mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-10 10:04:47 +08:00
6dc5fdfd5f
2002-08-23 Phil Edwards <pme@gcc.gnu.org> * config/linker-map.gnu: Verbose comments, clean up spacing. * include/bits/stl_alloc.h: Fix indentation of 'if' bodies, return statements. __allocator: Change class declaration to struct. * docs/html/17_intro/C++STYLE: Fix typo. * include/bits/stl_deque.h, include/bits/stl_list.h, include/bits/stl_map.h, include/bits/stl_multimap.h, include/bits/stl_vector.h: Fix fallout from typo. From-SVN: r56540
662 lines
25 KiB
C++
662 lines
25 KiB
C++
// Map implementation -*- C++ -*-
|
|
|
|
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1994
|
|
* Hewlett-Packard Company
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Hewlett-Packard Company makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*
|
|
*
|
|
* Copyright (c) 1996,1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/** @file stl_map.h
|
|
* This is an internal header file, included by other library headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
#ifndef __GLIBCPP_INTERNAL_MAP_H
|
|
#define __GLIBCPP_INTERNAL_MAP_H
|
|
|
|
#include <bits/concept_check.h>
|
|
|
|
namespace std
|
|
{
|
|
/**
|
|
* @brief A standard container made up of (key,value) pairs, which can be
|
|
* retrieved based on a key, in logarithmic time.
|
|
*
|
|
* @ingroup Containers
|
|
* @ingroup Assoc_containers
|
|
*
|
|
* Meets the requirements of a <a href="tables.html#65">container</a>, a
|
|
* <a href="tables.html#66">reversible container</a>, and an
|
|
* <a href="tables.html#69">associative container</a> (using unique keys).
|
|
* For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
|
|
* value_type is std::pair<const Key,T>.
|
|
*
|
|
* Maps support bidirectional iterators.
|
|
*
|
|
* @if maint
|
|
* The private tree data is declared exactly the same way for map and
|
|
* multimap; the distinction is made entirely in how the tree functions are
|
|
* called (*_unique versus *_equal, same as the standard).
|
|
* @endif
|
|
*/
|
|
template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
|
|
typename _Alloc = allocator<pair<const _Key, _Tp> > >
|
|
class map
|
|
{
|
|
// concept requirements
|
|
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
|
|
__glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
|
|
|
|
public:
|
|
typedef _Key key_type;
|
|
typedef _Tp mapped_type;
|
|
typedef pair<const _Key, _Tp> value_type;
|
|
typedef _Compare key_compare;
|
|
|
|
class value_compare
|
|
: public binary_function<value_type, value_type, bool>
|
|
{
|
|
friend class map<_Key,_Tp,_Compare,_Alloc>;
|
|
protected:
|
|
_Compare comp;
|
|
value_compare(_Compare __c) : comp(__c) {}
|
|
public:
|
|
bool operator()(const value_type& __x, const value_type& __y) const
|
|
{ return comp(__x.first, __y.first); }
|
|
};
|
|
|
|
private:
|
|
/// @if maint This turns a red-black tree into a [multi]map. @endif
|
|
typedef _Rb_tree<key_type, value_type,
|
|
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
|
|
/// @if maint The actual tree structure. @endif
|
|
_Rep_type _M_t;
|
|
|
|
public:
|
|
// many of these are specified differently in ISO, but the following are
|
|
// "functionally equivalent"
|
|
typedef typename _Rep_type::allocator_type allocator_type;
|
|
typedef typename _Rep_type::reference reference;
|
|
typedef typename _Rep_type::const_reference const_reference;
|
|
typedef typename _Rep_type::iterator iterator;
|
|
typedef typename _Rep_type::const_iterator const_iterator;
|
|
typedef typename _Rep_type::size_type size_type;
|
|
typedef typename _Rep_type::difference_type difference_type;
|
|
typedef typename _Rep_type::pointer pointer;
|
|
typedef typename _Rep_type::const_pointer const_pointer;
|
|
typedef typename _Rep_type::reverse_iterator reverse_iterator;
|
|
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
|
|
|
|
|
|
// [23.3.1.1] construct/copy/destroy
|
|
// (get_allocator() is normally listed in this section, but seems to have
|
|
// been accidentally omitted in the printed standard)
|
|
/**
|
|
* @brief Default constructor creates no elements.
