <gc_priv.h>
|
||
#include <gc_mark.h>
|
||
#include <include/gc_gcj.h>
|
||
|
||
// These aren't declared in any Boehm GC header.
|
||
void GC_finalize_all (void);
|
||
ptr_t GC_debug_generic_malloc (size_t size, int k, GC_EXTRA_PARAMS);
|
||
};
|
||
|
||
// FIXME: this should probably be defined in some GC header.
|
||
#ifdef GC_DEBUG
|
||
# define GC_GENERIC_MALLOC(Size, Type) \
|
||
GC_debug_generic_malloc (Size, Type, GC_EXTRAS)
|
||
#else
|
||
# define GC_GENERIC_MALLOC(Size, Type) GC_generic_malloc (Size, Type)
|
||
#endif
|
||
|
||
// We must check for plausibility ourselves.
|
||
#define MAYBE_MARK(Obj, Top, Limit, Source, Exit) \
|
||
if ((ptr_t) (Obj) >= GC_least_plausible_heap_addr \
|
||
&& (ptr_t) (Obj) <= GC_greatest_plausible_heap_addr) \
|
||
PUSH_CONTENTS (Obj, Top, Limit, Source, Exit)
|
||
|
||
|
||
|
||
// Nonzero if this module has been initialized.
|
||
static int initialized = 0;
|
||
|
||
#if 0
|
||
// `kind' index used when allocating Java objects.
|
||
static int obj_kind_x;
|
||
|
||
// Freelist used for Java objects.
|
||
static ptr_t *obj_free_list;
|
||
#endif /* 0 */
|
||
|
||
// `kind' index used when allocating Java arrays.
|
||
static int array_kind_x;
|
||
|
||
// Freelist used for Java arrays.
|
||
static ptr_t *array_free_list;
|
||
|
||
// Lock used to protect access to Boehm's GC_enable/GC_disable functions.
|
||
static _Jv_Mutex_t disable_gc_mutex;
|
||
|
||
|
||
|
||
// This is called by the GC during the mark phase. It marks a Java
|
||
// object. We use `void *' arguments and return, and not what the
|
||
// Boehm GC wants, to avoid pollution in our headers.
|
||
void *
|
||
_Jv_MarkObj (void *addr, void *msp, void *msl, void * /* env */)
|
||
{
|
||
mse *mark_stack_ptr = (mse *) msp;
|
||
mse *mark_stack_limit = (mse *) msl;
|
||
jobject obj = (jobject) addr;
|
||
|
||
// FIXME: if env is 1, this object was allocated through the debug
|
||
// interface, and addr points to the beginning of the debug header.
|
||
// In that case, we should really add the size of the header to addr.
|
||
|
||
_Jv_VTable *dt = *(_Jv_VTable **) addr;
|
||
// The object might not yet have its vtable set, or it might
|
||
// really be an object on the freelist. In either case, the vtable slot
|
||
// will either be 0, or it will point to a cleared object.
|
||
// This assumes Java objects have size at least 3 words,
|
||
// including the header. But this should remain true, since this
|
||
// should only be used with debugging allocation or with large objects.
|
||
if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
|
||
return mark_stack_ptr;
|
||
jclass klass = dt->clas;
|
||
|
||
// Every object has a sync_info pointer.
|
||
ptr_t p = (ptr_t) obj->sync_info;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o1label);
|
||
// Mark the object's class.
|
||
p = (ptr_t) klass;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
|
||
|
||
if (__builtin_expect (klass == &java::lang::Class::class$, false))
|
||
{
|
||
// Currently we allocate some of the memory referenced from class objects
|
||
// as pointerfree memory, and then mark it more intelligently here.
|
||
// We ensure that the ClassClass mark descriptor forces invocation of
|
||
// this procedure.
|
||
// Correctness of this is subtle, but it looks OK to me for now. For the incremental
|
||
// collector, we need to make sure that the class object is written whenever
|
||
// any of the subobjects are altered and may need rescanning. This may be tricky
|
||
// during construction, and this may not be the right way to do this with
|
||
// incremental collection.
