mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-02-05 09:29:49 +08:00
ecb9f2236c
2015-06-04 Andrew MacLeod <amacleod@redhat.com> * coretypes.h: Include machmode.h, signop.h, wide-int.h, double-int.h, real.h, and fixed-value.h when included in host source files. * double-int.h: Remove redundant #includes listed above. * fixed-value.h: Likewise. * real.h: Likewise. * wide-int.h: Likewise. * inchash.h: Likewise. * rtl.h: Add some include files When included from a generator file. * target.h: Remove wide-int.h and insn-modes.h from the include list. * internal-fn.h: Don't include coretypes.h. * alias.c: Adjust includes for restructured coretypes.h. * asan.c: Likewise. * attribs.c: Likewise. * auto-inc-dec.c: Likewise. * auto-profile.c: Likewise. * bb-reorder.c: Likewise. * bt-load.c: Likewise. * builtins.c: Likewise. * caller-save.c: Likewise. * calls.c: Likewise. * ccmp.c: Likewise. * cfg.c: Likewise. * cfganal.c: Likewise. * cfgbuild.c: Likewise. * cfgcleanup.c: Likewise. * cfgexpand.c: Likewise. * cfghooks.c: Likewise. * cfgloop.c: Likewise. * cfgloop.h: Likewise. * cfgloopanal.c: Likewise. * cfgloopmanip.c: Likewise. * cfgrtl.c: Likewise. * cgraph.c: Likewise. * cgraphbuild.c: Likewise. * cgraphclones.c: Likewise. * cgraphunit.c: Likewise. * cilk-common.c: Likewise. * combine-stack-adj.c: Likewise. * combine.c: Likewise. * compare-elim.c: Likewise. * convert.c: Likewise. * coverage.c: Likewise. * cppbuiltin.c: Likewise. * cprop.c: Likewise. * cse.c: Likewise. * cselib.c: Likewise. * data-streamer-in.c: Likewise. * data-streamer-out.c: Likewise. * data-streamer.c: Likewise. * dbxout.c: Likewise. * dce.c: Likewise. * ddg.c: Likewise. * debug.c: Likewise. * df-core.c: Likewise. * df-problems.c: Likewise. * df-scan.c: Likewise. * df.h: Likewise. * dfp.c: Likewise. * dojump.c: Likewise. * dominance.c: Likewise. * domwalk.c: Likewise. * double-int.c: Likewise. * dse.c: Likewise. * dumpfile.c: Likewise. * dwarf2asm.c: Likewise. * dwarf2cfi.c: Likewise. * dwarf2out.c: Likewise. * dwarf2out.h: Likewise. * emit-rtl.c: Likewise. * et-forest.c: Likewise. * except.c: Likewise. * explow.c: Likewise. * expmed.c: Likewise. * expr.c: Likewise. * final.c: Likewise. * fixed-value.c: Likewise. * fold-const.c: Likewise. * function.c: Likewise. * fwprop.c: Likewise. * gcc-plugin.h: Likewise. * gcse.c: Likewise. * generic-match-head.c: Likewise. * ggc-page.c: Likewise. * gimple-builder.c: Likewise. * gimple-expr.c: Likewise. * gimple-fold.c: Likewise. * gimple-iterator.c: Likewise. * gimple-low.c: Likewise. * gimple-match-head.c: Likewise. * gimple-pretty-print.c: Likewise. * gimple-ssa-isolate-paths.c: Likewise. * gimple-ssa-strength-reduction.c: Likewise. * gimple-streamer-in.c: Likewise. * gimple-streamer-out.c: Likewise. * gimple-streamer.h: Likewise. * gimple-walk.c: Likewise. * gimple.c: Likewise. * gimplify-me.c: Likewise. * gimplify.c: Likewise. * godump.c: Likewise. * graph.c: Likewise. * graphite-blocking.c: Likewise. * graphite-dependences.c: Likewise. * graphite-interchange.c: Likewise. * graphite-isl-ast-to-gimple.c: Likewise. * graphite-optimize-isl.c: Likewise. * graphite-poly.c: Likewise. * graphite-scop-detection.c: Likewise. * graphite-sese-to-poly.c: Likewise. * graphite.c: Likewise. * haifa-sched.c: Likewise. * hooks.h: Likewise. * hw-doloop.c: Likewise. * ifcvt.c: Likewise. * incpath.c: Likewise. * init-regs.c: Likewise. * internal-fn.c: Likewise. * ipa-chkp.c: Likewise. * ipa-comdats.c: Likewise. * ipa-cp.c: Likewise. * ipa-devirt.c: Likewise. * ipa-icf-gimple.c: Likewise. * ipa-icf.c: Likewise. * ipa-inline-analysis.c: Likewise. * ipa-inline-transform.c: Likewise. * ipa-inline.c: Likewise. * ipa-polymorphic-call.c: Likewise. * ipa-profile.c: Likewise. * ipa-prop.c: Likewise. * ipa-pure-const.c: Likewise. * ipa-ref.c: Likewise. * ipa-reference.c: Likewise. * ipa-split.c: Likewise. * ipa-utils.c: Likewise. * ipa-visibility.c: Likewise. * ipa.c: Likewise. * ira-build.c: Likewise. * ira-color.c: Likewise. * ira-conflicts.c: Likewise. * ira-costs.c: Likewise. * ira-emit.c: Likewise. * ira-lives.c: Likewise. * ira.c: Likewise. * jump.c: Likewise. * langhooks.c: Likewise. * lcm.c: Likewise. * loop-doloop.c: Likewise. * loop-init.c: Likewise. * loop-invariant.c: Likewise. * loop-iv.c: Likewise. * loop-unroll.c: Likewise. * lower-subreg.c: Likewise. * lra-assigns.c: Likewise. * lra-coalesce.c: Likewise. * lra-constraints.c: Likewise. * lra-eliminations.c: Likewise. * lra-lives.c: Likewise. * lra-remat.c: Likewise. * lra-spills.c: Likewise. * lra.c: Likewise. * lto-cgraph.c: Likewise. * lto-compress.c: Likewise. * lto-opts.c: Likewise. * lto-section-in.c: Likewise. * lto-section-out.c: Likewise. * lto-streamer-in.c: Likewise. * lto-streamer-out.c: Likewise. * lto-streamer.c: Likewise. * mcf.c: Likewise. * mode-switching.c: Likewise. * modulo-sched.c: Likewise. * omega.c: Likewise. * omp-low.c: Likewise. * optabs.c: Likewise. * opts-global.c: Likewise. * passes.c: Likewise. * plugin.c: Likewise. * postreload-gcse.c: Likewise. * postreload.c: Likewise. * predict.c: Likewise. * print-rtl.c: Likewise. * print-tree.c: Likewise. * profile.c: Likewise. * real.c: Likewise. * realmpfr.c: Likewise. * realmpfr.h: Likewise. * recog.c: Likewise. * ree.c: Likewise. * reg-stack.c: Likewise. * regcprop.c: Likewise. * reginfo.c: Likewise. * regrename.c: Likewise. * regs.h: Likewise. * regstat.c: Likewise. * reload.c: Likewise. * reload1.c: Likewise. * reorg.c: Likewise. * resource.c: Likewise. * rtl-chkp.c: Likewise. * rtlanal.c: Likewise. * rtlhooks.c: Likewise. * sanopt.c: Likewise. * sched-deps.c: Likewise. * sched-ebb.c: Likewise. * sched-rgn.c: Likewise. * sched-vis.c: Likewise. * sdbout.c: Likewise. * sel-sched-dump.c: Likewise. * sel-sched-ir.c: Likewise. * sel-sched.c: Likewise. * sese.c: Likewise. * shrink-wrap.c: Likewise. * shrink-wrap.h: Likewise. * simplify-rtx.c: Likewise. * stack-ptr-mod.c: Likewise. * statistics.c: Likewise. * stmt.c: Likewise. * stor-layout.c: Likewise. * store-motion.c: Likewise. * stringpool.c: Likewise. * symtab.c: Likewise. * target-globals.c: Likewise. * targhooks.c: Likewise. * toplev.c: Likewise. * tracer.c: Likewise. * trans-mem.c: Likewise. * tree-affine.c: Likewise. * tree-affine.h: Likewise. * tree-browser.c: Likewise. * tree-call-cdce.c: Likewise. * tree-cfg.c: Likewise. * tree-cfgcleanup.c: Likewise. * tree-chkp-opt.c: Likewise. * tree-chkp.c: Likewise. * tree-chrec.c: Likewise. * tree-complex.c: Likewise. * tree-data-ref.c: Likewise. * tree-dfa.c: Likewise. * tree-diagnostic.c: Likewise. * tree-dump.c: Likewise. * tree-eh.c: Likewise. * tree-emutls.c: Likewise. * tree-if-conv.c: Likewise. * tree-inline.c: Likewise. * tree-into-ssa.c: Likewise. * tree-iterator.c: Likewise. * tree-loop-distribution.c: Likewise. * tree-nested.c: Likewise. * tree-nrv.c: Likewise. * tree-object-size.c: Likewise. * tree-outof-ssa.c: Likewise. * tree-parloops.c: Likewise. * tree-phinodes.c: Likewise. * tree-predcom.c: Likewise. * tree-pretty-print.c: Likewise. * tree-pretty-print.h: Likewise. * tree-profile.c: Likewise. * tree-scalar-evolution.c: Likewise. * tree-sra.c: Likewise. * tree-ssa-address.c: Likewise. * tree-ssa-alias.c: Likewise. * tree-ssa-ccp.c: Likewise. * tree-ssa-coalesce.c: Likewise. * tree-ssa-copy.c: Likewise. * tree-ssa-copyrename.c: Likewise. * tree-ssa-dce.c: Likewise. * tree-ssa-dom.c: Likewise. * tree-ssa-dse.c: Likewise. * tree-ssa-forwprop.c: Likewise. * tree-ssa-ifcombine.c: Likewise. * tree-ssa-live.c: Likewise. * tree-ssa-loop-ch.c: Likewise. * tree-ssa-loop-im.c: Likewise. * tree-ssa-loop-ivcanon.c: Likewise. * tree-ssa-loop-ivopts.c: Likewise. * tree-ssa-loop-manip.c: Likewise. * tree-ssa-loop-niter.c: Likewise. * tree-ssa-loop-prefetch.c: Likewise. * tree-ssa-loop-unswitch.c: Likewise. * tree-ssa-loop.c: Likewise. * tree-ssa-loop.h: Likewise. * tree-ssa-math-opts.c: Likewise. * tree-ssa-operands.c: Likewise. * tree-ssa-phiopt.c: Likewise. * tree-ssa-phiprop.c: Likewise. * tree-ssa-pre.c: Likewise. * tree-ssa-propagate.c: Likewise. * tree-ssa-reassoc.c: Likewise. * tree-ssa-sccvn.c: Likewise. * tree-ssa-scopedtables.c: Likewise. * tree-ssa-sink.c: Likewise. * tree-ssa-strlen.c: Likewise. * tree-ssa-structalias.c: Likewise. * tree-ssa-tail-merge.c: Likewise. * tree-ssa-ter.c: Likewise. * tree-ssa-threadedge.c: Likewise. * tree-ssa-threadupdate.c: Likewise. * tree-ssa-uncprop.c: Likewise. * tree-ssa-uninit.c: Likewise. * tree-ssa.c: Likewise. * tree-ssanames.c: Likewise. * tree-stdarg.c: Likewise. * tree-streamer-in.c: Likewise. * tree-streamer-out.c: Likewise. * tree-streamer.c: Likewise. * tree-switch-conversion.c: Likewise. * tree-tailcall.c: Likewise. * tree-vect-data-refs.c: Likewise. * tree-vect-generic.c: Likewise. * tree-vect-loop-manip.c: Likewise. * tree-vect-loop.c: Likewise. * tree-vect-patterns.c: Likewise. * tree-vect-slp.c: Likewise. * tree-vect-stmts.c: Likewise. * tree-vectorizer.c: Likewise. * tree-vrp.c: Likewise. * tree.c: Likewise. * tsan.c: Likewise. * ubsan.c: Likewise. * valtrack.c: Likewise. * value-prof.c: Likewise. * var-tracking.c: Likewise. * varasm.c: Likewise. * varpool.c: Likewise. * vmsdbgout.c: Likewise. * vtable-verify.c: Likewise. * web.c: Likewise. * wide-int-print.cc: Likewise. * wide-int-print.h: Likewise. * wide-int.cc: Likewise. * xcoffout.c: Likewise. * config/aarch64/aarch64-builtins.c: Likewise. * config/aarch64/aarch64.c: Likewise. * config/aarch64/cortex-a57-fma-steering.c: Likewise. * config/alpha/alpha.c: Likewise. * config/arc/arc.c: Likewise. * config/arm/aarch-common.c: Likewise. * config/arm/arm-builtins.c: Likewise. * config/arm/arm-c.c: Likewise. * config/arm/arm.c: Likewise. * config/avr/avr-c.c: Likewise. * config/avr/avr-log.c: Likewise. * config/avr/avr.c: Likewise. * config/bfin/bfin.c: Likewise. * config/c6x/c6x.c: Likewise. * config/cr16/cr16.c: Likewise. * config/cris/cris.c: Likewise. * config/darwin-c.c: Likewise. * config/darwin.c: Likewise. * config/default-c.c: Likewise. * config/epiphany/epiphany.c: Likewise. * config/epiphany/mode-switch-use.c: Likewise. * config/epiphany/resolve-sw-modes.c: Likewise. * config/fr30/fr30.c: Likewise. * config/frv/frv.c: Likewise. * config/ft32/ft32.c: Likewise. * config/glibc-c.c: Likewise. * config/h8300/h8300.c: Likewise. * config/i386/i386-c.c: Likewise. * config/i386/i386.c: Likewise. * config/i386/msformat-c.c: Likewise. * config/i386/winnt-cxx.c: Likewise. * config/i386/winnt-stubs.c: Likewise. * config/i386/winnt.c: Likewise. * config/ia64/ia64-c.c: Likewise. * config/ia64/ia64.c: Likewise. * config/iq2000/iq2000.c: Likewise. * config/lm32/lm32.c: Likewise. * config/m32c/m32c-pragma.c: Likewise. * config/m32c/m32c.c: Likewise. * config/m32r/m32r.c: Likewise. * config/m68k/m68k.c: Likewise. * config/mcore/mcore.c: Likewise. * config/mep/mep-pragma.c: Likewise. * config/mep/mep.c: Likewise. * config/microblaze/microblaze-c.c: Likewise. * config/microblaze/microblaze.c: Likewise. * config/mips/mips.c: Likewise. * config/mmix/mmix.c: Likewise. * config/mn10300/mn10300.c: Likewise. * config/moxie/moxie.c: Likewise. * config/msp430/msp430-c.c: Likewise. * config/msp430/msp430.c: Likewise. * config/nds32/nds32-cost.c: Likewise. * config/nds32/nds32-fp-as-gp.c: Likewise. * config/nds32/nds32-intrinsic.c: Likewise. * config/nds32/nds32-isr.c: Likewise. * config/nds32/nds32-md-auxiliary.c: Likewise. * config/nds32/nds32-memory-manipulation.c: Likewise. * config/nds32/nds32-pipelines-auxiliary.c: Likewise. * config/nds32/nds32-predicates.c: Likewise. * config/nds32/nds32.c: Likewise. * config/nios2/nios2.c: Likewise. * config/nvptx/nvptx.c: Likewise. * config/pa/pa.c: Likewise. * config/pdp11/pdp11.c: Likewise. * config/rl78/rl78-c.c: Likewise. * config/rl78/rl78.c: Likewise. * config/rs6000/rs6000-c.c: Likewise. * config/rs6000/rs6000.c: Likewise. * config/rx/rx.c: Likewise. * config/s390/s390-c.c: Likewise. * config/s390/s390.c: Likewise. * config/sh/sh-c.c: Likewise. * config/sh/sh-mem.cc: Likewise. * config/sh/sh.c: Likewise. * config/sh/sh_optimize_sett_clrt.cc: Likewise. * config/sh/sh_treg_combine.cc: Likewise. * config/sol2-c.c: Likewise. * config/sol2-cxx.c: Likewise. * config/sol2-stubs.c: Likewise. * config/sol2.c: Likewise. * config/sparc/sparc-c.c: Likewise. * config/sparc/sparc.c: Likewise. * config/spu/spu-c.c: Likewise. * config/spu/spu.c: Likewise. * config/stormy16/stormy16.c: Likewise. * config/tilegx/mul-tables.c: Likewise. * config/tilegx/tilegx-c.c: Likewise. * config/tilegx/tilegx.c: Likewise. * config/tilepro/mul-tables.c: Likewise. * config/tilepro/tilepro-c.c: Likewise. * config/tilepro/tilepro.c: Likewise. * config/v850/v850-c.c: Likewise. * config/v850/v850.c: Likewise. * config/vax/vax.c: Likewise. * config/visium/visium.c: Likewise. * config/vms/vms-c.c: Likewise. * config/vms/vms.c: Likewise. * config/vxworks.c: Likewise. * config/winnt-c.c: Likewise. * config/xtensa/xtensa.c: Likewise. * common/config/bfin/bfin-common.c: Likewise. ada 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * gcc-interface/cuintp.c: Adjust includes for restructured coretypes.h. * gcc-interface/decl.c: Likewise. * gcc-interface/misc.c: Likewise. * gcc-interface/targtyps.c: Likewise. * gcc-interface/trans.c: Likewise. * gcc-interface/utils.c: Likewise. * gcc-interface/utils2.c: Likewise. c 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * c-array-notation.c: Adjust includes for restructured coretypes.h. * c-aux-info.c: Likewise. * c-convert.c: Likewise. * c-decl.c: Likewise. * c-errors.c: Likewise. * c-lang.c: Likewise. * c-objc-common.c: Likewise. * c-parser.c: Likewise. * c-typeck.c: Likewise. c-family 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * array-notation-common.c: Adjust includes for restructured coretypes.h. * c-ada-spec.c: Likewise. * c-cilkplus.c: Likewise. * c-common.c: Likewise. * c-common.h: Likewise. * c-cppbuiltin.c: Likewise. * c-dump.c: Likewise. * c-format.c: Likewise. * c-gimplify.c: Likewise. * c-indentation.c: Likewise. * c-lex.c: Likewise. * c-omp.c: Likewise. * c-opts.c: Likewise. * c-pch.c: Likewise. * c-ppoutput.c: Likewise. * c-pragma.c: Likewise. * c-pretty-print.c: Likewise. * c-semantics.c: Likewise. * c-ubsan.c: Likewise. * cilk.c: Likewise. * stub-objc.c: Likewise. cp 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * call.c: Adjust includes for restructured coretypes.h. * class.c: Likewise. * constexpr.c: Likewise. * cp-array-notation.c: Likewise. * cp-gimplify.c: Likewise. * cp-lang.c: Likewise. * cp-objcp-common.c: Likewise. * cp-tree.h: Likewise. * cp-ubsan.c: Likewise. * cvt.c: Likewise. * decl.c: Likewise. * decl2.c: Likewise. * dump.c: Likewise. * error.c: Likewise. * except.c: Likewise. * expr.c: Likewise. * friend.c: Likewise. * init.c: Likewise. * lambda.c: Likewise. * lex.c: Likewise. * mangle.c: Likewise. * method.c: Likewise. * name-lookup.c: Likewise. * optimize.c: Likewise. * parser.c: Likewise. * pt.c: Likewise. * ptree.c: Likewise. * repo.c: Likewise. * rtti.c: Likewise. * search.c: Likewise. * semantics.c: Likewise. * tree.c: Likewise. * typeck.c: Likewise. * typeck2.c: Likewise. * vtable-class-hierarchy.c: Likewise. fortran 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * convert.c: Adjust includes for restructured coretypes.h. * cpp.c: Likewise. * decl.c: Likewise. * f95-lang.c: Likewise. * iresolve.c: Likewise. * match.c: Likewise. * module.c: Likewise. * options.c: Likewise. * target-memory.c: Likewise. * trans-array.c: Likewise. * trans-common.c: Likewise. * trans-const.c: Likewise. * trans-decl.c: Likewise. * trans-expr.c: Likewise. * trans-intrinsic.c: Likewise. * trans-io.c: Likewise. * trans-openmp.c: Likewise. * trans-stmt.c: Likewise. * trans-types.c: Likewise. * trans.c: Likewise. go 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * go-backend.c: Adjust includes for restructured coretypes.h. * go-c.h: Likewise. * go-gcc.cc: Likewise. * go-lang.c: Likewise. java 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * boehm.c: Adjust includes for restructured coretypes.h. * builtins.c: Likewise. * class.c: Likewise. * constants.c: Likewise. * decl.c: Likewise. * except.c: Likewise. * expr.c: Likewise. * java-gimplify.c: Likewise. * jcf-dump.c: Likewise. * jcf-io.c: Likewise. * jcf-parse.c: Likewise. * jvgenmain.c: Likewise. * lang.c: Likewise. * mangle.c: Likewise. * mangle_name.c: Likewise. * resource.c: Likewise. * typeck.c: Likewise. * verify-glue.c: Likewise. * verify-impl.c: Likewise. jit 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * dummy-frontend.c: Adjust includes for restructured coretypes.h. * jit-common.h: Likewise. * jit-playback.c: Likewise. lto 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * lto-lang.c: Adjust includes for restructured coretypes.h. * lto-object.c: Likewise. * lto-partition.c: Likewise. * lto-symtab.c: Likewise. * lto.c: Likewise. objc 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * objc-act.c: Adjust includes for restructured coretypes.h. * objc-encoding.c: Likewise. * objc-gnu-runtime-abi-01.c: Likewise. * objc-lang.c: Likewise. * objc-map.c: Likewise. * objc-next-runtime-abi-01.c: Likewise. * objc-next-runtime-abi-02.c: Likewise. * objc-runtime-shared-support.c: Likewise. objcp 2015-06-04 Andrew MacLeod <amacleod@redhat.com> * objcp-decl.c: Adjust includes for restructured coretypes.h. * objcp-lang.c: Likewise. From-SVN: r224136
6272 lines
188 KiB
C
6272 lines
188 KiB
C
/* Statement simplification on GIMPLE.