|
|
*/
|
|
map() : _M_t(_Compare(), allocator_type()) { }
|
|
|
|
// for some reason this was made a separate function
|
|
/**
|
|
* @brief Default constructor creates no elements.
|
|
*/
|
|
explicit
|
|
map(const _Compare& __comp, const allocator_type& __a = allocator_type())
|
|
: _M_t(__comp, __a) { }
|
|
|
|
/**
|
|
* @brief Map copy constructor.
|
|
* @param x A %map of identical element and allocator types.
|
|
*
|
|
* The newly-created %map uses a copy of the allocation object used
|
|
* by @a x.
|
|
*/
|
|
map(const map& __x)
|
|
: _M_t(__x._M_t) { }
|
|
|
|
/**
|
|
* @brief Builds a %map from a range.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
*
|
|
* Create a %map consisting of copies of the elements from [first,last).
|
|
* This is linear in N if the range is already sorted, and NlogN
|
|
* otherwise (where N is distance(first,last)).
|
|
*/
|
|
template <typename _InputIterator>
|
|
map(_InputIterator __first, _InputIterator __last)
|
|
: _M_t(_Compare(), allocator_type())
|
|
{ _M_t.insert_unique(__first, __last); }
|
|
|
|
/**
|
|
* @brief Builds a %map from a range.
|
|
* @param first An input iterator.
|
|
* @param last An input iterator.
|
|
* @param comp A comparison functor.
|
|
* @param a An allocator object.
|
|
*
|
|
* Create a %map consisting of copies of the elements from [first,last).
|
|
* This is linear in N if the range is already sorted, and NlogN
|
|
* otherwise (where N is distance(first,last)).
|
|
*/
|
|
template <typename _InputIterator>
|
|
map(_InputIterator __first, _InputIterator __last,
|
|
const _Compare& __comp, const allocator_type& __a = allocator_type())
|
|
: _M_t(__comp, __a)
|
|
{ _M_t.insert_unique(__first, __last); }
|
|
|
|
// FIXME There is no dtor declared, but we should have something generated
|
|
// by Doxygen. I don't know what tags to add to this paragraph to make
|
|
// that happen:
|
|
/**
|
|
* The dtor only erases the elements, and note that if the elements
|
|
* themselves are pointers, the pointed-to memory is not touched in any
|
|
* way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
|
|
/**
|
|
* @brief Map assignment operator.
|
|
* @param x A %map of identical element and allocator types.
|
|
*
|
|
* All the elements of @a x are copied, but unlike the copy constructor,
|
|
* the allocator object is not copied.
|
|
*/
|
|
map&
|
|
operator=(const map& __x)
|
|
{
|
|
_M_t = __x._M_t;
|
|
return *this;
|
|
}
|
|
|
|
/// Get a copy of the memory allocation object.
|
|
allocator_type
|
|
get_allocator() const { return _M_t.get_allocator(); }
|
|
|
|
// iterators
|
|
/**
|
|
* Returns a read/write iterator that points to the first pair in the %map.
|
|
* Iteration is done in ascending order according to the keys.
|
|
*/
|
|
iterator
|
|
begin() { return _M_t.begin(); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points to the first pair
|
|
* in the %map. Iteration is done in ascending order according to the
|
|
* keys.
|
|
*/
|
|
const_iterator
|
|
begin() const { return _M_t.begin(); }
|
|
|
|
/**
|
|
* Returns a read/write iterator that points one past the last pair in the
|
|
* %map. Iteration is done in ascending order according to the keys.