|
||
// If we overflow the mark stack, we will rescan the class object, so we should
|
||
// be OK. The same applies if we redo the mark phase because win32 unmapped part
|
||
// of our root set. - HB
|
||
jclass c = (jclass) addr;
|
||
|
||
p = (ptr_t) c->name;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c3label);
|
||
p = (ptr_t) c->superclass;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c4label);
|
||
for (int i = 0; i < c->constants.size; ++i)
|
||
{
|
||
/* FIXME: We could make this more precise by using the tags -KKT */
|
||
p = (ptr_t) c->constants.data[i].p;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5label);
|
||
}
|
||
|
||
#ifdef INTERPRETER
|
||
if (_Jv_IsInterpretedClass (c))
|
||
{
|
||
p = (ptr_t) c->constants.tags;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5alabel);
|
||
p = (ptr_t) c->constants.data;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5blabel);
|
||
p = (ptr_t) c->vtable;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5clabel);
|
||
}
|
||
#endif
|
||
|
||
// If the class is an array, then the methods field holds a
|
||
// pointer to the element class. If the class is primitive,
|
||
// then the methods field holds a pointer to the array class.
|
||
p = (ptr_t) c->methods;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c6label);
|
||
|
||
|
||
if (! c->isArray() && ! c->isPrimitive())
|
||
{
|
||
// Scan each method in the cases where `methods' really
|
||
// points to a methods structure.
|
||
for (int i = 0; i < c->method_count; ++i)
|
||
{
|
||
p = (ptr_t) c->methods[i].name;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
|
||
cm1label);
|
||
p = (ptr_t) c->methods[i].signature;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
|
||
cm2label);
|
||
|
||
// FIXME: `ncode' entry?
|
||
|
||
#ifdef INTERPRETER
|
||
// The interpreter installs a heap-allocated
|
||
// trampoline here, so we'll mark it.
|
||
if (_Jv_IsInterpretedClass (c))
|
||
{
|
||
p = (ptr_t) c->methods[i].ncode;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
|
||
cm3label);
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
|
||
// Mark all the fields.
|
||
p = (ptr_t) c->fields;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8label);
|
||
for (int i = 0; i < c->field_count; ++i)
|
||
{
|
||
_Jv_Field* field = &c->fields[i];
|
||
|
||
#ifndef COMPACT_FIELDS
|
||
p = (ptr_t) field->name;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8alabel);
|
||
#endif
|
||
p = (ptr_t) field->type;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8blabel);
|
||
|
||
// For the interpreter, we also need to mark the memory
|
||
// containing static members
|
||
if ((field->flags & java::lang::reflect::Modifier::STATIC))
|
||
{
|
||
p = (ptr_t) field->u.addr;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8clabel);
|
||
|
||
// also, if the static member is a reference,
|
||
// mark also the value pointed to. We check for isResolved
|
||
// since marking can happen before memory is allocated for
|
||
// static members.
|
||
if (JvFieldIsRef (field) && field->isResolved())
|
||
{
|
||
jobject val = *(jobject*) field->u.addr;
|
||
p = (ptr_t) val;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
|
||
c, c8elabel);
|
||
}
|
||
}
|
||
}
|
||
|
||
p = (ptr_t) c->vtable;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c9label);
|
||
p = (ptr_t) c->interfaces;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cAlabel);
|
||
for (int i = 0; i < c->interface_count; ++i)
|
||
{
|
||
p = (ptr_t) c->interfaces[i];
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cClabel);
|
||
}
|
||
p = (ptr_t) c->loader;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cBlabel);
|
||
p = (ptr_t) c->arrayclass;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cDlabel);
|
||
|
||
#ifdef INTERPRETER
|
||
if (_Jv_IsInterpretedClass (c))
|
||
{
|
||
_Jv_InterpClass* ic = (_Jv_InterpClass*)c;
|
||
|
||
p = (ptr_t) ic->interpreted_methods;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cElabel);
|
||
|
||
for (int i = 0; i < c->method_count; i++)
|
||
{
|
||
p = (ptr_t) ic->interpreted_methods[i];
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, \
|
||
cFlabel);
|
||
}
|
||
|
||
p = (ptr_t) ic->field_initializers;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cGlabel);
|
||
|
||
}
|
||
#endif
|
||
|
||
}
|
||
else
|
||
{
|
||
// NOTE: each class only holds information about the class
|
||
// itself. So we must do the marking for the entire inheritance
|
||
// tree in order to mark all fields. FIXME: what about
|
||
// interfaces? We skip Object here, because Object only has a
|
||
// sync_info, and we handled that earlier.