|
|
Copyright (C) 2010-2015 Free Software Foundation, Inc.
|
|
Split out from tree-ssa-ccp.c.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "hash-set.h"
|
|
#include "vec.h"
|
|
#include "input.h"
|
|
#include "alias.h"
|
|
#include "symtab.h"
|
|
#include "inchash.h"
|
|
#include "tree.h"
|
|
#include "fold-const.h"
|
|
#include "stringpool.h"
|
|
#include "hashtab.h"
|
|
#include "hard-reg-set.h"
|
|
#include "function.h"
|
|
#include "rtl.h"
|
|
#include "flags.h"
|
|
#include "statistics.h"
|
|
#include "insn-config.h"
|
|
#include "expmed.h"
|
|
#include "dojump.h"
|
|
#include "explow.h"
|
|
#include "calls.h"
|
|
#include "emit-rtl.h"
|
|
#include "varasm.h"
|
|
#include "stmt.h"
|
|
#include "expr.h"
|
|
#include "stor-layout.h"
|
|
#include "dumpfile.h"
|
|
#include "bitmap.h"
|
|
#include "predict.h"
|
|
#include "dominance.h"
|
|
#include "basic-block.h"
|
|
#include "tree-ssa-alias.h"
|
|
#include "internal-fn.h"
|
|
#include "gimple-fold.h"
|
|
#include "gimple-expr.h"
|
|
#include "is-a.h"
|
|
#include "gimple.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-ssanames.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-dfa.h"
|
|
#include "tree-ssa.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "target.h"
|
|
#include "hash-map.h"
|
|
#include "plugin-api.h"
|
|
#include "ipa-ref.h"
|
|
#include "cgraph.h"
|
|
#include "ipa-utils.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "tree-ssa-address.h"
|
|
#include "langhooks.h"
|
|
#include "gimplify-me.h"
|
|
#include "dbgcnt.h"
|
|
#include "builtins.h"
|
|
#include "output.h"
|
|
#include "tree-eh.h"
|
|
#include "gimple-match.h"
|
|
#include "tree-phinodes.h"
|
|
#include "ssa-iterators.h"
|
|
|
|
/* Return true when DECL can be referenced from current unit.
|
|
FROM_DECL (if non-null) specify constructor of variable DECL was taken from.
|
|
We can get declarations that are not possible to reference for various
|
|
reasons:
|
|
|
|
1) When analyzing C++ virtual tables.
|
|
C++ virtual tables do have known constructors even
|
|
when they are keyed to other compilation unit.
|
|
Those tables can contain pointers to methods and vars
|
|
in other units. Those methods have both STATIC and EXTERNAL
|
|
set.
|
|
2) In WHOPR mode devirtualization might lead to reference
|
|
to method that was partitioned elsehwere.
|
|
In this case we have static VAR_DECL or FUNCTION_DECL
|
|
that has no corresponding callgraph/varpool node
|
|
declaring the body.
|
|
3) COMDAT functions referred by external vtables that
|
|
we devirtualize only during final compilation stage.
|
|
At this time we already decided that we will not output
|
|
the function body and thus we can't reference the symbol
|
|
directly. */
|
|
|
|
static bool
|
|
can_refer_decl_in_current_unit_p (tree decl, tree from_decl)
|
|
{
|
|
varpool_node *vnode;
|
|
struct cgraph_node *node;
|
|
symtab_node *snode;
|
|
|
|
if (DECL_ABSTRACT_P (decl))
|
|
return false;
|
|
|
|
/* We are concerned only about static/external vars and functions. */
|
|
if ((!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
|
|
|| (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL))
|
|
return true;
|
|
|
|
/* Static objects can be referred only if they was not optimized out yet. */
|
|
if (!TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl))
|
|
{
|
|
/* Before we start optimizing unreachable code we can be sure all
|
|
static objects are defined. */
|
|
if (symtab->function_flags_ready)
|
|
return true;
|
|
snode = symtab_node::get (decl);
|
|
if (!snode || !snode->definition)
|
|
return false;
|
|
node = dyn_cast <cgraph_node *> (snode);
|
|
return !node || !node->global.inlined_to;
|
|
}
|
|
|
|
/* We will later output the initializer, so we can refer to it.
|
|
So we are concerned only when DECL comes from initializer of
|
|
external var or var that has been optimized out. */
|
|
if (!from_decl
|
|
|| TREE_CODE (from_decl) != VAR_DECL
|
|
|| (!DECL_EXTERNAL (from_decl)
|
|
&& (vnode = varpool_node::get (from_decl)) != NULL
|
|
&& vnode->definition)
|
|
|| (flag_ltrans
|
|
&& (vnode = varpool_node::get (from_decl)) != NULL
|
|
&& vnode->in_other_partition))
|
|
return true;
|
|
/* We are folding reference from external vtable. The vtable may reffer
|
|
to a symbol keyed to other compilation unit. The other compilation
|
|
unit may be in separate DSO and the symbol may be hidden. */
|
|
if (DECL_VISIBILITY_SPECIFIED (decl)
|
|
&& DECL_EXTERNAL (decl)
|
|
&& DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT
|
|
&& (!(snode = symtab_node::get (decl)) || !snode->in_other_partition))
|
|
return false;
|
|
/* When function is public, we always can introduce new reference.
|
|
Exception are the COMDAT functions where introducing a direct
|
|
reference imply need to include function body in the curren tunit. */
|
|
if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
|
|
return true;
|
|
/* We have COMDAT. We are going to check if we still have definition
|
|
or if the definition is going to be output in other partition.
|
|
Bypass this when gimplifying; all needed functions will be produced.
|
|
|
|
As observed in PR20991 for already optimized out comdat virtual functions
|
|
it may be tempting to not necessarily give up because the copy will be
|
|
output elsewhere when corresponding vtable is output.
|
|
This is however not possible - ABI specify that COMDATs are output in
|
|
units where they are used and when the other unit was compiled with LTO
|
|
it is possible that vtable was kept public while the function itself
|
|
was privatized. */
|
|
if (!symtab->function_flags_ready)
|
|
return true;
|
|
|
|
snode = symtab_node::get (decl);
|
|
if (!snode
|
|
|| ((!snode->definition || DECL_EXTERNAL (decl))
|
|
&& (!snode->in_other_partition
|
|
|| (!snode->forced_by_abi && !snode->force_output))))
|
|
return false;
|
|
node = dyn_cast <cgraph_node *> (snode);
|
|
return !node || !node->global.inlined_to;
|
|
}
|
|
|
|
/* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into
|
|
acceptable form for is_gimple_min_invariant.
|
|
FROM_DECL (if non-NULL) specify variable whose constructor contains CVAL. */
|
|
|
|
tree
|
|
canonicalize_constructor_val (tree cval, tree from_decl)
|
|
{
|
|
tree orig_cval = cval;
|
|
STRIP_NOPS (cval);
|
|
if (TREE_CODE (cval) == POINTER_PLUS_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST)
|
|
{
|
|
tree ptr = TREE_OPERAND (cval, 0);
|
|
if (is_gimple_min_invariant (ptr))
|
|
cval = build1_loc (EXPR_LOCATION (cval),
|
|
ADDR_EXPR, TREE_TYPE (ptr),
|
|
fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)),
|
|
ptr,
|
|
fold_convert (ptr_type_node,
|
|
TREE_OPERAND (cval, 1))));
|
|
}
|
|
if (TREE_CODE (cval) == ADDR_EXPR)
|
|
{
|
|
tree base = NULL_TREE;
|
|
if (TREE_CODE (TREE_OPERAND (cval, 0)) == COMPOUND_LITERAL_EXPR)
|
|
{
|
|
base = COMPOUND_LITERAL_EXPR_DECL (TREE_OPERAND (cval, 0));
|
|
if (base)
|
|
TREE_OPERAND (cval, 0) = base;
|
|
}
|
|
else
|
|
base = get_base_address (TREE_OPERAND (cval, 0));
|
|
if (!base)
|
|
return NULL_TREE;
|
|
|
|
if ((TREE_CODE (base) == VAR_DECL
|
|
|| TREE_CODE (base) == FUNCTION_DECL)
|
|
&& !can_refer_decl_in_current_unit_p (base, from_decl))
|
|
return NULL_TREE;
|
|
if (TREE_CODE (base) == VAR_DECL)
|
|
TREE_ADDRESSABLE (base) = 1;
|
|
else if (TREE_CODE (base) == FUNCTION_DECL)
|
|
{
|
|
/* Make sure we create a cgraph node for functions we'll reference.
|
|
They can be non-existent if the reference comes from an entry
|
|
of an external vtable for example. */
|
|
cgraph_node::get_create (base);
|
|
}
|
|
/* Fixup types in global initializers. */
|
|
if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
|
|
cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));
|
|
|
|
if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
|
|
cval = fold_convert (TREE_TYPE (orig_cval), cval);
|
|
return cval;
|
|
}
|
|
if (TREE_OVERFLOW_P (cval))
|
|
return drop_tree_overflow (cval);
|
|
return orig_cval;
|
|
}
|
|
|
|
/* If SYM is a constant variable with known value, return the value.
|
|
NULL_TREE is returned otherwise. */
|
|
|
|
tree
|
|
get_symbol_constant_value (tree sym)
|
|
{
|
|
tree val = ctor_for_folding (sym);
|
|
if (val != error_mark_node)
|
|
{
|
|
if (val)
|
|
{
|
|
val = canonicalize_constructor_val (unshare_expr (val), sym);
|
|
if (val && is_gimple_min_invariant (val))
|
|
return val;
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
/* Variables declared 'const' without an initializer
|
|
have zero as the initializer if they may not be
|
|
overridden at link or run time. */
|
|
if (!val
|
|
&& is_gimple_reg_type (TREE_TYPE (sym)))
|
|
return build_zero_cst (TREE_TYPE (sym));
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
|
|
/* Subroutine of fold_stmt. We perform several simplifications of the
|
|
memory reference tree EXPR and make sure to re-gimplify them properly
|
|
after propagation of constant addresses. IS_LHS is true if the
|
|
reference is supposed to be an lvalue. */
|
|
|
|
static tree
|
|
maybe_fold_reference (tree expr, bool is_lhs)
|
|
{
|
|
tree result;
|
|
|
|
if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
|
|| TREE_CODE (expr) == REALPART_EXPR
|
|
|| TREE_CODE (expr) == IMAGPART_EXPR)
|
|
&& CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
|
|
return fold_unary_loc (EXPR_LOCATION (expr),
|
|
TREE_CODE (expr),
|
|
TREE_TYPE (expr),
|
|
TREE_OPERAND (expr, 0));
|
|
else if (TREE_CODE (expr) == BIT_FIELD_REF
|
|
&& CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
|
|
return fold_ternary_loc (EXPR_LOCATION (expr),
|
|
TREE_CODE (expr),
|
|
TREE_TYPE (expr),
|
|
TREE_OPERAND (expr, 0),
|
|
TREE_OPERAND (expr, 1),
|
|
TREE_OPERAND (expr, 2));
|
|
|
|
if (!is_lhs
|
|
&& (result = fold_const_aggregate_ref (expr))
|
|
&& is_gimple_min_invariant (result))
|
|
return result;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
/* Attempt to fold an assignment statement pointed-to by SI. Returns a
|
|
replacement rhs for the statement or NULL_TREE if no simplification
|
|
could be made. It is assumed that the operands have been previously
|
|
folded. */
|
|
|
|
static tree
|
|
fold_gimple_assign (gimple_stmt_iterator *si)
|
|
{
|
|
gimple stmt = gsi_stmt (*si);
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
tree result = NULL_TREE;
|
|
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
if (TREE_CLOBBER_P (rhs))
|
|
return NULL_TREE;
|
|
|
|
if (REFERENCE_CLASS_P (rhs))
|
|
return maybe_fold_reference (rhs, false);
|
|
|
|
else if (TREE_CODE (rhs) == OBJ_TYPE_REF)
|
|
{
|
|
tree val = OBJ_TYPE_REF_EXPR (rhs);
|
|
if (is_gimple_min_invariant (val))
|
|
return val;
|
|
else if (flag_devirtualize && virtual_method_call_p (rhs))
|
|
{
|
|
bool final;
|
|
vec <cgraph_node *>targets
|
|
= possible_polymorphic_call_targets (rhs, stmt, &final);
|
|
if (final && targets.length () <= 1 && dbg_cnt (devirt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
location_t loc = gimple_location_safe (stmt);
|
|
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
|
|
"resolving virtual function address "
|
|
"reference to function %s\n",
|
|
targets.length () == 1
|
|
? targets[0]->name ()
|
|
: "NULL");
|
|
}
|
|
if (targets.length () == 1)
|
|
{
|
|
val = fold_convert (TREE_TYPE (val),
|
|
build_fold_addr_expr_loc
|
|
(loc, targets[0]->decl));
|
|
STRIP_USELESS_TYPE_CONVERSION (val);
|
|
}
|
|
else
|
|
/* We can not use __builtin_unreachable here because it
|
|
can not have address taken. */
|
|
val = build_int_cst (TREE_TYPE (val), 0);
|
|
return val;
|
|
}
|
|
}
|
|
|
|
}
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR)
|
|
{
|
|
tree ref = TREE_OPERAND (rhs, 0);
|
|
tree tem = maybe_fold_reference (ref, true);
|
|
if (tem
|
|
&& TREE_CODE (tem) == MEM_REF
|
|
&& integer_zerop (TREE_OPERAND (tem, 1)))
|
|
result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0));
|
|
else if (tem)
|
|
result = fold_convert (TREE_TYPE (rhs),
|
|
build_fold_addr_expr_loc (loc, tem));
|
|
else if (TREE_CODE (ref) == MEM_REF
|
|
&& integer_zerop (TREE_OPERAND (ref, 1)))
|
|
result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0));
|
|
}
|
|
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
|
|
&& (CONSTRUCTOR_NELTS (rhs)
|
|
== TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
|
|
{
|
|
/* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
|
|
unsigned i;
|
|
tree val;
|
|
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
|
if (TREE_CODE (val) != INTEGER_CST
|
|
&& TREE_CODE (val) != REAL_CST
|
|
&& TREE_CODE (val) != FIXED_CST)
|
|
return NULL_TREE;
|
|
|
|
return build_vector_from_ctor (TREE_TYPE (rhs),
|
|
CONSTRUCTOR_ELTS (rhs));
|
|
}
|
|
|
|
else if (DECL_P (rhs))
|
|
return get_symbol_constant_value (rhs);
|
|
|
|
/* If we couldn't fold the RHS, hand over to the generic
|
|
fold routines. */
|
|
if (result == NULL_TREE)
|
|
result = fold (rhs);
|
|
|
|
/* Strip away useless type conversions. Both the NON_LVALUE_EXPR
|
|
that may have been added by fold, and "useless" type
|
|
conversions that might now be apparent due to propagation. */
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
|
|
|
if (result != rhs && valid_gimple_rhs_p (result))
|
|
return result;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
break;
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
/* Try to canonicalize for boolean-typed X the comparisons
|
|
X == 0, X == 1, X != 0, and X != 1. */
|
|
if (gimple_assign_rhs_code (stmt) == EQ_EXPR
|
|
|| gimple_assign_rhs_code (stmt) == NE_EXPR)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree op1 = gimple_assign_rhs1 (stmt);
|
|
tree op2 = gimple_assign_rhs2 (stmt);
|
|
tree type = TREE_TYPE (op1);
|
|
|
|
/* Check whether the comparison operands are of the same boolean
|
|
type as the result type is.
|
|
Check that second operand is an integer-constant with value
|
|
one or zero. */
|
|
if (TREE_CODE (op2) == INTEGER_CST
|
|
&& (integer_zerop (op2) || integer_onep (op2))
|
|
&& useless_type_conversion_p (TREE_TYPE (lhs), type))
|
|
{
|
|
enum tree_code cmp_code = gimple_assign_rhs_code (stmt);
|
|
bool is_logical_not = false;
|
|
|
|
/* X == 0 and X != 1 is a logical-not.of X
|
|
X == 1 and X != 0 is X */
|
|
if ((cmp_code == EQ_EXPR && integer_zerop (op2))
|
|
|| (cmp_code == NE_EXPR && integer_onep (op2)))
|
|
is_logical_not = true;
|
|
|
|
if (is_logical_not == false)
|
|
result = op1;
|
|
/* Only for one-bit precision typed X the transformation
|
|
!X -> ~X is valied. */
|
|
else if (TYPE_PRECISION (type) == 1)
|
|
result = build1_loc (gimple_location (stmt), BIT_NOT_EXPR,
|
|
type, op1);
|
|
/* Otherwise we use !X -> X ^ 1. */
|
|
else
|
|
result = build2_loc (gimple_location (stmt), BIT_XOR_EXPR,
|
|
type, op1, build_int_cst (type, 1));
|
|
|
|
}
|
|
}
|
|
|
|
if (!result)
|
|
result = fold_binary_loc (loc, subcode,
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt));
|
|
|
|
if (result)
|
|
{
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
|
if (valid_gimple_rhs_p (result))
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_TERNARY_RHS:
|
|
/* Try to fold a conditional expression. */
|
|
if (gimple_assign_rhs_code (stmt) == COND_EXPR)
|
|
{
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
|
tree tem;
|
|
bool set = false;
|
|
location_t cond_loc = gimple_location (stmt);
|
|
|
|
if (COMPARISON_CLASS_P (op0))
|
|
{
|
|
fold_defer_overflow_warnings ();
|
|
tem = fold_binary_loc (cond_loc,
|
|
TREE_CODE (op0), TREE_TYPE (op0),
|
|
TREE_OPERAND (op0, 0),
|
|
TREE_OPERAND (op0, 1));
|
|
/* This is actually a conditional expression, not a GIMPLE
|
|
conditional statement, however, the valid_gimple_rhs_p
|
|
test still applies. */
|
|
set = (tem && is_gimple_condexpr (tem)
|
|
&& valid_gimple_rhs_p (tem));
|
|
fold_undefer_overflow_warnings (set, stmt, 0);
|
|
}
|
|
else if (is_gimple_min_invariant (op0))
|
|
{
|
|
tem = op0;
|
|
set = true;
|
|
}
|
|
else
|
|
return NULL_TREE;
|
|
|
|
if (set)
|
|
result = fold_build3_loc (cond_loc, COND_EXPR,
|
|
TREE_TYPE (gimple_assign_lhs (stmt)), tem,
|
|
gimple_assign_rhs2 (stmt),
|
|
gimple_assign_rhs3 (stmt));
|
|
}
|
|
|
|
if (!result)
|
|
result = fold_ternary_loc (loc, subcode,
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt),
|
|
gimple_assign_rhs3 (stmt));
|
|
|
|
if (result)
|
|
{
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
|
if (valid_gimple_rhs_p (result))
|
|
return result;
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_INVALID_RHS:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Attempt to fold a conditional statement. Return true if any changes were
|
|
made. We only attempt to fold the condition expression, and do not perform
|
|
any transformation that would require alteration of the cfg. It is
|
|
assumed that the operands have been previously folded. */
|
|
|
|
static bool
|
|
fold_gimple_cond (gcond *stmt)
|
|
{
|
|
tree result = fold_binary_loc (gimple_location (stmt),
|
|
gimple_cond_code (stmt),
|
|
boolean_type_node,
|
|
gimple_cond_lhs (stmt),
|
|
gimple_cond_rhs (stmt));
|
|
|
|
if (result)
|
|
{
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
|
if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result))
|
|
{
|
|
gimple_cond_set_condition_from_tree (stmt, result);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Replace a statement at *SI_P with a sequence of statements in STMTS,
|
|
adjusting the replacement stmts location and virtual operands.