|
|
*/
|
|
iterator
|
|
end() { return _M_t.end(); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) iterator that points one past the last
|
|
* pair in the %map. Iteration is done in ascending order according to the
|
|
* keys.
|
|
*/
|
|
const_iterator
|
|
end() const { return _M_t.end(); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to the last pair in
|
|
* the %map. Iteration is done in descending order according to the keys.
|
|
*/
|
|
reverse_iterator
|
|
rbegin() { return _M_t.rbegin(); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to the last
|
|
* pair in the %map. Iteration is done in descending order according to
|
|
* the keys.
|
|
*/
|
|
const_reverse_iterator
|
|
rbegin() const { return _M_t.rbegin(); }
|
|
|
|
/**
|
|
* Returns a read/write reverse iterator that points to one before the
|
|
* first pair in the %map. Iteration is done in descending order according
|
|
* to the keys.
|
|
*/
|
|
reverse_iterator
|
|
rend() { return _M_t.rend(); }
|
|
|
|
/**
|
|
* Returns a read-only (constant) reverse iterator that points to one
|
|
* before the first pair in the %map. Iteration is done in descending
|
|
* order according to the keys.
|
|
*/
|
|
const_reverse_iterator
|
|
rend() const { return _M_t.rend(); }
|
|
|
|
// capacity
|
|
/** Returns true if the %map is empty. (Thus begin() would equal end().) */
|
|
bool
|
|
empty() const { return _M_t.empty(); }
|
|
|
|
/** Returns the size of the %map. */
|
|
size_type
|
|
size() const { return _M_t.size(); }
|
|
|
|
/** Returns the maximum size of the %map. */
|
|
size_type
|
|
max_size() const { return _M_t.max_size(); }
|
|
|
|
// [23.3.1.2] element access
|
|
/**
|
|
* @brief Subscript ( @c [] ) access to %map data.
|
|
* @param k The key for which data should be retrieved.
|
|
* @return A reference to the data of the (key,data) %pair.
|
|
*
|
|
* Allows for easy lookup with the subscript ( @c [] ) operator. Returns
|
|
* data associated with the key specified in subscript. If the key does
|
|
* not exist, a pair with that key is created using default values, which
|
|
* is then returned.
|
|
*
|
|
* Lookup requires logarithmic time.
|
|
*/
|
|
mapped_type&
|
|
operator[](const key_type& __k)
|
|
{
|
|
// concept requirements
|
|
__glibcpp_function_requires(_DefaultConstructibleConcept<mapped_type>)
|
|
|
|
iterator __i = lower_bound(__k);
|
|
// __i->first is greater than or equivalent to __k.
|
|
if (__i == end() || key_comp()(__k, (*__i).first))
|
|
__i = insert(__i, value_type(__k, mapped_type()));
|
|
return (*__i).second;
|
|
}
|
|
|
|
// modifiers
|
|
/**
|
|
* @brief Attempts to insert a std::pair into the %map.
|
|
* @param x Pair to be inserted (see std::make_pair for easy creation of
|
|
* pairs).
|
|
* @return A pair, of which the first element is an iterator that points
|
|
* to the possibly inserted pair, and the second is a bool that
|
|
* is true if the pair was actually inserted.
|
|
*
|
|
* This function attempts to insert a (key, value) %pair into the %map.
|
|
* A %map relies on unique keys and thus a %pair is only inserted if its
|
|
* first element (the key) is not already present in the %map.
|
|
*
|
|
* Insertion requires logarithmic time.
|
|
*/
|
|
pair<iterator,bool>
|
|
insert(const value_type& __x)
|
|
{ return _M_t.insert_unique(__x); }
|
|
|
|
/**
|
|
* @brief Attempts to insert a std::pair into the %map.
|
|
* @param position An iterator that serves as a hint as to where the
|
|
* pair should be inserted.
|
|
* @param x Pair to be inserted (see std::make_pair for easy creation of
|
|
* pairs).
|
|
* @return An iterator that points to the element with key of @a x (may
|
|
* or may not be the %pair passed in).