|
||
// Note: occasionally `klass' can be null. For instance, this
|
||
// can happen if a GC occurs between the point where an object
|
||
// is allocated and where the vtbl slot is set.
|
||
while (klass && klass != &java::lang::Object::class$)
|
||
{
|
||
jfieldID field = JvGetFirstInstanceField (klass);
|
||
jint max = JvNumInstanceFields (klass);
|
||
|
||
for (int i = 0; i < max; ++i)
|
||
{
|
||
if (JvFieldIsRef (field))
|
||
{
|
||
jobject val = JvGetObjectField (obj, field);
|
||
p = (ptr_t) val;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
|
||
obj, elabel);
|
||
}
|
||
field = field->getNextField ();
|
||
}
|
||
klass = klass->getSuperclass();
|
||
}
|
||
}
|
||
|
||
return mark_stack_ptr;
|
||
}
|
||
|
||
// This is called by the GC during the mark phase. It marks a Java
|
||
// array (of objects). We use `void *' arguments and return, and not
|
||
// what the Boehm GC wants, to avoid pollution in our headers.
|
||
void *
|
||
_Jv_MarkArray (void *addr, void *msp, void *msl, void * /*env*/)
|
||
{
|
||
mse *mark_stack_ptr = (mse *) msp;
|
||
mse *mark_stack_limit = (mse *) msl;
|
||
jobjectArray array = (jobjectArray) addr;
|
||
|
||
_Jv_VTable *dt = *(_Jv_VTable **) addr;
|
||
// Assumes size >= 3 words. That's currently true since arrays have
|
||
// a vtable, sync pointer, and size. If the sync pointer goes away,
|
||
// we may need to round up the size.
|
||
if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
|
||
return mark_stack_ptr;
|
||
jclass klass = dt->clas;
|
||
|
||
// Every object has a sync_info pointer.
|
||
ptr_t p = (ptr_t) array->sync_info;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e1label);
|
||
// Mark the object's class.
|
||
p = (ptr_t) klass;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
|
||
|
||
for (int i = 0; i < JvGetArrayLength (array); ++i)
|
||
{
|
||
jobject obj = elements (array)[i];
|
||
p = (ptr_t) obj;
|
||
MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e2label);
|
||
}
|
||
|
||
return mark_stack_ptr;
|
||
}
|
||
|
||
// Return GC descriptor for interpreted class
|
||
#ifdef INTERPRETER
|
||
|
||
// We assume that the gcj mark proc has index 0. This is a dubious assumption,
|
||
// since another one could be registered first. But the compiler also
|
||
// knows this, so in that case everything else will break, too.
|
||
#define GCJ_DEFAULT_DESCR MAKE_PROC(GCJ_RESERVED_MARK_PROC_INDEX,0)
|
||
void *
|
||
_Jv_BuildGCDescr(jclass klass)
|
||
{
|
||
/* FIXME: We should really look at the class and build the descriptor. */
|
||
return (void *)(GCJ_DEFAULT_DESCR);
|
||
}
|
||
#endif
|
||
|
||
// Allocate space for a new Java object.
|
||
void *
|
||
_Jv_AllocObj (jsize size, jclass klass)
|
||
{
|
||
return GC_GCJ_MALLOC (size, klass->vtable);
|
||
}
|
||
|
||
// Allocate space for a new Java array.