|
|
If the statement has a lhs the last stmt in the sequence is expected
|
|
to assign to that lhs. */
|
|
|
|
static void
|
|
gsi_replace_with_seq_vops (gimple_stmt_iterator *si_p, gimple_seq stmts)
|
|
{
|
|
gimple stmt = gsi_stmt (*si_p);
|
|
|
|
if (gimple_has_location (stmt))
|
|
annotate_all_with_location (stmts, gimple_location (stmt));
|
|
|
|
/* First iterate over the replacement statements backward, assigning
|
|
virtual operands to their defining statements. */
|
|
gimple laststore = NULL;
|
|
for (gimple_stmt_iterator i = gsi_last (stmts);
|
|
!gsi_end_p (i); gsi_prev (&i))
|
|
{
|
|
gimple new_stmt = gsi_stmt (i);
|
|
if ((gimple_assign_single_p (new_stmt)
|
|
&& !is_gimple_reg (gimple_assign_lhs (new_stmt)))
|
|
|| (is_gimple_call (new_stmt)
|
|
&& (gimple_call_flags (new_stmt)
|
|
& (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0))
|
|
{
|
|
tree vdef;
|
|
if (!laststore)
|
|
vdef = gimple_vdef (stmt);
|
|
else
|
|
vdef = make_ssa_name (gimple_vop (cfun), new_stmt);
|
|
gimple_set_vdef (new_stmt, vdef);
|
|
if (vdef && TREE_CODE (vdef) == SSA_NAME)
|
|
SSA_NAME_DEF_STMT (vdef) = new_stmt;
|
|
laststore = new_stmt;
|
|
}
|
|
}
|
|
|
|
/* Second iterate over the statements forward, assigning virtual
|
|
operands to their uses. */
|
|
tree reaching_vuse = gimple_vuse (stmt);
|
|
for (gimple_stmt_iterator i = gsi_start (stmts);
|
|
!gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
gimple new_stmt = gsi_stmt (i);
|
|
/* If the new statement possibly has a VUSE, update it with exact SSA
|
|
name we know will reach this one. */
|
|
if (gimple_has_mem_ops (new_stmt))
|
|
gimple_set_vuse (new_stmt, reaching_vuse);
|
|
gimple_set_modified (new_stmt, true);
|
|
if (gimple_vdef (new_stmt))
|
|
reaching_vuse = gimple_vdef (new_stmt);
|
|
}
|
|
|
|
/* If the new sequence does not do a store release the virtual
|
|
definition of the original statement. */
|
|
if (reaching_vuse
|
|
&& reaching_vuse == gimple_vuse (stmt))
|
|
{
|
|
tree vdef = gimple_vdef (stmt);
|
|
if (vdef
|
|
&& TREE_CODE (vdef) == SSA_NAME)
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_ssa_name (vdef);
|
|
}
|
|
}
|
|
|
|
/* Finally replace the original statement with the sequence. */
|
|
gsi_replace_with_seq (si_p, stmts, false);
|
|
}
|
|
|
|
/* Convert EXPR into a GIMPLE value suitable for substitution on the
|
|
RHS of an assignment. Insert the necessary statements before
|
|
iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
|
|
is replaced. If the call is expected to produces a result, then it
|
|
is replaced by an assignment of the new RHS to the result variable.
|
|
If the result is to be ignored, then the call is replaced by a
|
|
GIMPLE_NOP. A proper VDEF chain is retained by making the first
|
|
VUSE and the last VDEF of the whole sequence be the same as the replaced
|
|
statement and using new SSA names for stores in between. */
|
|
|
|
void
|
|
gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
|
|
{
|
|
tree lhs;
|
|
gimple stmt, new_stmt;
|
|
gimple_stmt_iterator i;
|
|
gimple_seq stmts = NULL;
|
|
|
|
stmt = gsi_stmt (*si_p);
|
|
|
|
gcc_assert (is_gimple_call (stmt));
|
|
|
|
push_gimplify_context (gimple_in_ssa_p (cfun));
|
|
|
|
lhs = gimple_call_lhs (stmt);
|
|
if (lhs == NULL_TREE)
|
|
{
|
|
gimplify_and_add (expr, &stmts);
|
|
/* We can end up with folding a memcpy of an empty class assignment
|
|
which gets optimized away by C++ gimplification. */
|
|
if (gimple_seq_empty_p (stmts))
|
|
{
|
|
pop_gimplify_context (NULL);
|
|
if (gimple_in_ssa_p (cfun))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_defs (stmt);
|
|
}
|
|
gsi_replace (si_p, gimple_build_nop (), true);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree tmp = get_initialized_tmp_var (expr, &stmts, NULL);
|
|
new_stmt = gimple_build_assign (lhs, tmp);
|
|
i = gsi_last (stmts);
|
|
gsi_insert_after_without_update (&i, new_stmt,
|
|
GSI_CONTINUE_LINKING);
|
|
}
|
|
|
|
pop_gimplify_context (NULL);
|
|
|
|
gsi_replace_with_seq_vops (si_p, stmts);
|
|
}
|
|
|
|
|
|
/* Replace the call at *GSI with the gimple value VAL. */
|
|
|
|
static void
|
|
replace_call_with_value (gimple_stmt_iterator *gsi, tree val)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
gimple repl;
|
|
if (lhs)
|
|
{
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (val)))
|
|
val = fold_convert (TREE_TYPE (lhs), val);
|
|
repl = gimple_build_assign (lhs, val);
|
|
}
|
|
else
|
|
repl = gimple_build_nop ();
|
|
tree vdef = gimple_vdef (stmt);
|
|
if (vdef && TREE_CODE (vdef) == SSA_NAME)
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_ssa_name (vdef);
|
|
}
|
|
gsi_replace (gsi, repl, true);
|
|
}
|
|
|
|
/* Replace the call at *GSI with the new call REPL and fold that
|
|
again. */
|
|
|
|
static void
|
|
replace_call_with_call_and_fold (gimple_stmt_iterator *gsi, gimple repl)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
gimple_call_set_lhs (repl, gimple_call_lhs (stmt));
|
|
gimple_set_location (repl, gimple_location (stmt));
|
|
if (gimple_vdef (stmt)
|
|
&& TREE_CODE (gimple_vdef (stmt)) == SSA_NAME)
|
|
{
|
|
gimple_set_vdef (repl, gimple_vdef (stmt));
|
|
gimple_set_vuse (repl, gimple_vuse (stmt));
|
|
SSA_NAME_DEF_STMT (gimple_vdef (repl)) = repl;
|
|
}
|
|
gsi_replace (gsi, repl, true);
|
|
fold_stmt (gsi);
|
|
}
|
|
|
|
/* Return true if VAR is a VAR_DECL or a component thereof. */
|
|
|
|
static bool
|
|
var_decl_component_p (tree var)
|
|
{
|
|
tree inner = var;
|
|
while (handled_component_p (inner))
|
|
inner = TREE_OPERAND (inner, 0);
|
|
return SSA_VAR_P (inner);
|
|
}
|
|
|
|
/* Fold function call to builtin mem{{,p}cpy,move}. Return
|
|
false if no simplification can be made.
|
|
If ENDP is 0, return DEST (like memcpy).
|
|
If ENDP is 1, return DEST+LEN (like mempcpy).
|
|
If ENDP is 2, return DEST+LEN-1 (like stpcpy).
|
|
If ENDP is 3, return DEST, additionally *SRC and *DEST may overlap
|
|
(memmove). */
|
|
|
|
static bool
|
|
gimple_fold_builtin_memory_op (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src, int endp)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
tree destvar, srcvar;
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
/* If the LEN parameter is zero, return DEST. */
|
|
if (integer_zerop (len))
|
|
{
|
|
gimple repl;
|
|
if (gimple_call_lhs (stmt))
|
|
repl = gimple_build_assign (gimple_call_lhs (stmt), dest);
|
|
else
|
|
repl = gimple_build_nop ();
|
|
tree vdef = gimple_vdef (stmt);
|
|
if (vdef && TREE_CODE (vdef) == SSA_NAME)
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_ssa_name (vdef);
|
|
}
|
|
gsi_replace (gsi, repl, true);
|
|
return true;
|
|
}
|
|
|
|
/* If SRC and DEST are the same (and not volatile), return
|
|
DEST{,+LEN,+LEN-1}. */
|
|
if (operand_equal_p (src, dest, 0))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
if (gimple_vdef (stmt) && TREE_CODE (gimple_vdef (stmt)) == SSA_NAME)
|
|
release_ssa_name (gimple_vdef (stmt));
|
|
if (!lhs)
|
|
{
|
|
gsi_replace (gsi, gimple_build_nop (), true);
|
|
return true;
|
|
}
|
|
goto done;
|
|
}
|
|
else
|
|
{
|
|
tree srctype, desttype;
|
|
unsigned int src_align, dest_align;
|
|
tree off0;
|
|
|
|
/* Build accesses at offset zero with a ref-all character type. */
|
|
off0 = build_int_cst (build_pointer_type_for_mode (char_type_node,
|
|
ptr_mode, true), 0);
|
|
|
|
/* If we can perform the copy efficiently with first doing all loads
|
|
and then all stores inline it that way. Currently efficiently
|
|
means that we can load all the memory into a single integer
|
|
register which is what MOVE_MAX gives us. */
|
|
src_align = get_pointer_alignment (src);
|
|
dest_align = get_pointer_alignment (dest);
|
|
if (tree_fits_uhwi_p (len)
|
|
&& compare_tree_int (len, MOVE_MAX) <= 0
|
|
/* ??? Don't transform copies from strings with known length this
|
|
confuses the tree-ssa-strlen.c. This doesn't handle
|
|
the case in gcc.dg/strlenopt-8.c which is XFAILed for that
|
|
reason. */
|
|
&& !c_strlen (src, 2))
|
|
{
|
|
unsigned ilen = tree_to_uhwi (len);
|
|
if (exact_log2 (ilen) != -1)
|
|
{
|
|
tree type = lang_hooks.types.type_for_size (ilen * 8, 1);
|
|
if (type
|
|
&& TYPE_MODE (type) != BLKmode
|
|
&& (GET_MODE_SIZE (TYPE_MODE (type)) * BITS_PER_UNIT
|
|
== ilen * 8)
|
|
/* If the destination pointer is not aligned we must be able
|
|
to emit an unaligned store. */
|
|
&& (dest_align >= GET_MODE_ALIGNMENT (TYPE_MODE (type))
|
|
|| !SLOW_UNALIGNED_ACCESS (TYPE_MODE (type), dest_align)))
|
|
{
|
|
tree srctype = type;
|
|
tree desttype = type;
|
|
if (src_align < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
|
|
srctype = build_aligned_type (type, src_align);
|
|
tree srcmem = fold_build2 (MEM_REF, srctype, src, off0);
|
|
tree tem = fold_const_aggregate_ref (srcmem);
|
|
if (tem)
|
|
srcmem = tem;
|
|
else if (src_align < GET_MODE_ALIGNMENT (TYPE_MODE (type))
|
|
&& SLOW_UNALIGNED_ACCESS (TYPE_MODE (type),
|
|
src_align))
|
|
srcmem = NULL_TREE;
|
|
if (srcmem)
|
|
{
|
|
gimple new_stmt;
|
|
if (is_gimple_reg_type (TREE_TYPE (srcmem)))
|
|
{
|
|
new_stmt = gimple_build_assign (NULL_TREE, srcmem);
|
|
if (gimple_in_ssa_p (cfun))
|
|
srcmem = make_ssa_name (TREE_TYPE (srcmem),
|
|
new_stmt);
|
|
else
|
|
srcmem = create_tmp_reg (TREE_TYPE (srcmem));
|
|
gimple_assign_set_lhs (new_stmt, srcmem);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
if (dest_align < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
|
|
desttype = build_aligned_type (type, dest_align);
|
|
new_stmt
|
|
= gimple_build_assign (fold_build2 (MEM_REF, desttype,
|
|
dest, off0),
|
|
srcmem);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
|
if (gimple_vdef (new_stmt)
|
|
&& TREE_CODE (gimple_vdef (new_stmt)) == SSA_NAME)
|
|
SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
|
|
if (!lhs)
|
|
{
|
|
gsi_replace (gsi, new_stmt, true);
|
|
return true;
|
|
}
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (endp == 3)
|
|
{
|
|
/* Both DEST and SRC must be pointer types.
|
|
??? This is what old code did. Is the testing for pointer types
|
|
really mandatory?
|
|
|
|
If either SRC is readonly or length is 1, we can use memcpy. */
|
|
if (!dest_align || !src_align)
|
|
return false;
|
|
if (readonly_data_expr (src)
|
|
|| (tree_fits_uhwi_p (len)
|
|
&& (MIN (src_align, dest_align) / BITS_PER_UNIT
|
|
>= tree_to_uhwi (len))))
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, src);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* If *src and *dest can't overlap, optimize into memcpy as well. */
|
|
if (TREE_CODE (src) == ADDR_EXPR
|
|
&& TREE_CODE (dest) == ADDR_EXPR)
|
|
{
|
|
tree src_base, dest_base, fn;
|
|
HOST_WIDE_INT src_offset = 0, dest_offset = 0;
|
|
HOST_WIDE_INT size = -1;
|
|
HOST_WIDE_INT maxsize = -1;
|
|
|
|
srcvar = TREE_OPERAND (src, 0);
|
|
src_base = get_ref_base_and_extent (srcvar, &src_offset,
|
|
&size, &maxsize);
|
|
destvar = TREE_OPERAND (dest, 0);
|
|
dest_base = get_ref_base_and_extent (destvar, &dest_offset,
|
|
&size, &maxsize);
|
|
if (tree_fits_uhwi_p (len))
|
|
maxsize = tree_to_uhwi (len);
|
|
else
|
|
maxsize = -1;
|
|
src_offset /= BITS_PER_UNIT;
|
|
dest_offset /= BITS_PER_UNIT;
|
|
if (SSA_VAR_P (src_base)
|
|
&& SSA_VAR_P (dest_base))
|
|
{
|
|
if (operand_equal_p (src_base, dest_base, 0)
|
|
&& ranges_overlap_p (src_offset, maxsize,
|
|
dest_offset, maxsize))
|
|
return false;
|
|
}
|
|
else if (TREE_CODE (src_base) == MEM_REF
|
|
&& TREE_CODE (dest_base) == MEM_REF)
|
|
{
|
|
if (! operand_equal_p (TREE_OPERAND (src_base, 0),
|
|
TREE_OPERAND (dest_base, 0), 0))
|
|
return false;
|
|
offset_int off = mem_ref_offset (src_base) + src_offset;
|
|
if (!wi::fits_shwi_p (off))
|
|
return false;
|
|
src_offset = off.to_shwi ();
|
|
|
|
off = mem_ref_offset (dest_base) + dest_offset;
|
|
if (!wi::fits_shwi_p (off))
|
|
return false;
|
|
dest_offset = off.to_shwi ();
|
|
if (ranges_overlap_p (src_offset, maxsize,
|
|
dest_offset, maxsize))
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, src);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* If the destination and source do not alias optimize into
|
|
memcpy as well. */
|
|
if ((is_gimple_min_invariant (dest)
|
|
|| TREE_CODE (dest) == SSA_NAME)
|
|
&& (is_gimple_min_invariant (src)
|
|
|| TREE_CODE (src) == SSA_NAME))
|
|
{
|
|
ao_ref destr, srcr;
|
|
ao_ref_init_from_ptr_and_size (&destr, dest, len);
|
|
ao_ref_init_from_ptr_and_size (&srcr, src, len);
|
|
if (!refs_may_alias_p_1 (&destr, &srcr, false))
|
|
{
|
|
tree fn;
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, src);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (!tree_fits_shwi_p (len))
|
|
return false;
|
|
/* FIXME:
|
|
This logic lose for arguments like (type *)malloc (sizeof (type)),
|
|
since we strip the casts of up to VOID return value from malloc.
|
|
Perhaps we ought to inherit type from non-VOID argument here? */
|
|
STRIP_NOPS (src);
|
|
STRIP_NOPS (dest);
|
|
if (!POINTER_TYPE_P (TREE_TYPE (src))
|
|
|| !POINTER_TYPE_P (TREE_TYPE (dest)))
|
|
return false;
|
|
/* In the following try to find a type that is most natural to be
|
|
used for the memcpy source and destination and that allows
|
|
the most optimization when memcpy is turned into a plain assignment
|
|
using that type. In theory we could always use a char[len] type
|
|
but that only gains us that the destination and source possibly
|
|
no longer will have their address taken. */
|
|
/* As we fold (void *)(p + CST) to (void *)p + CST undo this here. */
|
|
if (TREE_CODE (src) == POINTER_PLUS_EXPR)
|
|
{
|
|
tree tem = TREE_OPERAND (src, 0);
|
|
STRIP_NOPS (tem);
|
|
if (tem != TREE_OPERAND (src, 0))
|
|
src = build1 (NOP_EXPR, TREE_TYPE (tem), src);
|
|
}
|
|
if (TREE_CODE (dest) == POINTER_PLUS_EXPR)
|
|
{
|
|
tree tem = TREE_OPERAND (dest, 0);
|
|
STRIP_NOPS (tem);
|
|
if (tem != TREE_OPERAND (dest, 0))
|
|
dest = build1 (NOP_EXPR, TREE_TYPE (tem), dest);
|
|
}
|
|
srctype = TREE_TYPE (TREE_TYPE (src));
|
|
if (TREE_CODE (srctype) == ARRAY_TYPE
|
|
&& !tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len))
|
|
{
|
|
srctype = TREE_TYPE (srctype);
|
|
STRIP_NOPS (src);
|
|
src = build1 (NOP_EXPR, build_pointer_type (srctype), src);
|
|
}
|
|
desttype = TREE_TYPE (TREE_TYPE (dest));
|
|
if (TREE_CODE (desttype) == ARRAY_TYPE
|
|
&& !tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len))
|
|
{
|
|
desttype = TREE_TYPE (desttype);
|
|
STRIP_NOPS (dest);
|
|
dest = build1 (NOP_EXPR, build_pointer_type (desttype), dest);
|
|
}
|
|
if (TREE_ADDRESSABLE (srctype)
|
|
|| TREE_ADDRESSABLE (desttype))
|
|
return false;
|
|
|
|
/* Make sure we are not copying using a floating-point mode or
|
|
a type whose size possibly does not match its precision. */
|
|
if (FLOAT_MODE_P (TYPE_MODE (desttype))
|
|
|| TREE_CODE (desttype) == BOOLEAN_TYPE
|
|
|| TREE_CODE (desttype) == ENUMERAL_TYPE)
|
|
desttype = bitwise_type_for_mode (TYPE_MODE (desttype));
|
|
if (FLOAT_MODE_P (TYPE_MODE (srctype))
|
|
|| TREE_CODE (srctype) == BOOLEAN_TYPE
|
|
|| TREE_CODE (srctype) == ENUMERAL_TYPE)
|
|
srctype = bitwise_type_for_mode (TYPE_MODE (srctype));
|
|
if (!srctype)
|
|
srctype = desttype;
|
|
if (!desttype)
|
|
desttype = srctype;
|
|
if (!srctype)
|
|
return false;
|
|
|
|
src_align = get_pointer_alignment (src);
|
|
dest_align = get_pointer_alignment (dest);
|
|
if (dest_align < TYPE_ALIGN (desttype)
|
|
|| src_align < TYPE_ALIGN (srctype))
|
|
return false;
|
|
|
|
destvar = dest;
|
|
STRIP_NOPS (destvar);
|
|
if (TREE_CODE (destvar) == ADDR_EXPR
|
|
&& var_decl_component_p (TREE_OPERAND (destvar, 0))
|
|
&& tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len))
|
|
destvar = fold_build2 (MEM_REF, desttype, destvar, off0);
|
|
else
|
|
destvar = NULL_TREE;
|
|
|
|
srcvar = src;
|
|
STRIP_NOPS (srcvar);
|
|
if (TREE_CODE (srcvar) == ADDR_EXPR
|
|
&& var_decl_component_p (TREE_OPERAND (srcvar, 0))
|
|
&& tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len))
|
|
{
|
|
if (!destvar
|
|
|| src_align >= TYPE_ALIGN (desttype))
|
|
srcvar = fold_build2 (MEM_REF, destvar ? desttype : srctype,
|
|
srcvar, off0);
|
|
else if (!STRICT_ALIGNMENT)
|
|
{
|
|
srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype),
|
|
src_align);
|
|
srcvar = fold_build2 (MEM_REF, srctype, srcvar, off0);
|
|
}
|
|
else
|
|
srcvar = NULL_TREE;
|
|
}
|
|
else
|
|
srcvar = NULL_TREE;
|
|
|
|
if (srcvar == NULL_TREE && destvar == NULL_TREE)
|
|
return false;
|
|
|
|
if (srcvar == NULL_TREE)
|
|
{
|
|
STRIP_NOPS (src);
|
|
if (src_align >= TYPE_ALIGN (desttype))
|
|
srcvar = fold_build2 (MEM_REF, desttype, src, off0);
|
|
else
|
|
{
|
|
if (STRICT_ALIGNMENT)
|
|
return false;
|
|
srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype),
|
|
src_align);
|
|
srcvar = fold_build2 (MEM_REF, srctype, src, off0);
|
|
}
|
|
}
|
|
else if (destvar == NULL_TREE)
|
|
{
|
|
STRIP_NOPS (dest);
|
|
if (dest_align >= TYPE_ALIGN (srctype))
|
|
destvar = fold_build2 (MEM_REF, srctype, dest, off0);
|
|
else
|
|
{
|
|
if (STRICT_ALIGNMENT)
|
|
return false;
|
|
desttype = build_aligned_type (TYPE_MAIN_VARIANT (srctype),
|
|
dest_align);
|
|
destvar = fold_build2 (MEM_REF, desttype, dest, off0);
|
|
}
|
|
}
|
|
|
|
gimple new_stmt;
|
|
if (is_gimple_reg_type (TREE_TYPE (srcvar)))
|
|
{
|
|
new_stmt = gimple_build_assign (NULL_TREE, srcvar);
|
|
if (gimple_in_ssa_p (cfun))
|
|
srcvar = make_ssa_name (TREE_TYPE (srcvar), new_stmt);
|
|
else
|
|
srcvar = create_tmp_reg (TREE_TYPE (srcvar));
|
|
gimple_assign_set_lhs (new_stmt, srcvar);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
new_stmt = gimple_build_assign (destvar, srcvar);
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
|
if (gimple_vdef (new_stmt)
|
|
&& TREE_CODE (gimple_vdef (new_stmt)) == SSA_NAME)
|
|
SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
|
|
if (!lhs)
|
|
{
|
|
gsi_replace (gsi, new_stmt, true);
|
|
return true;
|
|
}
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
done:
|
|
if (endp == 0 || endp == 3)
|
|
len = NULL_TREE;
|
|
else if (endp == 2)
|
|
len = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (len), len,
|
|
ssize_int (1));
|
|
if (endp == 2 || endp == 1)
|
|
dest = fold_build_pointer_plus_loc (loc, dest, len);
|
|
|
|
dest = force_gimple_operand_gsi (gsi, dest, false, NULL_TREE, true,
|
|
GSI_SAME_STMT);
|
|
gimple repl = gimple_build_assign (lhs, dest);
|
|
gsi_replace (gsi, repl, true);
|
|
return true;
|
|
}
|
|
|
|
/* Fold function call to builtin memset or bzero at *GSI setting the
|
|
memory of size LEN to VAL. Return whether a simplification was made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_memset (gimple_stmt_iterator *gsi, tree c, tree len)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
tree etype;
|
|
unsigned HOST_WIDE_INT length, cval;
|
|
|
|
/* If the LEN parameter is zero, return DEST. */
|
|
if (integer_zerop (len))
|
|
{
|
|
replace_call_with_value (gsi, gimple_call_arg (stmt, 0));
|
|
return true;
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (len))
|
|
return false;
|
|
|
|
if (TREE_CODE (c) != INTEGER_CST)
|
|
return false;
|
|
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree var = dest;
|
|
if (TREE_CODE (var) != ADDR_EXPR)
|
|
return false;
|
|
|
|
var = TREE_OPERAND (var, 0);
|
|
if (TREE_THIS_VOLATILE (var))
|
|
return false;
|
|
|
|
etype = TREE_TYPE (var);
|
|
if (TREE_CODE (etype) == ARRAY_TYPE)
|
|
etype = TREE_TYPE (etype);
|
|
|
|
if (!INTEGRAL_TYPE_P (etype)
|
|
&& !POINTER_TYPE_P (etype))
|
|
return NULL_TREE;
|
|
|
|
if (! var_decl_component_p (var))
|
|
return NULL_TREE;
|
|
|
|
length = tree_to_uhwi (len);
|
|
if (GET_MODE_SIZE (TYPE_MODE (etype)) != length
|
|
|| get_pointer_alignment (dest) / BITS_PER_UNIT < length)
|
|
return NULL_TREE;
|
|
|
|
if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT)
|
|
return NULL_TREE;
|
|
|
|
if (integer_zerop (c))
|
|
cval = 0;
|
|
else
|
|
{
|
|
if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64)
|
|
return NULL_TREE;
|
|
|
|
cval = TREE_INT_CST_LOW (c);
|
|
cval &= 0xff;
|
|
cval |= cval << 8;
|
|
cval |= cval << 16;
|
|
cval |= (cval << 31) << 1;
|
|
}
|
|
|
|
var = fold_build2 (MEM_REF, etype, dest, build_int_cst (ptr_type_node, 0));
|
|
gimple store = gimple_build_assign (var, build_int_cst_type (etype, cval));
|
|
gimple_set_vuse (store, gimple_vuse (stmt));
|
|
tree vdef = gimple_vdef (stmt);
|
|
if (vdef && TREE_CODE (vdef) == SSA_NAME)
|
|
{
|
|
gimple_set_vdef (store, gimple_vdef (stmt));
|
|
SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = store;
|
|
}
|
|
gsi_insert_before (gsi, store, GSI_SAME_STMT);
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
gimple asgn = gimple_build_assign (gimple_call_lhs (stmt), dest);
|
|
gsi_replace (gsi, asgn, true);
|
|
}
|
|
else
|
|
{
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (gsi);
|
|
gsi_remove (&gsi2, true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Return the string length, maximum string length or maximum value of
|
|
ARG in LENGTH.