|
|
*
|
|
* This function is not concerned about whether the insertion took place,
|
|
* and thus does not return a boolean like the single-argument
|
|
* insert() does. Note that the first parameter is only a hint and can
|
|
* potentially improve the performance of the insertion process. A bad
|
|
* hint would cause no gains in efficiency.
|
|
*
|
|
* See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
|
|
* for more on "hinting".
|
|
*
|
|
* Insertion requires logarithmic time (if the hint is not taken).
|
|
*/
|
|
iterator
|
|
insert(iterator position, const value_type& __x)
|
|
{ return _M_t.insert_unique(position, __x); }
|
|
|
|
/**
|
|
* @brief A template function that attemps to insert a range of elements.
|
|
* @param first Iterator pointing to the start of the range to be
|
|
* inserted.
|
|
* @param last Iterator pointing to the end of the range.
|
|
*
|
|
* Complexity similar to that of the range constructor.
|
|
*/
|
|
template <typename _InputIterator>
|
|
void
|
|
insert(_InputIterator __first, _InputIterator __last)
|
|
{ _M_t.insert_unique(__first, __last); }
|
|
|
|
/**
|
|
* @brief Erases an element from a %map.
|
|
* @param position An iterator pointing to the element to be erased.
|
|
*
|
|
* This function erases an element, pointed to by the given iterator, from
|
|
* a %map. Note that this function only erases the element, and that if
|
|
* the element is itself a pointer, the pointed-to memory is not touched
|
|
* in any way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
void
|
|
erase(iterator __position) { _M_t.erase(__position); }
|
|
|
|
/**
|
|
* @brief Erases elements according to the provided key.
|
|
* @param x Key of element to be erased.
|
|
* @return The number of elements erased.
|
|
*
|
|
* This function erases all the elements located by the given key from
|
|
* a %map.
|
|
* Note that this function only erases the element, and that if
|
|
* the element is itself a pointer, the pointed-to memory is not touched
|
|
* in any way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
size_type
|
|
erase(const key_type& __x) { return _M_t.erase(__x); }
|
|
|
|
/**
|
|
* @brief Erases a [first,last) range of elements from a %map.
|
|
* @param first Iterator pointing to the start of the range to be erased.
|
|
* @param last Iterator pointing to the end of the range to be erased.
|
|
*
|
|
* This function erases a sequence of elements from a %map.
|
|
* Note that this function only erases the element, and that if
|
|
* the element is itself a pointer, the pointed-to memory is not touched
|
|
* in any way. Managing the pointer is the user's responsibilty.
|
|
*/
|
|
void
|
|
erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
|
|
|
|
/**
|
|
* @brief Swaps data with another %map.
|
|
* @param x A %map of the same element and allocator types.
|
|
*
|
|
* This exchanges the elements between two maps in constant time.
|
|
* (It is only swapping a pointer, an integer, and an instance of
|
|
* the @c Compare type (which itself is often stateless and empty), so it
|
|
* should be quite fast.)
|
|
* Note that the global std::swap() function is specialized such that
|
|
* std::swap(m1,m2) will feed to this function.
|
|
*/
|
|
void
|
|
swap(map& __x) { _M_t.swap(__x._M_t); }
|
|
|
|
/**
|
|
* Erases all elements in a %map. Note that this function only erases
|
|
* the elements, and that if the elements themselves are pointers, the
|
|
* pointed-to memory is not touched in any way. Managing the pointer is
|
|
* the user's responsibilty.
|
|
*/
|
|
void
|
|
clear() { _M_t.clear(); }
|
|
|
|
// observers
|
|
/**
|
|
* Returns the key comparison object out of which the %map was constructed.
|
|
*/
|
|
key_compare
|
|
key_comp() const { return _M_t.key_comp(); }
|
|
|
|
/**
|
|
* Returns a value comparison object, built from the key comparison
|
|
* object out of which the %map was constructed.