|
||
// Used only for arrays of objects.
|
||
void *
|
||
_Jv_AllocArray (jsize size, jclass klass)
|
||
{
|
||
void *obj;
|
||
const jsize min_heap_addr = 16*1024;
|
||
// A heuristic. If size is less than this value, the size
|
||
// stored in the array can't possibly be misinterpreted as
|
||
// a pointer. Thus we lose nothing by scanning the object
|
||
// completely conservatively, since no misidentification can
|
||
// take place.
|
||
|
||
#ifdef GC_DEBUG
|
||
// There isn't much to lose by scanning this conservatively.
|
||
// If we didn't, the mark proc would have to understand that
|
||
// it needed to skip the header.
|
||
obj = GC_MALLOC(size);
|
||
#else
|
||
if (size < min_heap_addr)
|
||
obj = GC_MALLOC(size);
|
||
else
|
||
obj = GC_GENERIC_MALLOC (size, array_kind_x);
|
||
#endif
|
||
*((_Jv_VTable **) obj) = klass->vtable;
|
||
return obj;
|
||
}
|
||
|
||
// Allocate some space that is known to be pointer-free.
|
||
void *
|
||
_Jv_AllocBytes (jsize size)
|
||
{
|
||
void *r = GC_MALLOC_ATOMIC (size);
|
||
// We have to explicitly zero memory here, as the GC doesn't
|
||
// guarantee that PTRFREE allocations are zeroed. Note that we
|
||
// don't have to do this for other allocation types because we set
|
||
// the `ok_init' flag in the type descriptor.
|
||
if (__builtin_expect (r != NULL, !NULL))
|
||
memset (r, 0, size);
|
||
return r;
|
||
}
|
||
|
||
static void
|
||
call_finalizer (GC_PTR obj, GC_PTR client_data)
|
||
{
|
||
_Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
|
||
jobject jobj = (jobject) obj;
|
||
|
||
(*fn) (jobj);
|
||
}
|
||
|
||
void
|
||
_Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
|
||
{
|
||
GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
|
||
NULL, NULL);
|
||
}
|
||
|
||
void
|
||
_Jv_RunFinalizers (void)
|
||
{
|
||
GC_invoke_finalizers ();
|
||
}
|
||
|
||
void
|
||
_Jv_RunAllFinalizers (void)
|
||
{
|
||
GC_finalize_all ();
|
||
}
|
||
|
||
void
|
||
_Jv_RunGC (void)
|
||
{
|
||
GC_gcollect ();
|
||
}
|
||
|
||
long
|
||
_Jv_GCTotalMemory (void)
|
||
{
|
||
return GC_get_heap_size ();
|
||
}
|
||
|
||
long
|
||
_Jv_GCFreeMemory (void)
|
||
{
|
||
return GC_get_free_bytes ();
|
||
}
|
||
|
||
void
|
||
_Jv_GCSetInitialHeapSize (size_t size)
|
||
{
|
||
size_t current = GC_get_heap_size ();
|
||
if (size > current)
|
||
GC_expand_hp (size - current);
|
||
}
|
||
|
||
void
|
||
_Jv_GCSetMaximumHeapSize (size_t size)
|
||
{
|
||
GC_set_max_heap_size ((GC_word) size);
|
||
}
|
||
|
||
// From boehm's misc.c
|
||
extern "C" void GC_enable();
|
||
extern "C" void GC_disable();
|
||
|
||
void
|
||
_Jv_DisableGC (void)
|
||
{
|
||
_Jv_MutexLock (&disable_gc_mutex);
|
||
GC_disable();
|
||
_Jv_MutexUnlock (&disable_gc_mutex);
|
||
}
|
||
|
||
void
|
||
_Jv_EnableGC (void)
|
||
{
|
||
_Jv_MutexLock (&disable_gc_mutex);
|
||
GC_enable();
|
||
_Jv_MutexUnlock (&disable_gc_mutex);
|
||
}
|
||
|
||
void
|
||
_Jv_InitGC (void)
|
||
{
|
||
int proc;
|
||
DCL_LOCK_STATE;
|
||
|
||
DISABLE_SIGNALS ();
|
||
LOCK ();
|
||
|
||
if (initialized)
|
||
{
|
||
UNLOCK ();
|
||
ENABLE_SIGNALS ();
|
||
return;
|
||
}
|
||
initialized = 1;
|
||
UNLOCK ();
|
||
|
||
// Configure the collector to use the bitmap marking descriptors that we
|
||
// stash in the class vtable.