|
|
If ARG is an SSA name variable, follow its use-def chains. If LENGTH
|
|
is not NULL and, for TYPE == 0, its value is not equal to the length
|
|
we determine or if we are unable to determine the length or value,
|
|
return false. VISITED is a bitmap of visited variables.
|
|
TYPE is 0 if string length should be returned, 1 for maximum string
|
|
length and 2 for maximum value ARG can have. */
|
|
|
|
static bool
|
|
get_maxval_strlen (tree arg, tree *length, bitmap *visited, int type)
|
|
{
|
|
tree var, val;
|
|
gimple def_stmt;
|
|
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
|
{
|
|
/* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
|
|
if (TREE_CODE (arg) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF
|
|
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1)))
|
|
{
|
|
tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
|
|
if (TREE_CODE (aop0) == INDIRECT_REF
|
|
&& TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
|
|
return get_maxval_strlen (TREE_OPERAND (aop0, 0),
|
|
length, visited, type);
|
|
}
|
|
|
|
if (type == 2)
|
|
{
|
|
val = arg;
|
|
if (TREE_CODE (val) != INTEGER_CST
|
|
|| tree_int_cst_sgn (val) < 0)
|
|
return false;
|
|
}
|
|
else
|
|
val = c_strlen (arg, 1);
|
|
if (!val)
|
|
return false;
|
|
|
|
if (*length)
|
|
{
|
|
if (type > 0)
|
|
{
|
|
if (TREE_CODE (*length) != INTEGER_CST
|
|
|| TREE_CODE (val) != INTEGER_CST)
|
|
return false;
|
|
|
|
if (tree_int_cst_lt (*length, val))
|
|
*length = val;
|
|
return true;
|
|
}
|
|
else if (simple_cst_equal (val, *length) != 1)
|
|
return false;
|
|
}
|
|
|
|
*length = val;
|
|
return true;
|
|
}
|
|
|
|
/* If ARG is registered for SSA update we cannot look at its defining
|
|
statement. */
|
|
if (name_registered_for_update_p (arg))
|
|
return false;
|
|
|
|
/* If we were already here, break the infinite cycle. */
|
|
if (!*visited)
|
|
*visited = BITMAP_ALLOC (NULL);
|
|
if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (arg)))
|
|
return true;
|
|
|
|
var = arg;
|
|
def_stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
switch (gimple_code (def_stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
/* The RHS of the statement defining VAR must either have a
|
|
constant length or come from another SSA_NAME with a constant
|
|
length. */
|
|
if (gimple_assign_single_p (def_stmt)
|
|
|| gimple_assign_unary_nop_p (def_stmt))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (def_stmt);
|
|
return get_maxval_strlen (rhs, length, visited, type);
|
|
}
|
|
else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR)
|
|
{
|
|
tree op2 = gimple_assign_rhs2 (def_stmt);
|
|
tree op3 = gimple_assign_rhs3 (def_stmt);
|
|
return get_maxval_strlen (op2, length, visited, type)
|
|
&& get_maxval_strlen (op3, length, visited, type);
|
|
}
|
|
return false;
|
|
|
|
case GIMPLE_PHI:
|
|
{
|
|
/* All the arguments of the PHI node must have the same constant
|
|
length. */
|
|
unsigned i;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
|
|
{
|
|
tree arg = gimple_phi_arg (def_stmt, i)->def;
|
|
|
|
/* If this PHI has itself as an argument, we cannot
|
|
determine the string length of this argument. However,
|
|
if we can find a constant string length for the other
|
|
PHI args then we can still be sure that this is a
|
|
constant string length. So be optimistic and just
|
|
continue with the next argument. */
|
|
if (arg == gimple_phi_result (def_stmt))
|
|
continue;
|
|
|
|
if (!get_maxval_strlen (arg, length, visited, type))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
tree
|
|
get_maxval_strlen (tree arg, int type)
|
|
{
|
|
bitmap visited = NULL;
|
|
tree len = NULL_TREE;
|
|
if (!get_maxval_strlen (arg, &len, &visited, type))
|
|
len = NULL_TREE;
|
|
if (visited)
|
|
BITMAP_FREE (visited);
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
/* Fold function call to builtin strcpy with arguments DEST and SRC.
|
|
If LEN is not NULL, it represents the length of the string to be
|
|
copied. Return NULL_TREE if no simplification can be made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strcpy (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src)
|
|
{
|
|
location_t loc = gimple_location (gsi_stmt (*gsi));
|
|
tree fn;
|
|
|
|
/* If SRC and DEST are the same (and not volatile), return DEST. */
|
|
if (operand_equal_p (src, dest, 0))
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
if (optimize_function_for_size_p (cfun))
|
|
return false;
|
|
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
tree len = get_maxval_strlen (src, 0);
|
|
if (!len)
|
|
return false;
|
|
|
|
len = fold_convert_loc (loc, size_type_node, len);
|
|
len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1));
|
|
len = force_gimple_operand_gsi (gsi, len, true,
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
|
gimple repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold function call to builtin strncpy with arguments DEST, SRC, and LEN.
|
|
If SLEN is not NULL, it represents the length of the source string.
|
|
Return NULL_TREE if no simplification can be made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strncpy (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src, tree len)
|
|
{
|
|
location_t loc = gimple_location (gsi_stmt (*gsi));
|
|
tree fn;
|
|
|
|
/* If the LEN parameter is zero, return DEST. */
|
|
if (integer_zerop (len))
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
/* We can't compare slen with len as constants below if len is not a
|
|
constant. */
|
|
if (TREE_CODE (len) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* Now, we must be passed a constant src ptr parameter. */
|
|
tree slen = get_maxval_strlen (src, 0);
|
|
if (!slen || TREE_CODE (slen) != INTEGER_CST)
|
|
return false;
|
|
|
|
slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1));
|
|
|
|
/* We do not support simplification of this case, though we do
|
|
support it when expanding trees into RTL. */
|
|
/* FIXME: generate a call to __builtin_memset. */
|
|
if (tree_int_cst_lt (slen, len))
|
|
return false;
|
|
|
|
/* OK transform into builtin memcpy. */
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
len = fold_convert_loc (loc, size_type_node, len);
|
|
len = force_gimple_operand_gsi (gsi, len, true,
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
|
gimple repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Simplify a call to the strcat builtin. DST and SRC are the arguments
|
|
to the call.
|
|
|
|
Return NULL_TREE if no simplification was possible, otherwise return the
|
|
simplified form of the call as a tree.
|
|
|
|
The simplified form may be a constant or other expression which
|
|
computes the same value, but in a more efficient manner (including
|
|
calls to other builtin functions).
|
|
|
|
The call may contain arguments which need to be evaluated, but
|
|
which are not useful to determine the result of the call. In
|
|
this case we return a chain of COMPOUND_EXPRs. The LHS of each
|
|
COMPOUND_EXPR will be an argument which must be evaluated.
|
|
COMPOUND_EXPRs are chained through their RHS. The RHS of the last
|
|
COMPOUND_EXPR in the chain will contain the tree for the simplified
|
|
form of the builtin function call. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strcat (gimple_stmt_iterator *gsi, tree dst, tree src)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
const char *p = c_getstr (src);
|
|
|
|
/* If the string length is zero, return the dst parameter. */
|
|
if (p && *p == '\0')
|
|
{
|
|
replace_call_with_value (gsi, dst);
|
|
return true;
|
|
}
|
|
|
|
if (!optimize_bb_for_speed_p (gimple_bb (stmt)))
|
|
return false;
|
|
|
|
/* See if we can store by pieces into (dst + strlen(dst)). */
|
|
tree newdst;
|
|
tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN);
|
|
tree memcpy_fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
|
|
if (!strlen_fn || !memcpy_fn)
|
|
return false;
|
|
|
|
/* If the length of the source string isn't computable don't
|
|
split strcat into strlen and memcpy. */
|
|
tree len = get_maxval_strlen (src, 0);
|
|
if (! len)
|
|
return false;
|
|
|
|
/* Create strlen (dst). */
|
|
gimple_seq stmts = NULL, stmts2;
|
|
gimple repl = gimple_build_call (strlen_fn, 1, dst);
|
|
gimple_set_location (repl, loc);
|
|
if (gimple_in_ssa_p (cfun))
|
|
newdst = make_ssa_name (size_type_node);
|
|
else
|
|
newdst = create_tmp_reg (size_type_node);
|
|
gimple_call_set_lhs (repl, newdst);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
|
|
/* Create (dst p+ strlen (dst)). */
|
|
newdst = fold_build_pointer_plus_loc (loc, dst, newdst);
|
|
newdst = force_gimple_operand (newdst, &stmts2, true, NULL_TREE);
|
|
gimple_seq_add_seq_without_update (&stmts, stmts2);
|
|
|
|
len = fold_convert_loc (loc, size_type_node, len);
|
|
len = size_binop_loc (loc, PLUS_EXPR, len,
|
|
build_int_cst (size_type_node, 1));
|
|
len = force_gimple_operand (len, &stmts2, true, NULL_TREE);
|
|
gimple_seq_add_seq_without_update (&stmts, stmts2);
|
|
|
|
repl = gimple_build_call (memcpy_fn, 3, newdst, src, len);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
repl = gimple_build_assign (gimple_call_lhs (stmt), dst);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call to the __strcat_chk builtin FNDECL. DEST, SRC, and SIZE
|
|
are the arguments to the call. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strcat_chk (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree src = gimple_call_arg (stmt, 1);
|
|
tree size = gimple_call_arg (stmt, 2);
|
|
tree fn;
|
|
const char *p;
|
|
|
|
|
|
p = c_getstr (src);
|
|
/* If the SRC parameter is "", return DEST. */
|
|
if (p && *p == '\0')
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size) || ! integer_all_onesp (size))
|
|
return false;
|
|
|
|
/* If __builtin_strcat_chk is used, assume strcat is available. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRCAT);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn, 2, dest, src);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Simplify a call to the strncat builtin. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strncat (gimple_stmt_iterator *gsi)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree dst = gimple_call_arg (stmt, 0);
|
|
tree src = gimple_call_arg (stmt, 1);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
|
|
const char *p = c_getstr (src);
|
|
|
|
/* If the requested length is zero, or the src parameter string
|
|
length is zero, return the dst parameter. */
|
|
if (integer_zerop (len) || (p && *p == '\0'))
|
|
{
|
|
replace_call_with_value (gsi, dst);
|
|
return true;
|
|
}
|
|
|
|
/* If the requested len is greater than or equal to the string
|
|
length, call strcat. */
|
|
if (TREE_CODE (len) == INTEGER_CST && p
|
|
&& compare_tree_int (len, strlen (p)) >= 0)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCAT);
|
|
|
|
/* If the replacement _DECL isn't initialized, don't do the
|
|
transformation. */
|
|
if (!fn)
|
|
return false;
|
|
|
|
gcall *repl = gimple_build_call (fn, 2, dst, src);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the __strncat_chk builtin with arguments DEST, SRC,
|
|
LEN, and SIZE. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strncat_chk (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree src = gimple_call_arg (stmt, 1);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
tree size = gimple_call_arg (stmt, 3);
|
|
tree fn;
|
|
const char *p;
|
|
|
|
p = c_getstr (src);
|
|
/* If the SRC parameter is "" or if LEN is 0, return DEST. */
|
|
if ((p && *p == '\0')
|
|
|| integer_zerop (len))
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
tree src_len = c_strlen (src, 1);
|
|
if (src_len
|
|
&& tree_fits_uhwi_p (src_len)
|
|
&& tree_fits_uhwi_p (len)
|
|
&& ! tree_int_cst_lt (len, src_len))
|
|
{
|
|
/* If LEN >= strlen (SRC), optimize into __strcat_chk. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRCAT_CHK);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn, 3, dest, src, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_strncat_chk is used, assume strncat is available. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRNCAT);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call to the fputs builtin. ARG0 and ARG1 are the arguments
|
|
to the call. IGNORE is true if the value returned
|
|
by the builtin will be ignored. UNLOCKED is true is true if this
|
|
actually a call to fputs_unlocked. If LEN in non-NULL, it represents
|
|
the known length of the string. Return NULL_TREE if no simplification
|
|
was possible. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_fputs (gimple_stmt_iterator *gsi,
|
|
tree arg0, tree arg1,
|
|
bool unlocked)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
|
|
/* If we're using an unlocked function, assume the other unlocked
|
|
functions exist explicitly. */
|
|
tree const fn_fputc = (unlocked
|
|
? builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED)
|
|
: builtin_decl_implicit (BUILT_IN_FPUTC));
|
|
tree const fn_fwrite = (unlocked
|
|
? builtin_decl_explicit (BUILT_IN_FWRITE_UNLOCKED)
|
|
: builtin_decl_implicit (BUILT_IN_FWRITE));
|
|
|
|
/* If the return value is used, don't do the transformation. */
|
|
if (gimple_call_lhs (stmt))
|
|
return false;
|
|
|
|
/* Get the length of the string passed to fputs. If the length
|
|
can't be determined, punt. */
|
|
tree len = get_maxval_strlen (arg0, 0);
|
|
if (!len
|
|
|| TREE_CODE (len) != INTEGER_CST)
|
|
return false;
|
|
|
|
switch (compare_tree_int (len, 1))
|
|
{
|
|
case -1: /* length is 0, delete the call entirely . */
|
|
replace_call_with_value (gsi, integer_zero_node);
|
|
return true;
|
|
|
|
case 0: /* length is 1, call fputc. */
|
|
{
|
|
const char *p = c_getstr (arg0);
|
|
if (p != NULL)
|
|
{
|
|
if (!fn_fputc)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn_fputc, 2,
|
|
build_int_cst
|
|
(integer_type_node, p[0]), arg1);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
/* FALLTHROUGH */
|
|
case 1: /* length is greater than 1, call fwrite. */
|
|
{
|
|
/* If optimizing for size keep fputs. */
|
|
if (optimize_function_for_size_p (cfun))
|
|
return false;
|
|
/* New argument list transforming fputs(string, stream) to
|
|
fwrite(string, 1, len, stream). */
|
|
if (!fn_fwrite)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn_fwrite, 4, arg0,
|
|
size_one_node, len, arg1);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin.
|
|
DEST, SRC, LEN, and SIZE are the arguments to the call.
|
|
IGNORE is true, if return value can be ignored. FCODE is the BUILT_IN_*
|
|
code of the builtin. If MAXLEN is not NULL, it is maximum length
|
|
passed as third argument. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_memory_chk (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src, tree len, tree size,
|
|
enum built_in_function fcode)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
|
|
tree fn;
|
|
|
|
/* If SRC and DEST are the same (and not volatile), return DEST
|
|
(resp. DEST+LEN for __mempcpy_chk). */
|
|
if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0))
|
|
{
|
|
if (fcode != BUILT_IN_MEMPCPY_CHK)
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
tree temp = fold_build_pointer_plus_loc (loc, dest, len);
|
|
temp = force_gimple_operand_gsi (gsi, temp,
|
|
false, NULL_TREE, true,
|
|
GSI_SAME_STMT);
|
|
replace_call_with_value (gsi, temp);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
tree maxlen = get_maxval_strlen (len, 2);
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
if (! tree_fits_uhwi_p (len))
|
|
{
|
|
/* If LEN is not constant, try MAXLEN too.
|
|
For MAXLEN only allow optimizing into non-_ocs function
|
|
if SIZE is >= MAXLEN, never convert to __ocs_fail (). */
|
|
if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen))
|
|
{
|
|
if (fcode == BUILT_IN_MEMPCPY_CHK && ignore)
|
|
{
|
|
/* (void) __mempcpy_chk () can be optimized into
|
|
(void) __memcpy_chk (). */
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn, 4, dest, src, len, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
maxlen = len;
|
|
|
|
if (tree_int_cst_lt (size, maxlen))
|
|
return false;
|
|
}
|
|
|
|
fn = NULL_TREE;
|
|
/* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
|
|
mem{cpy,pcpy,move,set} is available. */
|
|
switch (fcode)
|
|
{
|
|
case BUILT_IN_MEMCPY_CHK:
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMCPY);
|
|
break;
|
|
case BUILT_IN_MEMPCPY_CHK:
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMPCPY);
|
|
break;
|
|
case BUILT_IN_MEMMOVE_CHK:
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMMOVE);
|
|
break;
|
|
case BUILT_IN_MEMSET_CHK:
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMSET);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call to the __st[rp]cpy_chk builtin.
|
|
DEST, SRC, and SIZE are the arguments to the call.
|
|
IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_*
|
|
code of the builtin. If MAXLEN is not NULL, it is maximum length of
|
|
strings passed as second argument. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_stxcpy_chk (gimple_stmt_iterator *gsi,
|
|
tree dest,
|
|
tree src, tree size,
|
|
enum built_in_function fcode)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
location_t loc = gimple_location (stmt);
|
|
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
|
|
tree len, fn;
|
|
|
|
/* If SRC and DEST are the same (and not volatile), return DEST. */
|
|
if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0))
|
|
{
|
|
replace_call_with_value (gsi, dest);
|
|
return true;
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
tree maxlen = get_maxval_strlen (src, 1);
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
len = c_strlen (src, 1);
|
|
if (! len || ! tree_fits_uhwi_p (len))
|
|
{
|
|
/* If LEN is not constant, try MAXLEN too.