|
|
*/
|
|
value_compare
|
|
value_comp() const { return value_compare(_M_t.key_comp()); }
|
|
|
|
// [23.3.1.3] map operations
|
|
/**
|
|
* @brief Tries to locate an element in a %map.
|
|
* @param x Key of (key, value) %pair to be located.
|
|
* @return Iterator pointing to sought-after element, or end() if not
|
|
* found.
|
|
*
|
|
* This function takes a key and tries to locate the element with which
|
|
* the key matches. If successful the function returns an iterator
|
|
* pointing to the sought after %pair. If unsuccessful it returns the
|
|
* past-the-end ( @c end() ) iterator.
|
|
*/
|
|
iterator
|
|
find(const key_type& __x) { return _M_t.find(__x); }
|
|
|
|
/**
|
|
* @brief Tries to locate an element in a %map.
|
|
* @param x Key of (key, value) %pair to be located.
|
|
* @return Read-only (constant) iterator pointing to sought-after
|
|
* element, or end() if not found.
|
|
*
|
|
* This function takes a key and tries to locate the element with which
|
|
* the key matches. If successful the function returns a constant iterator
|
|
* pointing to the sought after %pair. If unsuccessful it returns the
|
|
* past-the-end ( @c end() ) iterator.
|
|
*/
|
|
const_iterator
|
|
find(const key_type& __x) const { return _M_t.find(__x); }
|
|
|
|
/**
|
|
* @brief Finds the number of elements with given key.
|
|
* @param x Key of (key, value) pairs to be located.
|
|
* @return Number of elements with specified key.
|
|
*
|
|
* This function only makes sense for multimaps; for map the result will
|
|
* either be 0 (not present) or 1 (present).
|
|
*/
|
|
size_type
|
|
count(const key_type& __x) const
|
|
{ return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
|
|
|
|
/**
|
|
* @brief Finds the beginning of a subsequence matching given key.
|
|
* @param x Key of (key, value) pair to be located.
|
|
* @return Iterator pointing to first element matching given key, or
|
|
* end() if not found.
|
|
*
|
|
* This function is useful only with multimaps. It returns the first
|
|
* element of a subsequence of elements that matches the given key. If
|
|
* unsuccessful it returns an iterator pointing to the first element that
|
|
* has a greater value than given key or end() if no such element exists.
|
|
*/
|
|
iterator
|
|
lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
|
|
|
|
/**
|
|
* @brief Finds the beginning of a subsequence matching given key.
|
|
* @param x Key of (key, value) pair to be located.
|
|
* @return Read-only (constant) iterator pointing to first element
|
|
* matching given key, or end() if not found.
|
|
*
|
|
* This function is useful only with multimaps. It returns the first
|
|
* element of a subsequence of elements that matches the given key. If
|
|
* unsuccessful the iterator will point to the next greatest element or,
|
|
* if no such greater element exists, to end().
|
|
*/
|
|
const_iterator
|
|
lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
|
|
|
|
/**
|
|
* @brief Finds the end of a subsequence matching given key.
|
|
* @param x Key of (key, value) pair to be located.
|
|
* @return Iterator pointing to last element matching given key.
|
|
*
|
|
* This function only makes sense with multimaps.
|
|
*/
|
|
iterator
|
|
upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
|
|
|
|
/**
|
|
* @brief Finds the end of a subsequence matching given key.
|
|
* @param x Key of (key, value) pair to be located.
|
|
* @return Read-only (constant) iterator pointing to last element matching
|
|
* given key.
|
|
*
|
|
* This function only makes sense with multimaps.
|
|
*/
|
|
const_iterator
|
|
upper_bound(const key_type& __x) const
|
|
{ return _M_t.upper_bound(__x); }
|
|
|
|
/**
|
|
* @brief Finds a subsequence matching given key.
|
|
* @param x Key of (key, value) pairs to be located.
|
|
* @return Pair of iterators that possibly points to the subsequence
|
|
* matching given key.