|
||
GC_init_gcj_malloc (0, (void *) _Jv_MarkObj);
|
||
|
||
LOCK ();
|
||
GC_java_finalization = 1;
|
||
|
||
// We use a different mark procedure for object arrays. This code
|
||
// configures a different object `kind' for object array allocation and
|
||
// marking. FIXME: see above.
|
||
array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
|
||
* sizeof (ptr_t),
|
||
PTRFREE);
|
||
memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
|
||
|
||
proc = GC_n_mark_procs++;
|
||
GC_mark_procs[proc] = (mark_proc) _Jv_MarkArray;
|
||
|
||
array_kind_x = GC_n_kinds++;
|
||
GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
|
||
GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
|
||
GC_obj_kinds[array_kind_x].ok_descriptor = MAKE_PROC (proc, 0);
|
||
GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
|
||
GC_obj_kinds[array_kind_x].ok_init = TRUE;
|
||
|
||
_Jv_MutexInit (&disable_gc_mutex);
|
||
|
||
UNLOCK ();
|
||
ENABLE_SIGNALS ();
|
||
}
|
||
|
||
#if 0
|
||
void
|
||
_Jv_InitGC (void)
|
||
{
|
||
int proc;
|
||
DCL_LOCK_STATE;
|
||
|
||
DISABLE_SIGNALS ();
|
||
LOCK ();
|
||
|
||
if (initialized)
|
||
{
|
||
UNLOCK ();
|
||
ENABLE_SIGNALS ();
|
||
return;
|
||
}
|
||
initialized = 1;
|
||
|
||
GC_java_finalization = 1;
|
||
|
||
// Set up state for marking and allocation of Java objects.
|
||
obj_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
|
||
* sizeof (ptr_t),
|
||
PTRFREE);
|
||
memset (obj_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
|
||
|
||
proc = GC_n_mark_procs++;
|
||
GC_mark_procs[proc] = (mark_proc) _Jv_MarkObj;
|
||
|
||
obj_kind_x = GC_n_kinds++;
|
||
GC_obj_kinds[obj_kind_x].ok_freelist = obj_free_list;
|
||
GC_obj_kinds[obj_kind_x].ok_reclaim_list = 0;
|
||
GC_obj_kinds[obj_kind_x].ok_descriptor = MAKE_PROC (proc, 0);
|
||
GC_obj_kinds[obj_kind_x].ok_relocate_descr = FALSE;
|
||
GC_obj_kinds[obj_kind_x].ok_init = TRUE;
|
||
|
||
// Set up state for marking and allocation of arrays of Java
|
||
// objects.
|
||
array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
|
||
* sizeof (ptr_t),
|
||
PTRFREE);
|
||
memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
|
||
|
||
proc = GC_n_mark_procs++;
|
||
GC_mark_procs[proc] = (mark_proc) _Jv_MarkArray;
|
||
|
||
array_kind_x = GC_n_kinds++;
|
||
GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
|
||
GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
|
||
GC_obj_kinds[array_kind_x].ok_descriptor = MAKE_PROC (proc, 0);
|
||
GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
|
||
GC_obj_kinds[array_kind_x].ok_init = TRUE;
|
||
|
||
_Jv_MutexInit (&disable_gc_mutex);
|
||
|
||
UNLOCK ();
|
||
ENABLE_SIGNALS ();
|
||
}
|
||
#endif /* 0 */
|