|
|
For MAXLEN only allow optimizing into non-_ocs function
|
|
if SIZE is >= MAXLEN, never convert to __ocs_fail (). */
|
|
if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen))
|
|
{
|
|
if (fcode == BUILT_IN_STPCPY_CHK)
|
|
{
|
|
if (! ignore)
|
|
return false;
|
|
|
|
/* If return value of __stpcpy_chk is ignored,
|
|
optimize into __strcpy_chk. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRCPY_CHK);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn, 3, dest, src, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
if (! len || TREE_SIDE_EFFECTS (len))
|
|
return false;
|
|
|
|
/* If c_strlen returned something, but not a constant,
|
|
transform __strcpy_chk into __memcpy_chk. */
|
|
fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK);
|
|
if (!fn)
|
|
return false;
|
|
|
|
len = fold_convert_loc (loc, size_type_node, len);
|
|
len = size_binop_loc (loc, PLUS_EXPR, len,
|
|
build_int_cst (size_type_node, 1));
|
|
len = force_gimple_operand_gsi (gsi, len, true, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
gimple repl = gimple_build_call (fn, 4, dest, src, len, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
maxlen = len;
|
|
|
|
if (! tree_int_cst_lt (maxlen, size))
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available. */
|
|
fn = builtin_decl_explicit (fcode == BUILT_IN_STPCPY_CHK
|
|
? BUILT_IN_STPCPY : BUILT_IN_STRCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn, 2, dest, src);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call to the __st{r,p}ncpy_chk builtin. DEST, SRC, LEN, and SIZE
|
|
are the arguments to the call. If MAXLEN is not NULL, it is maximum
|
|
length passed as third argument. IGNORE is true if return value can be
|
|
ignored. FCODE is the BUILT_IN_* code of the builtin. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_stxncpy_chk (gimple_stmt_iterator *gsi,
|
|
tree dest, tree src,
|
|
tree len, tree size,
|
|
enum built_in_function fcode)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
|
|
tree fn;
|
|
|
|
if (fcode == BUILT_IN_STPNCPY_CHK && ignore)
|
|
{
|
|
/* If return value of __stpncpy_chk is ignored,
|
|
optimize into __strncpy_chk. */
|
|
fn = builtin_decl_explicit (BUILT_IN_STRNCPY_CHK);
|
|
if (fn)
|
|
{
|
|
gimple repl = gimple_build_call (fn, 4, dest, src, len, size);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
tree maxlen = get_maxval_strlen (len, 2);
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
if (! tree_fits_uhwi_p (len))
|
|
{
|
|
/* If LEN is not constant, try MAXLEN too.
|
|
For MAXLEN only allow optimizing into non-_ocs function
|
|
if SIZE is >= MAXLEN, never convert to __ocs_fail (). */
|
|
if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen))
|
|
return false;
|
|
}
|
|
else
|
|
maxlen = len;
|
|
|
|
if (tree_int_cst_lt (size, maxlen))
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_st{r,p}ncpy_chk is used, assume st{r,p}ncpy is available. */
|
|
fn = builtin_decl_explicit (fcode == BUILT_IN_STPNCPY_CHK
|
|
? BUILT_IN_STPNCPY : BUILT_IN_STRNCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple repl = gimple_build_call (fn, 3, dest, src, len);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
|
|
/* Fold function call to builtin stpcpy with arguments DEST and SRC.
|
|
Return NULL_TREE if no simplification can be made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_stpcpy (gimple_stmt_iterator *gsi)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
location_t loc = gimple_location (stmt);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree src = gimple_call_arg (stmt, 1);
|
|
tree fn, len, lenp1;
|
|
|
|
/* If the result is unused, replace stpcpy with strcpy. */
|
|
if (gimple_call_lhs (stmt) == NULL_TREE)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
if (!fn)
|
|
return false;
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
len = c_strlen (src, 1);
|
|
if (!len
|
|
|| TREE_CODE (len) != INTEGER_CST)
|
|
return false;
|
|
|
|
if (optimize_function_for_size_p (cfun)
|
|
/* If length is zero it's small enough. */
|
|
&& !integer_zerop (len))
|
|
return false;
|
|
|
|
/* If the source has a known length replace stpcpy with memcpy. */
|
|
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
gimple_seq stmts = NULL;
|
|
tree tem = gimple_convert (&stmts, loc, size_type_node, len);
|
|
lenp1 = gimple_build (&stmts, loc, PLUS_EXPR, size_type_node,
|
|
tem, build_int_cst (size_type_node, 1));
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
gcall *repl = gimple_build_call (fn, 3, dest, src, lenp1);
|
|
gimple_set_vuse (repl, gimple_vuse (stmt));
|
|
gimple_set_vdef (repl, gimple_vdef (stmt));
|
|
if (gimple_vdef (repl)
|
|
&& TREE_CODE (gimple_vdef (repl)) == SSA_NAME)
|
|
SSA_NAME_DEF_STMT (gimple_vdef (repl)) = repl;
|
|
gsi_insert_before (gsi, repl, GSI_SAME_STMT);
|
|
/* Replace the result with dest + len. */
|
|
stmts = NULL;
|
|
tem = gimple_convert (&stmts, loc, sizetype, len);
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
gassign *ret = gimple_build_assign (gimple_call_lhs (stmt),
|
|
POINTER_PLUS_EXPR, dest, tem);
|
|
gsi_replace (gsi, ret, true);
|
|
/* Finally fold the memcpy call. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call EXP to {,v}snprintf having NARGS passed as ARGS. Return
|
|
NULL_TREE if a normal call should be emitted rather than expanding
|
|
the function inline. FCODE is either BUILT_IN_SNPRINTF_CHK or
|
|
BUILT_IN_VSNPRINTF_CHK. If MAXLEN is not NULL, it is maximum length
|
|
passed as second argument. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_snprintf_chk (gimple_stmt_iterator *gsi,
|
|
enum built_in_function fcode)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree dest, size, len, fn, fmt, flag;
|
|
const char *fmt_str;
|
|
|
|
/* Verify the required arguments in the original call. */
|
|
if (gimple_call_num_args (stmt) < 5)
|
|
return false;
|
|
|
|
dest = gimple_call_arg (stmt, 0);
|
|
len = gimple_call_arg (stmt, 1);
|
|
flag = gimple_call_arg (stmt, 2);
|
|
size = gimple_call_arg (stmt, 3);
|
|
fmt = gimple_call_arg (stmt, 4);
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
tree maxlen = get_maxval_strlen (len, 2);
|
|
if (! tree_fits_uhwi_p (len))
|
|
{
|
|
/* If LEN is not constant, try MAXLEN too.
|
|
For MAXLEN only allow optimizing into non-_ocs function
|
|
if SIZE is >= MAXLEN, never convert to __ocs_fail (). */
|
|
if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen))
|
|
return false;
|
|
}
|
|
else
|
|
maxlen = len;
|
|
|
|
if (tree_int_cst_lt (size, maxlen))
|
|
return false;
|
|
}
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
|
|
or if format doesn't contain % chars or is "%s". */
|
|
if (! integer_zerop (flag))
|
|
{
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
if (strchr (fmt_str, target_percent) != NULL
|
|
&& strcmp (fmt_str, target_percent_s))
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
|
|
available. */
|
|
fn = builtin_decl_explicit (fcode == BUILT_IN_VSNPRINTF_CHK
|
|
? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Replace the called function and the first 5 argument by 3 retaining
|
|
trailing varargs. */
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_fntype (stmt, TREE_TYPE (fn));
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, len);
|
|
gimple_call_set_arg (stmt, 2, fmt);
|
|
for (unsigned i = 3; i < gimple_call_num_args (stmt) - 2; ++i)
|
|
gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2));
|
|
gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* Fold a call EXP to __{,v}sprintf_chk having NARGS passed as ARGS.
|
|
Return NULL_TREE if a normal call should be emitted rather than
|
|
expanding the function inline. FCODE is either BUILT_IN_SPRINTF_CHK
|
|
or BUILT_IN_VSPRINTF_CHK. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_sprintf_chk (gimple_stmt_iterator *gsi,
|
|
enum built_in_function fcode)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree dest, size, len, fn, fmt, flag;
|
|
const char *fmt_str;
|
|
unsigned nargs = gimple_call_num_args (stmt);
|
|
|
|
/* Verify the required arguments in the original call. */
|
|
if (nargs < 4)
|
|
return false;
|
|
dest = gimple_call_arg (stmt, 0);
|
|
flag = gimple_call_arg (stmt, 1);
|
|
size = gimple_call_arg (stmt, 2);
|
|
fmt = gimple_call_arg (stmt, 3);
|
|
|
|
if (! tree_fits_uhwi_p (size))
|
|
return false;
|
|
|
|
len = NULL_TREE;
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str != NULL)
|
|
{
|
|
/* If the format doesn't contain % args or %%, we know the size. */
|
|
if (strchr (fmt_str, target_percent) == 0)
|
|
{
|
|
if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4)
|
|
len = build_int_cstu (size_type_node, strlen (fmt_str));
|
|
}
|
|
/* If the format is "%s" and first ... argument is a string literal,
|
|
we know the size too. */
|
|
else if (fcode == BUILT_IN_SPRINTF_CHK
|
|
&& strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
tree arg;
|
|
|
|
if (nargs == 5)
|
|
{
|
|
arg = gimple_call_arg (stmt, 4);
|
|
if (POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
{
|
|
len = c_strlen (arg, 1);
|
|
if (! len || ! tree_fits_uhwi_p (len))
|
|
len = NULL_TREE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (! integer_all_onesp (size))
|
|
{
|
|
if (! len || ! tree_int_cst_lt (len, size))
|
|
return false;
|
|
}
|
|
|
|
/* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
|
|
or if format doesn't contain % chars or is "%s". */
|
|
if (! integer_zerop (flag))
|
|
{
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
if (strchr (fmt_str, target_percent) != NULL
|
|
&& strcmp (fmt_str, target_percent_s))
|
|
return false;
|
|
}
|
|
|
|
/* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available. */
|
|
fn = builtin_decl_explicit (fcode == BUILT_IN_VSPRINTF_CHK
|
|
? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Replace the called function and the first 4 argument by 2 retaining
|
|
trailing varargs. */
|
|
gimple_call_set_fndecl (stmt, fn);
|
|
gimple_call_set_fntype (stmt, TREE_TYPE (fn));
|
|
gimple_call_set_arg (stmt, 0, dest);
|
|
gimple_call_set_arg (stmt, 1, fmt);
|
|
for (unsigned i = 2; i < gimple_call_num_args (stmt) - 2; ++i)
|
|
gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2));
|
|
gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2);
|
|
fold_stmt (gsi);
|
|
return true;
|
|
}
|
|
|
|
/* Simplify a call to the sprintf builtin with arguments DEST, FMT, and ORIG.
|
|
ORIG may be null if this is a 2-argument call. We don't attempt to
|
|
simplify calls with more than 3 arguments.
|
|
|
|
Return NULL_TREE if no simplification was possible, otherwise return the
|
|
simplified form of the call as a tree. If IGNORED is true, it means that
|
|
the caller does not use the returned value of the function. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_sprintf (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree fmt = gimple_call_arg (stmt, 1);
|
|
tree orig = NULL_TREE;
|
|
const char *fmt_str = NULL;
|
|
|
|
/* Verify the required arguments in the original call. We deal with two
|
|
types of sprintf() calls: 'sprintf (str, fmt)' and
|
|
'sprintf (dest, "%s", orig)'. */
|
|
if (gimple_call_num_args (stmt) > 3)
|
|
return false;
|
|
|
|
if (gimple_call_num_args (stmt) == 3)
|
|
orig = gimple_call_arg (stmt, 2);
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* If the format doesn't contain % args or %%, use strcpy. */
|
|
if (strchr (fmt_str, target_percent) == NULL)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Don't optimize sprintf (buf, "abc", ptr++). */
|
|
if (orig)
|
|
return false;
|
|
|
|
/* Convert sprintf (str, fmt) into strcpy (str, fmt) when
|
|
'format' is known to contain no % formats. */
|
|
gimple_seq stmts = NULL;
|
|
gimple repl = gimple_build_call (fn, 2, dest, fmt);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
repl = gimple_build_assign (gimple_call_lhs (stmt),
|
|
build_int_cst (integer_type_node,
|
|
strlen (fmt_str)));
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If the format is "%s", use strcpy if the result isn't used. */
|
|
else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
tree fn;
|
|
fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Don't crash on sprintf (str1, "%s"). */
|
|
if (!orig)
|
|
return false;
|
|
|
|
tree orig_len = NULL_TREE;
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
orig_len = get_maxval_strlen (orig, 0);
|
|
if (!orig_len)
|
|
return false;
|
|
}
|
|
|
|
/* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2). */
|
|
gimple_seq stmts = NULL;
|
|
gimple repl = gimple_build_call (fn, 2, dest, orig);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
if (!useless_type_conversion_p (integer_type_node,
|
|
TREE_TYPE (orig_len)))
|
|
orig_len = fold_convert (integer_type_node, orig_len);
|
|
repl = gimple_build_assign (gimple_call_lhs (stmt), orig_len);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Simplify a call to the snprintf builtin with arguments DEST, DESTSIZE,
|
|
FMT, and ORIG. ORIG may be null if this is a 3-argument call. We don't
|
|
attempt to simplify calls with more than 4 arguments.
|
|
|
|
Return NULL_TREE if no simplification was possible, otherwise return the
|
|
simplified form of the call as a tree. If IGNORED is true, it means that
|
|
the caller does not use the returned value of the function. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_snprintf (gimple_stmt_iterator *gsi)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree dest = gimple_call_arg (stmt, 0);
|
|
tree destsize = gimple_call_arg (stmt, 1);
|
|
tree fmt = gimple_call_arg (stmt, 2);
|
|
tree orig = NULL_TREE;
|
|
const char *fmt_str = NULL;
|
|
|
|
if (gimple_call_num_args (stmt) > 4)
|
|
return false;
|
|
|
|
if (gimple_call_num_args (stmt) == 4)
|
|
orig = gimple_call_arg (stmt, 3);
|
|
|
|
if (!tree_fits_uhwi_p (destsize))
|
|
return false;
|
|
unsigned HOST_WIDE_INT destlen = tree_to_uhwi (destsize);
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* If the format doesn't contain % args or %%, use strcpy. */
|
|
if (strchr (fmt_str, target_percent) == NULL)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Don't optimize snprintf (buf, 4, "abc", ptr++). */
|
|
if (orig)
|
|
return false;
|
|
|
|
/* We could expand this as
|
|
memcpy (str, fmt, cst - 1); str[cst - 1] = '\0';
|
|
or to
|
|
memcpy (str, fmt_with_nul_at_cstm1, cst);
|
|
but in the former case that might increase code size
|
|
and in the latter case grow .rodata section too much.
|
|
So punt for now. */
|
|
size_t len = strlen (fmt_str);
|
|
if (len >= destlen)
|
|
return false;
|
|
|
|
gimple_seq stmts = NULL;
|
|
gimple repl = gimple_build_call (fn, 2, dest, fmt);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
repl = gimple_build_assign (gimple_call_lhs (stmt),
|
|
build_int_cst (integer_type_node, len));
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If the format is "%s", use strcpy if the result isn't used. */
|
|
else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
|
if (!fn)
|
|
return false;
|
|
|
|
/* Don't crash on snprintf (str1, cst, "%s"). */
|
|
if (!orig)
|
|
return false;
|
|
|
|
tree orig_len = get_maxval_strlen (orig, 0);
|
|
if (!orig_len || TREE_CODE (orig_len) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* We could expand this as
|
|
memcpy (str1, str2, cst - 1); str1[cst - 1] = '\0';
|
|
or to
|
|
memcpy (str1, str2_with_nul_at_cstm1, cst);
|
|
but in the former case that might increase code size
|
|
and in the latter case grow .rodata section too much.
|
|
So punt for now. */
|
|
if (compare_tree_int (orig_len, destlen) >= 0)
|
|
return false;
|
|
|
|
/* Convert snprintf (str1, cst, "%s", str2) into
|
|
strcpy (str1, str2) if strlen (str2) < cst. */
|
|
gimple_seq stmts = NULL;
|
|
gimple repl = gimple_build_call (fn, 2, dest, orig);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
if (gimple_call_lhs (stmt))
|
|
{
|
|
if (!useless_type_conversion_p (integer_type_node,
|
|
TREE_TYPE (orig_len)))
|
|
orig_len = fold_convert (integer_type_node, orig_len);
|
|
repl = gimple_build_assign (gimple_call_lhs (stmt), orig_len);
|
|
gimple_seq_add_stmt_without_update (&stmts, repl);
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
/* gsi now points at the assignment to the lhs, get a
|
|
stmt iterator to the memcpy call.
|
|
??? We can't use gsi_for_stmt as that doesn't work when the
|
|
CFG isn't built yet. */
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
|
gsi_prev (&gsi2);
|
|
fold_stmt (&gsi2);
|
|
}
|
|
else
|
|
{
|
|
gsi_replace_with_seq_vops (gsi, stmts);
|
|
fold_stmt (gsi);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins.
|
|
FP, FMT, and ARG are the arguments to the call. We don't fold calls with
|
|
more than 3 arguments, and ARG may be null in the 2-argument case.
|
|
|
|
Return NULL_TREE if no simplification was possible, otherwise return the
|
|
simplified form of the call as a tree. FCODE is the BUILT_IN_*
|
|
code of the function to be simplified. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_fprintf (gimple_stmt_iterator *gsi,
|
|
tree fp, tree fmt, tree arg,
|
|
enum built_in_function fcode)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree fn_fputc, fn_fputs;
|
|
const char *fmt_str = NULL;
|
|
|
|
/* If the return value is used, don't do the transformation. */
|
|
if (gimple_call_lhs (stmt) != NULL_TREE)
|
|
return false;
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
|
|
if (fcode == BUILT_IN_FPRINTF_UNLOCKED)
|
|
{
|
|
/* If we're using an unlocked function, assume the other
|
|
unlocked functions exist explicitly. */
|
|
fn_fputc = builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED);
|
|
fn_fputs = builtin_decl_explicit (BUILT_IN_FPUTS_UNLOCKED);
|
|
}
|
|
else
|
|
{
|
|
fn_fputc = builtin_decl_implicit (BUILT_IN_FPUTC);
|
|
fn_fputs = builtin_decl_implicit (BUILT_IN_FPUTS);
|
|
}
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
/* If the format doesn't contain % args or %%, use strcpy. */
|
|
if (strchr (fmt_str, target_percent) == NULL)
|
|
{
|
|
if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK
|
|
&& arg)
|
|
return false;
|
|
|
|
/* If the format specifier was "", fprintf does nothing. */
|
|
if (fmt_str[0] == '\0')
|
|
{
|
|
replace_call_with_value (gsi, NULL_TREE);
|
|
return true;
|
|
}
|
|
|
|
/* When "string" doesn't contain %, replace all cases of
|
|
fprintf (fp, string) with fputs (string, fp). The fputs
|
|
builtin will take care of special cases like length == 1. */
|
|
if (fn_fputs)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_fputs, 2, fmt, fp);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* The other optimizations can be done only on the non-va_list variants. */
|
|
else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK)
|
|
return false;
|
|
|
|
/* If the format specifier was "%s", call __builtin_fputs (arg, fp). */
|
|
else if (strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
return false;
|
|
if (fn_fputs)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_fputs, 2, arg, fp);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* If the format specifier was "%c", call __builtin_fputc (arg, fp). */
|
|
else if (strcmp (fmt_str, target_percent_c) == 0)
|
|
{
|
|
if (!arg
|
|
|| ! useless_type_conversion_p (integer_type_node, TREE_TYPE (arg)))
|
|
return false;
|
|
if (fn_fputc)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_fputc, 2, arg, fp);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins.
|
|
FMT and ARG are the arguments to the call; we don't fold cases with
|
|
more than 2 arguments, and ARG may be null if this is a 1-argument case.