|
|
*
|
|
* This function returns a pair of which the first
|
|
* element possibly points to the first element matching the given key
|
|
* and the second element possibly points to the last element matching the
|
|
* given key. If unsuccessful the first element of the returned pair will
|
|
* contain an iterator pointing to the next greatest element or, if no such
|
|
* greater element exists, to end().
|
|
*
|
|
* This function only makes sense for multimaps.
|
|
*/
|
|
pair<iterator,iterator>
|
|
equal_range(const key_type& __x)
|
|
{ return _M_t.equal_range(__x); }
|
|
|
|
/**
|
|
* @brief Finds a subsequence matching given key.
|
|
* @param x Key of (key, value) pairs to be located.
|
|
* @return Pair of read-only (constant) iterators that possibly points to
|
|
* the subsequence matching given key.
|
|
*
|
|
* This function returns a pair of which the first
|
|
* element possibly points to the first element matching the given key
|
|
* and the second element possibly points to the last element matching the
|
|
* given key. If unsuccessful the first element of the returned pair will
|
|
* contain an iterator pointing to the next greatest element or, if no such
|
|
* a greater element exists, to end().
|
|
*
|
|
* This function only makes sense for multimaps.
|
|
*/
|
|
pair<const_iterator,const_iterator>
|
|
equal_range(const key_type& __x) const
|
|
{ return _M_t.equal_range(__x); }
|
|
|
|
template <typename _K1, typename _T1, typename _C1, typename _A1>
|
|
friend bool operator== (const map<_K1,_T1,_C1,_A1>&,
|
|
const map<_K1,_T1,_C1,_A1>&);
|
|
template <typename _K1, typename _T1, typename _C1, typename _A1>
|
|
friend bool operator< (const map<_K1,_T1,_C1,_A1>&,
|
|
const map<_K1,_T1,_C1,_A1>&);
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief Map equality comparison.
|
|
* @param x A %map.
|
|
* @param y A %map of the same type as @a x.
|
|
* @return True iff the size and elements of the maps are equal.
|
|
*
|
|
* This is an equivalence relation. It is linear in the size of the
|
|
* maps. Maps are considered equivalent if their sizes are equal,
|
|
* and if corresponding elements compare equal.
|
|
*/
|
|
template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
|
|
const map<_Key,_Tp,_Compare,_Alloc>& __y)
|
|
{ return __x._M_t == __y._M_t; }
|
|
|
|
/**
|
|
* @brief Map ordering relation.
|
|
* @param x A %map.
|
|
* @param y A %map of the same type as @a x.
|
|
* @return True iff @a x is lexographically less than @a y.
|
|
*
|
|
* This is a total ordering relation. It is linear in the size of the
|
|
* maps. The elements must be comparable with @c <.
|
|
*
|
|
* See std::lexographical_compare() for how the determination is made.
|
|
*/
|
|
template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
|
|
const map<_Key,_Tp,_Compare,_Alloc>& __y)
|
|
{ return __x._M_t < __y._M_t; }
|
|
|
|
/// Based on operator==
|
|
template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
|
|
const map<_Key,_Tp,_Compare,_Alloc>& __y)
|
|
{ return !(__x == __y); }
|
|
|
|
/// Based on operator<
|
|
template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
|
|
const map<_Key,_Tp,_Compare,_Alloc>& __y)
|
|
{ return __y < __x; }
|
|
|
|
/// Based on operator<
|
|
template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
|
|
const map<_Key,_Tp,_Compare,_Alloc>& __y)
|
|
{ return !(__y < __x); }
|
|
|
|
/// Based on operator<
|
|
template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
|
|
inline bool
|
|
operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
|
|
const map<_Key,_Tp,_Compare,_Alloc>& __y)
|
|
{ return !(__x < __y); }
|
|
|
|
/// See std::map::swap().
|
|
template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
|
|
inline void
|
|
swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
|
|
{ __x.swap(__y); }
|
|
} // namespace std
|
|
|
|
#endif /* __GLIBCPP_INTERNAL_MAP_H */
|