|
|
|
|
Return NULL_TREE if no simplification was possible, otherwise return the
|
|
simplified form of the call as a tree. FCODE is the BUILT_IN_*
|
|
code of the function to be simplified. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_printf (gimple_stmt_iterator *gsi, tree fmt,
|
|
tree arg, enum built_in_function fcode)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree fn_putchar, fn_puts, newarg;
|
|
const char *fmt_str = NULL;
|
|
|
|
/* If the return value is used, don't do the transformation. */
|
|
if (gimple_call_lhs (stmt) != NULL_TREE)
|
|
return false;
|
|
|
|
/* Check whether the format is a literal string constant. */
|
|
fmt_str = c_getstr (fmt);
|
|
if (fmt_str == NULL)
|
|
return false;
|
|
|
|
if (fcode == BUILT_IN_PRINTF_UNLOCKED)
|
|
{
|
|
/* If we're using an unlocked function, assume the other
|
|
unlocked functions exist explicitly. */
|
|
fn_putchar = builtin_decl_explicit (BUILT_IN_PUTCHAR_UNLOCKED);
|
|
fn_puts = builtin_decl_explicit (BUILT_IN_PUTS_UNLOCKED);
|
|
}
|
|
else
|
|
{
|
|
fn_putchar = builtin_decl_implicit (BUILT_IN_PUTCHAR);
|
|
fn_puts = builtin_decl_implicit (BUILT_IN_PUTS);
|
|
}
|
|
|
|
if (!init_target_chars ())
|
|
return false;
|
|
|
|
if (strcmp (fmt_str, target_percent_s) == 0
|
|
|| strchr (fmt_str, target_percent) == NULL)
|
|
{
|
|
const char *str;
|
|
|
|
if (strcmp (fmt_str, target_percent_s) == 0)
|
|
{
|
|
if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
|
|
return false;
|
|
|
|
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
return false;
|
|
|
|
str = c_getstr (arg);
|
|
if (str == NULL)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/* The format specifier doesn't contain any '%' characters. */
|
|
if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK
|
|
&& arg)
|
|
return false;
|
|
str = fmt_str;
|
|
}
|
|
|
|
/* If the string was "", printf does nothing. */
|
|
if (str[0] == '\0')
|
|
{
|
|
replace_call_with_value (gsi, NULL_TREE);
|
|
return true;
|
|
}
|
|
|
|
/* If the string has length of 1, call putchar. */
|
|
if (str[1] == '\0')
|
|
{
|
|
/* Given printf("c"), (where c is any one character,)
|
|
convert "c"[0] to an int and pass that to the replacement
|
|
function. */
|
|
newarg = build_int_cst (integer_type_node, str[0]);
|
|
if (fn_putchar)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_putchar, 1, newarg);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the string was "string\n", call puts("string"). */
|
|
size_t len = strlen (str);
|
|
if ((unsigned char)str[len - 1] == target_newline
|
|
&& (size_t) (int) len == len
|
|
&& (int) len > 0)
|
|
{
|
|
char *newstr;
|
|
tree offset_node, string_cst;
|
|
|
|
/* Create a NUL-terminated string that's one char shorter
|
|
than the original, stripping off the trailing '\n'. */
|
|
newarg = build_string_literal (len, str);
|
|
string_cst = string_constant (newarg, &offset_node);
|
|
gcc_checking_assert (string_cst
|
|
&& (TREE_STRING_LENGTH (string_cst)
|
|
== (int) len)
|
|
&& integer_zerop (offset_node)
|
|
&& (unsigned char)
|
|
TREE_STRING_POINTER (string_cst)[len - 1]
|
|
== target_newline);
|
|
/* build_string_literal creates a new STRING_CST,
|
|
modify it in place to avoid double copying. */
|
|
newstr = CONST_CAST (char *, TREE_STRING_POINTER (string_cst));
|
|
newstr[len - 1] = '\0';
|
|
if (fn_puts)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_puts, 1, newarg);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
/* We'd like to arrange to call fputs(string,stdout) here,
|
|
but we need stdout and don't have a way to get it yet. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* The other optimizations can be done only on the non-va_list variants. */
|
|
else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
|
|
return false;
|
|
|
|
/* If the format specifier was "%s\n", call __builtin_puts(arg). */
|
|
else if (strcmp (fmt_str, target_percent_s_newline) == 0)
|
|
{
|
|
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
return false;
|
|
if (fn_puts)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_puts, 1, arg);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* If the format specifier was "%c", call __builtin_putchar(arg). */
|
|
else if (strcmp (fmt_str, target_percent_c) == 0)
|
|
{
|
|
if (!arg || ! useless_type_conversion_p (integer_type_node,
|
|
TREE_TYPE (arg)))
|
|
return false;
|
|
if (fn_putchar)
|
|
{
|
|
gcall *repl = gimple_build_call (fn_putchar, 1, arg);
|
|
replace_call_with_call_and_fold (gsi, repl);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
/* Fold a call to __builtin_strlen with known length LEN. */
|
|
|
|
static bool
|
|
gimple_fold_builtin_strlen (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
tree len = get_maxval_strlen (gimple_call_arg (stmt, 0), 0);
|
|
if (!len)
|
|
return false;
|
|
len = force_gimple_operand_gsi (gsi, len, true, NULL, true, GSI_SAME_STMT);
|
|
replace_call_with_value (gsi, len);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Fold the non-target builtin at *GSI and return whether any simplification
|
|
was made. */
|
|
|
|
static bool
|
|
gimple_fold_builtin (gimple_stmt_iterator *gsi)
|
|
{
|
|
gcall *stmt = as_a <gcall *>(gsi_stmt (*gsi));
|
|
tree callee = gimple_call_fndecl (stmt);
|
|
|
|
/* Give up for always_inline inline builtins until they are
|
|
inlined. */
|
|
if (avoid_folding_inline_builtin (callee))
|
|
return false;
|
|
|
|
unsigned n = gimple_call_num_args (stmt);
|
|
enum built_in_function fcode = DECL_FUNCTION_CODE (callee);
|
|
switch (fcode)
|
|
{
|
|
case BUILT_IN_BZERO:
|
|
return gimple_fold_builtin_memset (gsi, integer_zero_node,
|
|
gimple_call_arg (stmt, 1));
|
|
case BUILT_IN_MEMSET:
|
|
return gimple_fold_builtin_memset (gsi,
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2));
|
|
case BUILT_IN_BCOPY:
|
|
return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 0), 3);
|
|
case BUILT_IN_MEMCPY:
|
|
return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1), 0);
|
|
case BUILT_IN_MEMPCPY:
|
|
return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1), 1);
|
|
case BUILT_IN_MEMMOVE:
|
|
return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1), 3);
|
|
case BUILT_IN_SPRINTF_CHK:
|
|
case BUILT_IN_VSPRINTF_CHK:
|
|
return gimple_fold_builtin_sprintf_chk (gsi, fcode);
|
|
case BUILT_IN_STRCAT_CHK:
|
|
return gimple_fold_builtin_strcat_chk (gsi);
|
|
case BUILT_IN_STRNCAT_CHK:
|
|
return gimple_fold_builtin_strncat_chk (gsi);
|
|
case BUILT_IN_STRLEN:
|
|
return gimple_fold_builtin_strlen (gsi);
|
|
case BUILT_IN_STRCPY:
|
|
return gimple_fold_builtin_strcpy (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1));
|
|
case BUILT_IN_STRNCPY:
|
|
return gimple_fold_builtin_strncpy (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2));
|
|
case BUILT_IN_STRCAT:
|
|
return gimple_fold_builtin_strcat (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1));
|
|
case BUILT_IN_STRNCAT:
|
|
return gimple_fold_builtin_strncat (gsi);
|
|
case BUILT_IN_FPUTS:
|
|
return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1), false);
|
|
case BUILT_IN_FPUTS_UNLOCKED:
|
|
return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1), true);
|
|
case BUILT_IN_MEMCPY_CHK:
|
|
case BUILT_IN_MEMPCPY_CHK:
|
|
case BUILT_IN_MEMMOVE_CHK:
|
|
case BUILT_IN_MEMSET_CHK:
|
|
return gimple_fold_builtin_memory_chk (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2),
|
|
gimple_call_arg (stmt, 3),
|
|
fcode);
|
|
case BUILT_IN_STPCPY:
|
|
return gimple_fold_builtin_stpcpy (gsi);
|
|
case BUILT_IN_STRCPY_CHK:
|
|
case BUILT_IN_STPCPY_CHK:
|
|
return gimple_fold_builtin_stxcpy_chk (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2),
|
|
fcode);
|
|
case BUILT_IN_STRNCPY_CHK:
|
|
case BUILT_IN_STPNCPY_CHK:
|
|
return gimple_fold_builtin_stxncpy_chk (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2),
|
|
gimple_call_arg (stmt, 3),
|
|
fcode);
|
|
case BUILT_IN_SNPRINTF_CHK:
|
|
case BUILT_IN_VSNPRINTF_CHK:
|
|
return gimple_fold_builtin_snprintf_chk (gsi, fcode);
|
|
case BUILT_IN_SNPRINTF:
|
|
return gimple_fold_builtin_snprintf (gsi);
|
|
case BUILT_IN_SPRINTF:
|
|
return gimple_fold_builtin_sprintf (gsi);
|
|
case BUILT_IN_FPRINTF:
|
|
case BUILT_IN_FPRINTF_UNLOCKED:
|
|
case BUILT_IN_VFPRINTF:
|
|
if (n == 2 || n == 3)
|
|
return gimple_fold_builtin_fprintf (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
n == 3
|
|
? gimple_call_arg (stmt, 2)
|
|
: NULL_TREE,
|
|
fcode);
|
|
break;
|
|
case BUILT_IN_FPRINTF_CHK:
|
|
case BUILT_IN_VFPRINTF_CHK:
|
|
if (n == 3 || n == 4)
|
|
return gimple_fold_builtin_fprintf (gsi,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 2),
|
|
n == 4
|
|
? gimple_call_arg (stmt, 3)
|
|
: NULL_TREE,
|
|
fcode);
|
|
break;
|
|
case BUILT_IN_PRINTF:
|
|
case BUILT_IN_PRINTF_UNLOCKED:
|
|
case BUILT_IN_VPRINTF:
|
|
if (n == 1 || n == 2)
|
|
return gimple_fold_builtin_printf (gsi, gimple_call_arg (stmt, 0),
|
|
n == 2
|
|
? gimple_call_arg (stmt, 1)
|
|
: NULL_TREE, fcode);
|
|
break;
|
|
case BUILT_IN_PRINTF_CHK:
|
|
case BUILT_IN_VPRINTF_CHK:
|
|
if (n == 2 || n == 3)
|
|
return gimple_fold_builtin_printf (gsi, gimple_call_arg (stmt, 1),
|
|
n == 3
|
|
? gimple_call_arg (stmt, 2)
|
|
: NULL_TREE, fcode);
|
|
default:;
|
|
}
|
|
|
|
/* Try the generic builtin folder. */
|
|
bool ignore = (gimple_call_lhs (stmt) == NULL);
|
|
tree result = fold_call_stmt (stmt, ignore);
|
|
if (result)
|
|
{
|
|
if (ignore)
|
|
STRIP_NOPS (result);
|
|
else
|
|
result = fold_convert (gimple_call_return_type (stmt), result);
|
|
if (!update_call_from_tree (gsi, result))
|
|
gimplify_and_update_call_from_tree (gsi, result);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if ARG0 CODE ARG1 in infinite signed precision operation
|
|
doesn't fit into TYPE. The test for overflow should be regardless of
|
|
-fwrapv, and even for unsigned types. */
|
|
|
|
bool
|
|
arith_overflowed_p (enum tree_code code, const_tree type,
|
|
const_tree arg0, const_tree arg1)
|
|
{
|
|
typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) widest2_int;
|
|
typedef generic_wide_int <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> >
|
|
widest2_int_cst;
|
|
widest2_int warg0 = widest2_int_cst (arg0);
|
|
widest2_int warg1 = widest2_int_cst (arg1);
|
|
widest2_int wres;
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR: wres = wi::add (warg0, warg1); break;
|
|
case MINUS_EXPR: wres = wi::sub (warg0, warg1); break;
|
|
case MULT_EXPR: wres = wi::mul (warg0, warg1); break;
|
|
default: gcc_unreachable ();
|
|
}
|
|
signop sign = TYPE_SIGN (type);
|
|
if (sign == UNSIGNED && wi::neg_p (wres))
|
|
return true;
|
|
return wi::min_precision (wres, sign) > TYPE_PRECISION (type);
|
|
}
|
|
|
|
/* Attempt to fold a call statement referenced by the statement iterator GSI.
|
|
The statement may be replaced by another statement, e.g., if the call
|
|
simplifies to a constant value. Return true if any changes were made.
|
|
It is assumed that the operands have been previously folded. */
|
|
|
|
static bool
|
|
gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
|
|
{
|
|
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
|
|
tree callee;
|
|
bool changed = false;
|
|
unsigned i;
|
|
|
|
/* Fold *& in call arguments. */
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
|
|
{
|
|
tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
|
|
if (tmp)
|
|
{
|
|
gimple_call_set_arg (stmt, i, tmp);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
/* Check for virtual calls that became direct calls. */
|
|
callee = gimple_call_fn (stmt);
|
|
if (callee && TREE_CODE (callee) == OBJ_TYPE_REF)
|
|
{
|
|
if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE)
|
|
{
|
|
if (dump_file && virtual_method_call_p (callee)
|
|
&& !possible_polymorphic_call_target_p
|
|
(callee, stmt, cgraph_node::get (gimple_call_addr_fndecl
|
|
(OBJ_TYPE_REF_EXPR (callee)))))
|
|
{
|
|
fprintf (dump_file,
|
|
"Type inheritance inconsistent devirtualization of ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, " to ");
|
|
print_generic_expr (dump_file, callee, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee));
|
|
changed = true;
|
|
}
|
|
else if (flag_devirtualize && !inplace && virtual_method_call_p (callee))
|
|
{
|
|
bool final;
|
|
vec <cgraph_node *>targets
|
|
= possible_polymorphic_call_targets (callee, stmt, &final);
|
|
if (final && targets.length () <= 1 && dbg_cnt (devirt))
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (dump_enabled_p ())
|
|
{
|
|
location_t loc = gimple_location_safe (stmt);
|
|
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
|
|
"folding virtual function call to %s\n",
|
|
targets.length () == 1
|
|
? targets[0]->name ()
|
|
: "__builtin_unreachable");
|
|
}
|
|
if (targets.length () == 1)
|
|
{
|
|
gimple_call_set_fndecl (stmt, targets[0]->decl);
|
|
changed = true;
|
|
/* If the call becomes noreturn, remove the lhs. */
|
|
if (lhs && (gimple_call_flags (stmt) & ECF_NORETURN))
|
|
{
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
tree var = create_tmp_var (TREE_TYPE (lhs));
|
|
tree def = get_or_create_ssa_default_def (cfun, var);
|
|
gimple new_stmt = gimple_build_assign (lhs, def);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
}
|
|
gimple_call_set_lhs (stmt, NULL_TREE);
|
|
}
|
|
maybe_remove_unused_call_args (cfun, stmt);
|
|
}
|
|
else
|
|
{
|
|
tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
|
|
gimple new_stmt = gimple_build_call (fndecl, 0);
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
tree var = create_tmp_var (TREE_TYPE (lhs));
|
|
tree def = get_or_create_ssa_default_def (cfun, var);
|
|
|
|
/* To satisfy condition for
|
|
cgraph_update_edges_for_call_stmt_node,
|
|
we need to preserve GIMPLE_CALL statement
|
|
at position of GSI iterator. */
|
|
update_call_from_tree (gsi, def);
|
|
gsi_insert_before (gsi, new_stmt, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
{
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
|
gsi_replace (gsi, new_stmt, false);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check for indirect calls that became direct calls, and then
|
|
no longer require a static chain. */
|
|
if (gimple_call_chain (stmt))
|
|
{
|
|
tree fn = gimple_call_fndecl (stmt);
|
|
if (fn && !DECL_STATIC_CHAIN (fn))
|
|
{
|
|
gimple_call_set_chain (stmt, NULL);
|
|
changed = true;
|
|
}
|
|
else
|
|
{
|
|
tree tmp = maybe_fold_reference (gimple_call_chain (stmt), false);
|
|
if (tmp)
|
|
{
|
|
gimple_call_set_chain (stmt, tmp);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inplace)
|
|
return changed;
|
|
|
|
/* Check for builtins that CCP can handle using information not
|
|
available in the generic fold routines. */
|
|
if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
|
|
{
|
|
if (gimple_fold_builtin (gsi))
|
|
changed = true;
|
|
}
|
|
else if (gimple_call_builtin_p (stmt, BUILT_IN_MD))
|
|
{
|
|
changed |= targetm.gimple_fold_builtin (gsi);
|
|
}
|
|
else if (gimple_call_internal_p (stmt))
|
|
{
|
|
enum tree_code subcode = ERROR_MARK;
|
|
tree result = NULL_TREE;
|
|
bool cplx_result = false;
|
|
tree overflow = NULL_TREE;
|
|
switch (gimple_call_internal_fn (stmt))
|
|
{
|
|
case IFN_BUILTIN_EXPECT:
|
|
result = fold_builtin_expect (gimple_location (stmt),
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2));
|
|
break;
|
|
case IFN_UBSAN_OBJECT_SIZE:
|
|
if (integer_all_onesp (gimple_call_arg (stmt, 2))
|
|
|| (TREE_CODE (gimple_call_arg (stmt, 1)) == INTEGER_CST
|
|
&& TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST
|
|
&& tree_int_cst_le (gimple_call_arg (stmt, 1),
|
|
gimple_call_arg (stmt, 2))))
|
|
{
|
|
gsi_replace (gsi, gimple_build_nop (), true);
|
|
unlink_stmt_vdef (stmt);
|
|
release_defs (stmt);
|
|
return true;
|
|
}
|
|
break;
|
|
case IFN_UBSAN_CHECK_ADD:
|
|
subcode = PLUS_EXPR;
|
|
break;
|
|
case IFN_UBSAN_CHECK_SUB:
|
|
subcode = MINUS_EXPR;
|
|
break;
|
|
case IFN_UBSAN_CHECK_MUL:
|
|
subcode = MULT_EXPR;
|
|
break;
|
|
case IFN_ADD_OVERFLOW:
|
|
subcode = PLUS_EXPR;
|
|
cplx_result = true;
|
|
break;
|
|
case IFN_SUB_OVERFLOW:
|
|
subcode = MINUS_EXPR;
|
|
cplx_result = true;
|
|
break;
|
|
case IFN_MUL_OVERFLOW:
|
|
subcode = MULT_EXPR;
|
|
cplx_result = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (subcode != ERROR_MARK)
|
|
{
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
tree type = TREE_TYPE (arg0);
|
|
if (cplx_result)
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
if (lhs == NULL_TREE)
|
|
type = NULL_TREE;
|
|
else
|
|
type = TREE_TYPE (TREE_TYPE (lhs));
|
|
}
|
|
if (type == NULL_TREE)
|
|
;
|
|
/* x = y + 0; x = y - 0; x = y * 0; */
|
|
else if (integer_zerop (arg1))
|
|
result = subcode == MULT_EXPR ? integer_zero_node : arg0;
|
|
/* x = 0 + y; x = 0 * y; */
|
|
else if (subcode != MINUS_EXPR && integer_zerop (arg0))
|
|
result = subcode == MULT_EXPR ? integer_zero_node : arg1;
|
|
/* x = y - y; */
|
|
else if (subcode == MINUS_EXPR && operand_equal_p (arg0, arg1, 0))
|
|
result = integer_zero_node;
|
|
/* x = y * 1; x = 1 * y; */
|
|
else if (subcode == MULT_EXPR && integer_onep (arg1))
|
|
result = arg0;
|
|
else if (subcode == MULT_EXPR && integer_onep (arg0))
|
|
result = arg1;
|
|
else if (TREE_CODE (arg0) == INTEGER_CST
|
|
&& TREE_CODE (arg1) == INTEGER_CST)
|
|
{
|
|
if (cplx_result)
|
|
result = int_const_binop (subcode, fold_convert (type, arg0),
|
|
fold_convert (type, arg1));
|
|
else
|
|
result = int_const_binop (subcode, arg0, arg1);
|
|
if (result && arith_overflowed_p (subcode, type, arg0, arg1))
|
|
{
|
|
if (cplx_result)
|
|
overflow = build_one_cst (type);
|
|
else
|
|
result = NULL_TREE;
|
|
}
|
|
}
|
|
if (result)
|
|
{
|
|
if (result == integer_zero_node)
|
|
result = build_zero_cst (type);
|
|
else if (cplx_result && TREE_TYPE (result) != type)
|
|
{
|
|
if (TREE_CODE (result) == INTEGER_CST)
|
|
{
|
|
if (arith_overflowed_p (PLUS_EXPR, type, result,
|
|
integer_zero_node))
|
|
overflow = build_one_cst (type);
|
|
}
|
|
else if ((!TYPE_UNSIGNED (TREE_TYPE (result))
|
|
&& TYPE_UNSIGNED (type))
|
|
|| (TYPE_PRECISION (type)
|
|
< (TYPE_PRECISION (TREE_TYPE (result))
|
|
+ (TYPE_UNSIGNED (TREE_TYPE (result))
|
|
&& !TYPE_UNSIGNED (type)))))
|
|
result = NULL_TREE;
|
|
if (result)
|
|
result = fold_convert (type, result);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
if (TREE_CODE (result) == INTEGER_CST && TREE_OVERFLOW (result))
|
|
result = drop_tree_overflow (result);
|
|
if (cplx_result)
|
|
{
|
|
if (overflow == NULL_TREE)
|
|
overflow = build_zero_cst (TREE_TYPE (result));
|
|
tree ctype = build_complex_type (TREE_TYPE (result));
|
|
if (TREE_CODE (result) == INTEGER_CST
|
|
&& TREE_CODE (overflow) == INTEGER_CST)
|
|
result = build_complex (ctype, result, overflow);
|
|
else
|
|
result = build2_loc (gimple_location (stmt), COMPLEX_EXPR,
|
|
ctype, result, overflow);
|
|
}
|
|
if (!update_call_from_tree (gsi, result))
|
|
gimplify_and_update_call_from_tree (gsi, result);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
|
|
/* Worker for fold_stmt_1 dispatch to pattern based folding with
|
|
gimple_simplify.
|
|
|
|
Replaces *GSI with the simplification result in RCODE and OPS
|
|
and the associated statements in *SEQ. Does the replacement
|
|
according to INPLACE and returns true if the operation succeeded. */
|
|
|
|
static bool
|
|
replace_stmt_with_simplification (gimple_stmt_iterator *gsi,
|
|
code_helper rcode, tree *ops,
|
|
gimple_seq *seq, bool inplace)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
|
|
/* Play safe and do not allow abnormals to be mentioned in
|
|
newly created statements. See also maybe_push_res_to_seq. */
|
|
if ((TREE_CODE (ops[0]) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[0]))
|
|
|| (ops[1]
|
|
&& TREE_CODE (ops[1]) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[1]))
|
|
|| (ops[2]
|
|
&& TREE_CODE (ops[2]) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[2])))
|
|
return false;
|
|
|
|
if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
|
|
{
|
|
gcc_assert (rcode.is_tree_code ());
|
|
if (TREE_CODE_CLASS ((enum tree_code)rcode) == tcc_comparison
|
|
/* GIMPLE_CONDs condition may not throw. */
|
|
&& (!flag_exceptions
|
|
|| !cfun->can_throw_non_call_exceptions
|
|
|| !operation_could_trap_p (rcode,
|
|
FLOAT_TYPE_P (TREE_TYPE (ops[0])),
|
|
false, NULL_TREE)))
|
|
gimple_cond_set_condition (cond_stmt, rcode, ops[0], ops[1]);
|
|
else if (rcode == SSA_NAME)
|
|
gimple_cond_set_condition (cond_stmt, NE_EXPR, ops[0],
|
|
build_zero_cst (TREE_TYPE (ops[0])));
|
|
else if (rcode == INTEGER_CST)
|
|
{
|
|
if (integer_zerop (ops[0]))
|
|
gimple_cond_make_false (cond_stmt);
|
|
else
|
|
gimple_cond_make_true (cond_stmt);
|
|
}
|
|
else if (!inplace)
|
|
{
|
|
tree res = maybe_push_res_to_seq (rcode, boolean_type_node,
|
|
ops, seq);
|
|
if (!res)
|
|
return false;
|
|
gimple_cond_set_condition (cond_stmt, NE_EXPR, res,
|
|
build_zero_cst (TREE_TYPE (res)));
|
|
}
|
|
else
|
|
return false;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "gimple_simplified to ");
|
|
if (!gimple_seq_empty_p (*seq))
|
|
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
|
|
print_gimple_stmt (dump_file, gsi_stmt (*gsi),
|
|
0, TDF_SLIM);
|
|
}
|
|
gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT);
|
|
return true;
|
|
}
|
|
else if (is_gimple_assign (stmt)
|
|
&& rcode.is_tree_code ())
|
|
{
|
|
if (!inplace
|
|
|| gimple_num_ops (stmt) > get_gimple_rhs_num_ops (rcode))
|
|
{
|
|
maybe_build_generic_op (rcode,
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
|
&ops[0], ops[1], ops[2]);
|
|
gimple_assign_set_rhs_with_ops (gsi, rcode, ops[0], ops[1], ops[2]);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "gimple_simplified to ");
|
|
if (!gimple_seq_empty_p (*seq))
|
|
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
|
|
print_gimple_stmt (dump_file, gsi_stmt (*gsi),
|
|
0, TDF_SLIM);
|
|
}
|
|
gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT);
|
|
return true;
|
|
}
|
|
}
|
|
else if (!inplace)
|
|
{
|
|
if (gimple_has_lhs (stmt))
|
|
{
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (!maybe_push_res_to_seq (rcode, TREE_TYPE (lhs),
|
|
ops, seq, lhs))
|
|
return false;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "gimple_simplified to ");
|
|
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
|
|
}
|
|
gsi_replace_with_seq_vops (gsi, *seq);
|
|
return true;
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Canonicalize MEM_REFs invariant address operand after propagation. */
|
|
|
|
static bool
|
|
maybe_canonicalize_mem_ref_addr (tree *t)
|
|
{
|
|
bool res = false;
|
|
|
|
if (TREE_CODE (*t) == ADDR_EXPR)
|
|
t = &TREE_OPERAND (*t, 0);
|
|
|
|
while (handled_component_p (*t))
|
|
t = &TREE_OPERAND (*t, 0);
|
|
|
|
/* Canonicalize MEM [&foo.bar, 0] which appears after propagating
|
|
of invariant addresses into a SSA name MEM_REF address. */
|
|
if (TREE_CODE (*t) == MEM_REF
|
|
|| TREE_CODE (*t) == TARGET_MEM_REF)
|
|
{
|
|
tree addr = TREE_OPERAND (*t, 0);
|
|
if (TREE_CODE (addr) == ADDR_EXPR
|
|
&& (TREE_CODE (TREE_OPERAND (addr, 0)) == MEM_REF
|
|
|| handled_component_p (TREE_OPERAND (addr, 0))))
|
|
{
|
|
tree base;
|
|
HOST_WIDE_INT coffset;
|
|
base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0),
|
|
&coffset);
|
|
if (!base)
|
|
gcc_unreachable ();
|
|
|
|
TREE_OPERAND (*t, 0) = build_fold_addr_expr (base);
|
|
TREE_OPERAND (*t, 1) = int_const_binop (PLUS_EXPR,
|
|
TREE_OPERAND (*t, 1),
|
|
size_int (coffset));
|
|
res = true;
|
|
}
|
|
gcc_checking_assert (TREE_CODE (TREE_OPERAND (*t, 0)) == DEBUG_EXPR_DECL
|
|
|| is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)));
|
|
}
|
|
|
|
/* Canonicalize back MEM_REFs to plain reference trees if the object
|
|
accessed is a decl that has the same access semantics as the MEM_REF. */
|
|
if (TREE_CODE (*t) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
|
|
&& integer_zerop (TREE_OPERAND (*t, 1))
|
|
&& MR_DEPENDENCE_CLIQUE (*t) == 0)
|
|
{
|
|
tree decl = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
|
|
tree alias_type = TREE_TYPE (TREE_OPERAND (*t, 1));
|
|
if (/* Same volatile qualification. */
|
|
TREE_THIS_VOLATILE (*t) == TREE_THIS_VOLATILE (decl)
|
|
/* Same TBAA behavior with -fstrict-aliasing. */
|
|
&& !TYPE_REF_CAN_ALIAS_ALL (alias_type)
|
|
&& (TYPE_MAIN_VARIANT (TREE_TYPE (decl))
|
|
== TYPE_MAIN_VARIANT (TREE_TYPE (alias_type)))
|
|
/* Same alignment. */
|
|
&& TYPE_ALIGN (TREE_TYPE (decl)) == TYPE_ALIGN (TREE_TYPE (*t))
|
|
/* We have to look out here to not drop a required conversion
|
|
from the rhs to the lhs if *t appears on the lhs or vice-versa
|
|
if it appears on the rhs. Thus require strict type
|
|
compatibility. */
|
|
&& types_compatible_p (TREE_TYPE (*t), TREE_TYPE (decl)))
|
|
{
|
|
*t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
|
|
res = true;
|
|
}
|
|
}
|
|
|
|
/* Canonicalize TARGET_MEM_REF in particular with respect to
|
|
the indexes becoming constant. */
|
|
else if (TREE_CODE (*t) == TARGET_MEM_REF)
|
|
{
|
|
tree tem = maybe_fold_tmr (*t);
|
|
if (tem)
|
|
{
|
|
*t = tem;
|
|
res = true;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
|
|
distinguishes both cases. */
|
|
|
|
static bool
|
|
fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace, tree (*valueize) (tree))
|
|
{
|
|
bool changed = false;
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
unsigned i;
|
|
|
|
/* First do required canonicalization of [TARGET_]MEM_REF addresses
|
|
after propagation.
|
|
??? This shouldn't be done in generic folding but in the
|
|
propagation helpers which also know whether an address was
|
|
propagated. */
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
if (gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
|
{
|
|
tree *rhs = gimple_assign_rhs1_ptr (stmt);
|
|
if ((REFERENCE_CLASS_P (*rhs)
|
|
|| TREE_CODE (*rhs) == ADDR_EXPR)
|
|
&& maybe_canonicalize_mem_ref_addr (rhs))
|
|
changed = true;
|
|
tree *lhs = gimple_assign_lhs_ptr (stmt);
|
|
if (REFERENCE_CLASS_P (*lhs)
|
|
&& maybe_canonicalize_mem_ref_addr (lhs))
|
|
changed = true;
|
|
}
|
|
break;
|
|
case GIMPLE_CALL:
|
|
{
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
{
|
|
tree *arg = gimple_call_arg_ptr (stmt, i);
|
|
if (REFERENCE_CLASS_P (*arg)
|
|
&& maybe_canonicalize_mem_ref_addr (arg))
|
|
changed = true;
|
|
}
|
|
tree *lhs = gimple_call_lhs_ptr (stmt);
|
|
if (*lhs
|
|
&& REFERENCE_CLASS_P (*lhs)
|
|
&& maybe_canonicalize_mem_ref_addr (lhs))
|
|
changed = true;
|
|
break;
|
|
}
|
|
case GIMPLE_ASM:
|
|
{
|
|
gasm *asm_stmt = as_a <gasm *> (stmt);
|
|
for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_output_op (asm_stmt, i);
|
|
tree op = TREE_VALUE (link);
|
|
if (REFERENCE_CLASS_P (op)
|
|
&& maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link)))
|
|
changed = true;
|
|
}
|
|
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_input_op (asm_stmt, i);
|
|
tree op = TREE_VALUE (link);
|
|
if ((REFERENCE_CLASS_P (op)
|
|
|| TREE_CODE (op) == ADDR_EXPR)
|
|
&& maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link)))
|
|
changed = true;
|
|
}
|
|
}
|
|
break;
|
|
case GIMPLE_DEBUG:
|
|
if (gimple_debug_bind_p (stmt))
|
|
{
|
|
tree *val = gimple_debug_bind_get_value_ptr (stmt);
|
|
if (*val
|
|
&& (REFERENCE_CLASS_P (*val)
|
|
|| TREE_CODE (*val) == ADDR_EXPR)
|
|
&& maybe_canonicalize_mem_ref_addr (val))
|
|
changed = true;
|
|
}
|
|
break;
|
|
default:;
|
|
}
|
|
|
|
/* Dispatch to pattern-based folding. */
|
|
if (!inplace
|
|
|| is_gimple_assign (stmt)
|
|
|| gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
gimple_seq seq = NULL;
|
|
code_helper rcode;
|
|
tree ops[3] = {};
|
|
if (gimple_simplify (stmt, &rcode, ops, inplace ? NULL : &seq,
|
|
valueize, valueize))
|
|
{
|
|
if (replace_stmt_with_simplification (gsi, rcode, ops, &seq, inplace))
|
|
changed = true;
|
|
else
|
|
gimple_seq_discard (seq);
|
|
}
|
|
}
|
|
|
|
stmt = gsi_stmt (*gsi);
|
|
|
|
/* Fold the main computation performed by the statement. */
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
unsigned old_num_ops = gimple_num_ops (stmt);
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree new_rhs;
|
|
/* First canonicalize operand order. This avoids building new
|
|
trees if this is the only thing fold would later do. */
|
|
if ((commutative_tree_code (subcode)
|
|
|| commutative_ternary_tree_code (subcode))
|
|
&& tree_swap_operands_p (gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt), false))
|
|
{
|
|
tree tem = gimple_assign_rhs1 (stmt);
|
|
gimple_assign_set_rhs1 (stmt, gimple_assign_rhs2 (stmt));
|
|
gimple_assign_set_rhs2 (stmt, tem);
|
|
changed = true;
|
|
}
|
|
new_rhs = fold_gimple_assign (gsi);
|
|
if (new_rhs
|
|
&& !useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (new_rhs)))
|
|
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
|
|
if (new_rhs
|
|
&& (!inplace
|
|
|| get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
|
|
{
|
|
gimple_assign_set_rhs_from_tree (gsi, new_rhs);
|
|
changed = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GIMPLE_COND:
|
|
changed |= fold_gimple_cond (as_a <gcond *> (stmt));
|
|
break;
|
|
|
|
case GIMPLE_CALL:
|
|
changed |= gimple_fold_call (gsi, inplace);
|
|
break;
|
|
|
|
case GIMPLE_ASM:
|
|
/* Fold *& in asm operands. */
|
|
{
|
|
gasm *asm_stmt = as_a <gasm *> (stmt);
|
|
size_t noutputs;
|
|
const char **oconstraints;
|
|
const char *constraint;
|
|
bool allows_mem, allows_reg;
|
|
|
|
noutputs = gimple_asm_noutputs (asm_stmt);
|
|
oconstraints = XALLOCAVEC (const char *, noutputs);
|
|
|
|
for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_output_op (asm_stmt, i);
|
|
tree op = TREE_VALUE (link);
|
|
oconstraints[i]
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
|
if (REFERENCE_CLASS_P (op)
|
|
&& (op = maybe_fold_reference (op, true)) != NULL_TREE)
|
|
{
|
|
TREE_VALUE (link) = op;
|
|
changed = true;
|
|
}
|
|
}
|
|
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
|
|
{
|
|
tree link = gimple_asm_input_op (asm_stmt, i);
|
|
tree op = TREE_VALUE (link);
|
|
constraint
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
|
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
|
|
oconstraints, &allows_mem, &allows_reg);
|
|
if (REFERENCE_CLASS_P (op)
|
|
&& (op = maybe_fold_reference (op, !allows_reg && allows_mem))
|
|
!= NULL_TREE)
|
|
{
|
|
TREE_VALUE (link) = op;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_DEBUG:
|
|
if (gimple_debug_bind_p (stmt))
|
|
{
|
|
tree val = gimple_debug_bind_get_value (stmt);
|
|
if (val
|
|
&& REFERENCE_CLASS_P (val))
|
|
{
|
|
tree tem = maybe_fold_reference (val, false);
|
|
if (tem)
|
|
{
|
|
gimple_debug_bind_set_value (stmt, tem);
|
|
changed = true;
|
|
}
|
|
}
|
|
else if (val
|
|
&& TREE_CODE (val) == ADDR_EXPR)
|
|
{
|
|
tree ref = TREE_OPERAND (val, 0);
|
|
tree tem = maybe_fold_reference (ref, false);
|
|
if (tem)
|
|
{
|
|
tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val));
|
|
gimple_debug_bind_set_value (stmt, tem);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:;
|
|
}
|
|
|
|
stmt = gsi_stmt (*gsi);
|
|
|
|
/* Fold *& on the lhs. */
|
|
if (gimple_has_lhs (stmt))
|
|
{
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (lhs && REFERENCE_CLASS_P (lhs))
|
|
{
|
|
tree new_lhs = maybe_fold_reference (lhs, true);
|
|
if (new_lhs)
|
|
{
|
|
gimple_set_lhs (stmt, new_lhs);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Valueziation callback that ends up not following SSA edges. */
|
|
|
|
tree
|
|
no_follow_ssa_edges (tree)
|
|
{
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Valueization callback that ends up following single-use SSA edges only. */
|
|
|
|
tree
|
|
follow_single_use_edges (tree val)
|
|
{
|
|
if (TREE_CODE (val) == SSA_NAME
|
|
&& !has_single_use (val))
|
|
return NULL_TREE;
|
|
return val;
|
|
}
|
|
|
|
/* Fold the statement pointed to by GSI. In some cases, this function may
|
|
replace the whole statement with a new one. Returns true iff folding
|
|
makes any changes.
|
|
The statement pointed to by GSI should be in valid gimple form but may
|
|
be in unfolded state as resulting from for example constant propagation
|
|
which can produce *&x = 0. */
|
|
|
|
bool
|
|
fold_stmt (gimple_stmt_iterator *gsi)
|
|
{
|
|
return fold_stmt_1 (gsi, false, no_follow_ssa_edges);
|
|
}
|
|
|
|
bool
|
|
fold_stmt (gimple_stmt_iterator *gsi, tree (*valueize) (tree))
|
|
{
|
|
return fold_stmt_1 (gsi, false, valueize);
|
|
}
|
|
|
|
/* Perform the minimal folding on statement *GSI. Only operations like
|
|
*&x created by constant propagation are handled. The statement cannot
|
|
be replaced with a new one. Return true if the statement was
|
|
changed, false otherwise.
|
|
The statement *GSI should be in valid gimple form but may
|
|
be in unfolded state as resulting from for example constant propagation
|
|
which can produce *&x = 0. */
|
|
|
|
bool
|
|
fold_stmt_inplace (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
bool changed = fold_stmt_1 (gsi, true, no_follow_ssa_edges);
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
|
return changed;
|
|
}
|
|
|
|
/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
|
|
if EXPR is null or we don't know how.
|
|
If non-null, the result always has boolean type. */
|
|
|
|
static tree
|
|
canonicalize_bool (tree expr, bool invert)
|
|
{
|
|
if (!expr)
|
|
return NULL_TREE;
|
|
else if (invert)
|
|
{
|
|
if (integer_nonzerop (expr))
|
|
return boolean_false_node;
|
|
else if (integer_zerop (expr))
|
|
return boolean_true_node;
|
|
else if (TREE_CODE (expr) == SSA_NAME)
|
|
return fold_build2 (EQ_EXPR, boolean_type_node, expr,
|
|
build_int_cst (TREE_TYPE (expr), 0));
|
|
else if (COMPARISON_CLASS_P (expr))
|
|
return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
|
|
boolean_type_node,
|
|
TREE_OPERAND (expr, 0),
|
|
TREE_OPERAND (expr, 1));
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
else
|
|
{
|
|
if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
|
|
return expr;
|
|
if (integer_nonzerop (expr))
|
|
return boolean_true_node;
|
|
else if (integer_zerop (expr))
|
|
return boolean_false_node;
|
|
else if (TREE_CODE (expr) == SSA_NAME)
|
|
return fold_build2 (NE_EXPR, boolean_type_node, expr,
|
|
build_int_cst (TREE_TYPE (expr), 0));
|
|
else if (COMPARISON_CLASS_P (expr))
|
|
return fold_build2 (TREE_CODE (expr),
|
|
boolean_type_node,
|
|
TREE_OPERAND (expr, 0),
|
|
TREE_OPERAND (expr, 1));
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Check to see if a boolean expression EXPR is logically equivalent to the
|
|
comparison (OP1 CODE OP2). Check for various identities involving
|
|
SSA_NAMEs. */
|
|
|
|
static bool
|
|
same_bool_comparison_p (const_tree expr, enum tree_code code,
|
|
const_tree op1, const_tree op2)
|
|
{
|
|
gimple s;
|
|
|
|
/* The obvious case. */
|
|
if (TREE_CODE (expr) == code
|
|
&& operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
|
|
&& operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
|
|
return true;
|
|
|
|
/* Check for comparing (name, name != 0) and the case where expr
|
|
is an SSA_NAME with a definition matching the comparison. */
|
|
if (TREE_CODE (expr) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
|
|
{
|
|
if (operand_equal_p (expr, op1, 0))
|
|
return ((code == NE_EXPR && integer_zerop (op2))
|
|
|| (code == EQ_EXPR && integer_nonzerop (op2)));
|
|
s = SSA_NAME_DEF_STMT (expr);
|
|
if (is_gimple_assign (s)
|
|
&& gimple_assign_rhs_code (s) == code
|
|
&& operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
|
|
&& operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
|
|
return true;
|
|
}
|
|
|
|
/* If op1 is of the form (name != 0) or (name == 0), and the definition
|
|
of name is a comparison, recurse. */
|
|
if (TREE_CODE (op1) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
|
|
{
|
|
s = SSA_NAME_DEF_STMT (op1);
|
|
if (is_gimple_assign (s)
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
|
|
{
|
|
enum tree_code c = gimple_assign_rhs_code (s);
|
|
if ((c == NE_EXPR && integer_zerop (op2))
|
|
|| (c == EQ_EXPR && integer_nonzerop (op2)))
|
|
return same_bool_comparison_p (expr, c,
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s));
|
|
if ((c == EQ_EXPR && integer_zerop (op2))
|
|
|| (c == NE_EXPR && integer_nonzerop (op2)))
|
|
return same_bool_comparison_p (expr,
|
|
invert_tree_comparison (c, false),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s));
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Check to see if two boolean expressions OP1 and OP2 are logically
|
|
equivalent. */
|
|
|
|
static bool
|
|
same_bool_result_p (const_tree op1, const_tree op2)
|
|
{
|
|
/* Simple cases first. */
|
|
if (operand_equal_p (op1, op2, 0))
|
|
return true;
|
|
|
|
/* Check the cases where at least one of the operands is a comparison.
|
|
These are a bit smarter than operand_equal_p in that they apply some
|
|
identifies on SSA_NAMEs. */
|
|
if (COMPARISON_CLASS_P (op2)
|
|
&& same_bool_comparison_p (op1, TREE_CODE (op2),
|
|
TREE_OPERAND (op2, 0),
|
|
TREE_OPERAND (op2, 1)))
|
|
return true;
|
|
if (COMPARISON_CLASS_P (op1)
|
|
&& same_bool_comparison_p (op2, TREE_CODE (op1),
|
|
TREE_OPERAND (op1, 0),
|
|
TREE_OPERAND (op1, 1)))
|
|
return true;
|
|
|
|
/* Default case. */
|
|
return false;
|
|
}
|
|
|
|
/* Forward declarations for some mutually recursive functions. */
|
|
|
|
static tree
|
|
and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
and_var_with_comparison (tree var, bool invert,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
and_var_with_comparison_1 (gimple stmt,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
or_var_with_comparison (tree var, bool invert,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
static tree
|
|
or_var_with_comparison_1 (gimple stmt,
|
|
enum tree_code code2, tree op2a, tree op2b);
|
|
|
|
/* Helper function for and_comparisons_1: try to simplify the AND of the
|
|
ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
|
|
If INVERT is true, invert the value of the VAR before doing the AND.
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
|
|
|
static tree
|
|
and_var_with_comparison (tree var, bool invert,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree t;
|
|
gimple stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
/* We can only deal with variables whose definitions are assignments. */
|
|
if (!is_gimple_assign (stmt))
|
|
return NULL_TREE;
|
|
|
|
/* If we have an inverted comparison, apply DeMorgan's law and rewrite
|
|
!var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
|
|
Then we only have to consider the simpler non-inverted cases. */
|
|
if (invert)
|
|
t = or_var_with_comparison_1 (stmt,
|
|
invert_tree_comparison (code2, false),
|
|
op2a, op2b);
|
|
else
|
|
t = and_var_with_comparison_1 (stmt, code2, op2a, op2b);
|
|
return canonicalize_bool (t, invert);
|
|
}
|
|
|
|
/* Try to simplify the AND of the ssa variable defined by the assignment
|
|
STMT with the comparison specified by (OP2A CODE2 OP2B).
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
|
|
|
static tree
|
|
and_var_with_comparison_1 (gimple stmt,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree var = gimple_assign_lhs (stmt);
|
|
tree true_test_var = NULL_TREE;
|
|
tree false_test_var = NULL_TREE;
|
|
enum tree_code innercode = gimple_assign_rhs_code (stmt);
|
|
|
|
/* Check for identities like (var AND (var == 0)) => false. */
|
|
if (TREE_CODE (op2a) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
|
|
{
|
|
if ((code2 == NE_EXPR && integer_zerop (op2b))
|
|
|| (code2 == EQ_EXPR && integer_nonzerop (op2b)))
|
|
{
|
|
true_test_var = op2a;
|
|
if (var == true_test_var)
|
|
return var;
|
|
}
|
|
else if ((code2 == EQ_EXPR && integer_zerop (op2b))
|
|
|| (code2 == NE_EXPR && integer_nonzerop (op2b)))
|
|
{
|
|
false_test_var = op2a;
|
|
if (var == false_test_var)
|
|
return boolean_false_node;
|
|
}
|
|
}
|
|
|
|
/* If the definition is a comparison, recurse on it. */
|
|
if (TREE_CODE_CLASS (innercode) == tcc_comparison)
|
|
{
|
|
tree t = and_comparisons_1 (innercode,
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt),
|
|
code2,
|
|
op2a,
|
|
op2b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* If the definition is an AND or OR expression, we may be able to
|
|
simplify by reassociating. */
|
|
if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
|
|
&& (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
|
|
{
|
|
tree inner1 = gimple_assign_rhs1 (stmt);
|
|
tree inner2 = gimple_assign_rhs2 (stmt);
|
|
gimple s;
|
|
tree t;
|
|
tree partial = NULL_TREE;
|
|
bool is_and = (innercode == BIT_AND_EXPR);
|
|
|
|
/* Check for boolean identities that don't require recursive examination
|
|
of inner1/inner2:
|
|
inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
|
|
inner1 AND (inner1 OR inner2) => inner1
|
|
!inner1 AND (inner1 AND inner2) => false
|
|
!inner1 AND (inner1 OR inner2) => !inner1 AND inner2
|
|
Likewise for similar cases involving inner2. */
|
|
if (inner1 == true_test_var)
|
|
return (is_and ? var : inner1);
|
|
else if (inner2 == true_test_var)
|
|
return (is_and ? var : inner2);
|
|
else if (inner1 == false_test_var)
|
|
return (is_and
|
|
? boolean_false_node
|
|
: and_var_with_comparison (inner2, false, code2, op2a, op2b));
|
|
else if (inner2 == false_test_var)
|
|
return (is_and
|
|
? boolean_false_node
|
|
: and_var_with_comparison (inner1, false, code2, op2a, op2b));
|
|
|
|
/* Next, redistribute/reassociate the AND across the inner tests.
|
|
Compute the first partial result, (inner1 AND (op2a code op2b)) */
|
|
if (TREE_CODE (inner1) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
|
&& (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s),
|
|
code2, op2a, op2b)))
|
|
{
|
|
/* Handle the AND case, where we are reassociating:
|
|
(inner1 AND inner2) AND (op2a code2 op2b)
|
|
=> (t AND inner2)
|
|
If the partial result t is a constant, we win. Otherwise
|
|
continue on to try reassociating with the other inner test. */
|
|
if (is_and)
|
|
{
|
|
if (integer_onep (t))
|
|
return inner2;
|
|
else if (integer_zerop (t))
|
|
return boolean_false_node;
|
|
}
|
|
|
|
/* Handle the OR case, where we are redistributing:
|
|
(inner1 OR inner2) AND (op2a code2 op2b)
|
|
=> (t OR (inner2 AND (op2a code2 op2b))) */
|
|
else if (integer_onep (t))
|
|
return boolean_true_node;
|
|
|
|
/* Save partial result for later. */
|
|
partial = t;
|
|
}
|
|
|
|
/* Compute the second partial result, (inner2 AND (op2a code op2b)) */
|
|
if (TREE_CODE (inner2) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
|
&& (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s),
|
|
code2, op2a, op2b)))
|
|
{
|
|
/* Handle the AND case, where we are reassociating:
|
|
(inner1 AND inner2) AND (op2a code2 op2b)
|
|
=> (inner1 AND t) */
|
|
if (is_and)
|
|
{
|
|
if (integer_onep (t))
|
|
return inner1;
|
|
else if (integer_zerop (t))
|
|
return boolean_false_node;
|
|
/* If both are the same, we can apply the identity
|
|
(x AND x) == x. */
|
|
else if (partial && same_bool_result_p (t, partial))
|
|
return t;
|
|
}
|
|
|
|
/* Handle the OR case. where we are redistributing:
|
|
(inner1 OR inner2) AND (op2a code2 op2b)
|
|
=> (t OR (inner1 AND (op2a code2 op2b)))
|
|
=> (t OR partial) */
|
|
else
|
|
{
|
|
if (integer_onep (t))
|
|
return boolean_true_node;
|
|
else if (partial)
|
|
{
|
|
/* We already got a simplification for the other
|
|
operand to the redistributed OR expression. The
|
|
interesting case is when at least one is false.
|
|
Or, if both are the same, we can apply the identity
|
|
(x OR x) == x. */
|
|
if (integer_zerop (partial))
|
|
return t;
|
|
else if (integer_zerop (t))
|
|
return partial;
|
|
else if (same_bool_result_p (t, partial))
|
|
return t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to simplify the AND of two comparisons defined by
|
|
(OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
|
|
If this can be done without constructing an intermediate value,
|
|
return the resulting tree; otherwise NULL_TREE is returned.
|
|
This function is deliberately asymmetric as it recurses on SSA_DEFs
|
|
in the first comparison but not the second. */
|
|
|
|
static tree
|
|
and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree truth_type = truth_type_for (TREE_TYPE (op1a));
|
|
|
|
/* First check for ((x CODE1 y) AND (x CODE2 y)). */
|
|
if (operand_equal_p (op1a, op2a, 0)
|
|
&& operand_equal_p (op1b, op2b, 0))
|
|
{
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
|
TRUTH_ANDIF_EXPR, code1, code2,
|
|
truth_type, op1a, op1b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* Likewise the swapped case of the above. */
|
|
if (operand_equal_p (op1a, op2b, 0)
|
|
&& operand_equal_p (op1b, op2a, 0))
|
|
{
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
|
TRUTH_ANDIF_EXPR, code1,
|
|
swap_tree_comparison (code2),
|
|
truth_type, op1a, op1b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* If both comparisons are of the same value against constants, we might
|
|
be able to merge them. */
|
|
if (operand_equal_p (op1a, op2a, 0)
|
|
&& TREE_CODE (op1b) == INTEGER_CST
|
|
&& TREE_CODE (op2b) == INTEGER_CST)
|
|
{
|
|
int cmp = tree_int_cst_compare (op1b, op2b);
|
|
|
|
/* If we have (op1a == op1b), we should either be able to
|
|
return that or FALSE, depending on whether the constant op1b
|
|
also satisfies the other comparison against op2b. */
|
|
if (code1 == EQ_EXPR)
|
|
{
|
|
bool done = true;
|
|
bool val;
|
|
switch (code2)
|
|
{
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
|
case NE_EXPR: val = (cmp != 0); break;
|
|
case LT_EXPR: val = (cmp < 0); break;
|
|
case GT_EXPR: val = (cmp > 0); break;
|
|
case LE_EXPR: val = (cmp <= 0); break;
|
|
case GE_EXPR: val = (cmp >= 0); break;
|
|
default: done = false;
|
|
}
|
|
if (done)
|
|
{
|
|
if (val)
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
|
else
|
|
return boolean_false_node;
|
|
}
|
|
}
|
|
/* Likewise if the second comparison is an == comparison. */
|
|
else if (code2 == EQ_EXPR)
|
|
{
|
|
bool done = true;
|
|
bool val;
|
|
switch (code1)
|
|
{
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
|
case NE_EXPR: val = (cmp != 0); break;
|
|
case LT_EXPR: val = (cmp > 0); break;
|
|
case GT_EXPR: val = (cmp < 0); break;
|
|
case LE_EXPR: val = (cmp >= 0); break;
|
|
case GE_EXPR: val = (cmp <= 0); break;
|
|
default: done = false;
|
|
}
|
|
if (done)
|
|
{
|
|
if (val)
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
|
else
|
|
return boolean_false_node;
|
|
}
|
|
}
|
|
|
|
/* Same business with inequality tests. */
|
|
else if (code1 == NE_EXPR)
|
|
{
|
|
bool val;
|
|
switch (code2)
|
|
{
|
|
case EQ_EXPR: val = (cmp != 0); break;
|
|
case NE_EXPR: val = (cmp == 0); break;
|
|
case LT_EXPR: val = (cmp >= 0); break;
|
|
case GT_EXPR: val = (cmp <= 0); break;
|
|
case LE_EXPR: val = (cmp > 0); break;
|
|
case GE_EXPR: val = (cmp < 0); break;
|
|
default:
|
|
val = false;
|
|
}
|
|
if (val)
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
|
}
|
|
else if (code2 == NE_EXPR)
|
|
{
|
|
bool val;
|
|
switch (code1)
|
|
{
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
|
case NE_EXPR: val = (cmp != 0); break;
|
|
case LT_EXPR: val = (cmp <= 0); break;
|
|
case GT_EXPR: val = (cmp >= 0); break;
|
|
case LE_EXPR: val = (cmp < 0); break;
|
|
case GE_EXPR: val = (cmp > 0); break;
|
|
default:
|
|
val = false;
|
|
}
|
|
if (val)
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
|
}
|
|
|
|
/* Chose the more restrictive of two < or <= comparisons. */
|
|
else if ((code1 == LT_EXPR || code1 == LE_EXPR)
|
|
&& (code2 == LT_EXPR || code2 == LE_EXPR))
|
|
{
|
|
if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
|
else
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
|
}
|
|
|
|
/* Likewise chose the more restrictive of two > or >= comparisons. */
|
|
else if ((code1 == GT_EXPR || code1 == GE_EXPR)
|
|
&& (code2 == GT_EXPR || code2 == GE_EXPR))
|
|
{
|
|
if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
|
else
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
|
}
|
|
|
|
/* Check for singleton ranges. */
|
|
else if (cmp == 0
|
|
&& ((code1 == LE_EXPR && code2 == GE_EXPR)
|
|
|| (code1 == GE_EXPR && code2 == LE_EXPR)))
|
|
return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b);
|
|
|
|
/* Check for disjoint ranges. */
|
|
else if (cmp <= 0
|
|
&& (code1 == LT_EXPR || code1 == LE_EXPR)
|
|
&& (code2 == GT_EXPR || code2 == GE_EXPR))
|
|
return boolean_false_node;
|
|
else if (cmp >= 0
|
|
&& (code1 == GT_EXPR || code1 == GE_EXPR)
|
|
&& (code2 == LT_EXPR || code2 == LE_EXPR))
|
|
return boolean_false_node;
|
|
}
|
|
|
|
/* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
|
|
NAME's definition is a truth value. See if there are any simplifications
|
|
that can be done against the NAME's definition. */
|
|
if (TREE_CODE (op1a) == SSA_NAME
|
|
&& (code1 == NE_EXPR || code1 == EQ_EXPR)
|
|
&& (integer_zerop (op1b) || integer_onep (op1b)))
|
|
{
|
|
bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
|
|
|| (code1 == NE_EXPR && integer_onep (op1b)));
|
|
gimple stmt = SSA_NAME_DEF_STMT (op1a);
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
/* Try to simplify by copy-propagating the definition. */
|
|
return and_var_with_comparison (op1a, invert, code2, op2a, op2b);
|
|
|
|
case GIMPLE_PHI:
|
|
/* If every argument to the PHI produces the same result when
|
|
ANDed with the second comparison, we win.
|
|
Do not do this unless the type is bool since we need a bool
|
|
result here anyway. */
|
|
if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
|
|
{
|
|
tree result = NULL_TREE;
|
|
unsigned i;
|
|
for (i = 0; i < gimple_phi_num_args (stmt); i++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
|
|
|
/* If this PHI has itself as an argument, ignore it.
|
|
If all the other args produce the same result,
|
|
we're still OK. */
|
|
if (arg == gimple_phi_result (stmt))
|
|
continue;
|
|
else if (TREE_CODE (arg) == INTEGER_CST)
|
|
{
|
|
if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
|
|
{
|
|
if (!result)
|
|
result = boolean_false_node;
|
|
else if (!integer_zerop (result))
|
|
return NULL_TREE;
|
|
}
|
|
else if (!result)
|
|
result = fold_build2 (code2, boolean_type_node,
|
|
op2a, op2b);
|
|
else if (!same_bool_comparison_p (result,
|
|
code2, op2a, op2b))
|
|
return NULL_TREE;
|
|
}
|
|
else if (TREE_CODE (arg) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
tree temp;
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (arg);
|
|
/* In simple cases we can look through PHI nodes,
|
|
but we have to be careful with loops.
|
|
See PR49073. */
|
|
if (! dom_info_available_p (CDI_DOMINATORS)
|
|
|| gimple_bb (def_stmt) == gimple_bb (stmt)
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
|
gimple_bb (def_stmt),
|
|
gimple_bb (stmt)))
|
|
return NULL_TREE;
|
|
temp = and_var_with_comparison (arg, invert, code2,
|
|
op2a, op2b);
|
|
if (!temp)
|
|
return NULL_TREE;
|
|
else if (!result)
|
|
result = temp;
|
|
else if (!same_bool_result_p (result, temp))
|
|
return NULL_TREE;
|
|
}
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to simplify the AND of two comparisons, specified by
|
|
(OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
|
|
If this can be simplified to a single expression (without requiring
|
|
introducing more SSA variables to hold intermediate values),
|
|
return the resulting tree. Otherwise return NULL_TREE.
|
|
If the result expression is non-null, it has boolean type. */
|
|
|
|
tree
|
|
maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
|
|
if (t)
|
|
return t;
|
|
else
|
|
return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
|
|
}
|
|
|
|
/* Helper function for or_comparisons_1: try to simplify the OR of the
|
|
ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
|
|
If INVERT is true, invert the value of VAR before doing the OR.
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
|
|
|
static tree
|
|
or_var_with_comparison (tree var, bool invert,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree t;
|
|
gimple stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
/* We can only deal with variables whose definitions are assignments. */
|
|
if (!is_gimple_assign (stmt))
|
|
return NULL_TREE;
|
|
|
|
/* If we have an inverted comparison, apply DeMorgan's law and rewrite
|
|
!var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
|
|
Then we only have to consider the simpler non-inverted cases. */
|
|
if (invert)
|
|
t = and_var_with_comparison_1 (stmt,
|
|
invert_tree_comparison (code2, false),
|
|
op2a, op2b);
|
|
else
|
|
t = or_var_with_comparison_1 (stmt, code2, op2a, op2b);
|
|
return canonicalize_bool (t, invert);
|
|
}
|
|
|
|
/* Try to simplify the OR of the ssa variable defined by the assignment
|
|
STMT with the comparison specified by (OP2A CODE2 OP2B).
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
|
|
|
static tree
|
|
or_var_with_comparison_1 (gimple stmt,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree var = gimple_assign_lhs (stmt);
|
|
tree true_test_var = NULL_TREE;
|
|
tree false_test_var = NULL_TREE;
|
|
enum tree_code innercode = gimple_assign_rhs_code (stmt);
|
|
|
|
/* Check for identities like (var OR (var != 0)) => true . */
|
|
if (TREE_CODE (op2a) == SSA_NAME
|
|
&& TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
|
|
{
|
|
if ((code2 == NE_EXPR && integer_zerop (op2b))
|
|
|| (code2 == EQ_EXPR && integer_nonzerop (op2b)))
|
|
{
|
|
true_test_var = op2a;
|
|
if (var == true_test_var)
|
|
return var;
|
|
}
|
|
else if ((code2 == EQ_EXPR && integer_zerop (op2b))
|
|
|| (code2 == NE_EXPR && integer_nonzerop (op2b)))
|
|
{
|
|
false_test_var = op2a;
|
|
if (var == false_test_var)
|
|
return boolean_true_node;
|
|
}
|
|
}
|
|
|
|
/* If the definition is a comparison, recurse on it. */
|
|
if (TREE_CODE_CLASS (innercode) == tcc_comparison)
|
|
{
|
|
tree t = or_comparisons_1 (innercode,
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt),
|
|
code2,
|
|
op2a,
|
|
op2b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* If the definition is an AND or OR expression, we may be able to
|
|
simplify by reassociating. */
|
|
if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
|
|
&& (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
|
|
{
|
|
tree inner1 = gimple_assign_rhs1 (stmt);
|
|
tree inner2 = gimple_assign_rhs2 (stmt);
|
|
gimple s;
|
|
tree t;
|
|
tree partial = NULL_TREE;
|
|
bool is_or = (innercode == BIT_IOR_EXPR);
|
|
|
|
/* Check for boolean identities that don't require recursive examination
|
|
of inner1/inner2:
|
|
inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
|
|
inner1 OR (inner1 AND inner2) => inner1
|
|
!inner1 OR (inner1 OR inner2) => true
|
|
!inner1 OR (inner1 AND inner2) => !inner1 OR inner2
|
|
*/
|
|
if (inner1 == true_test_var)
|
|
return (is_or ? var : inner1);
|
|
else if (inner2 == true_test_var)
|
|
return (is_or ? var : inner2);
|
|
else if (inner1 == false_test_var)
|
|
return (is_or
|
|
? boolean_true_node
|
|
: or_var_with_comparison (inner2, false, code2, op2a, op2b));
|
|
else if (inner2 == false_test_var)
|
|
return (is_or
|
|
? boolean_true_node
|
|
: or_var_with_comparison (inner1, false, code2, op2a, op2b));
|
|
|
|
/* Next, redistribute/reassociate the OR across the inner tests.
|
|
Compute the first partial result, (inner1 OR (op2a code op2b)) */
|
|
if (TREE_CODE (inner1) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
|
&& (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s),
|
|
code2, op2a, op2b)))
|
|
{
|
|
/* Handle the OR case, where we are reassociating:
|
|
(inner1 OR inner2) OR (op2a code2 op2b)
|
|
=> (t OR inner2)
|
|
If the partial result t is a constant, we win. Otherwise
|
|
continue on to try reassociating with the other inner test. */
|
|
if (is_or)
|
|
{
|
|
if (integer_onep (t))
|
|
return boolean_true_node;
|
|
else if (integer_zerop (t))
|
|
return inner2;
|
|
}
|
|
|
|
/* Handle the AND case, where we are redistributing:
|
|
(inner1 AND inner2) OR (op2a code2 op2b)
|
|
=> (t AND (inner2 OR (op2a code op2b))) */
|
|
else if (integer_zerop (t))
|
|
return boolean_false_node;
|
|
|
|
/* Save partial result for later. */
|
|
partial = t;
|
|
}
|
|
|
|
/* Compute the second partial result, (inner2 OR (op2a code op2b)) */
|
|
if (TREE_CODE (inner2) == SSA_NAME
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
|
&& (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
|
|
gimple_assign_rhs1 (s),
|
|
gimple_assign_rhs2 (s),
|
|
code2, op2a, op2b)))
|
|
{
|
|
/* Handle the OR case, where we are reassociating:
|
|
(inner1 OR inner2) OR (op2a code2 op2b)
|
|
=> (inner1 OR t)
|
|
=> (t OR partial) */
|
|
if (is_or)
|
|
{
|
|
if (integer_zerop (t))
|
|
return inner1;
|
|
else if (integer_onep (t))
|
|
return boolean_true_node;
|
|
/* If both are the same, we can apply the identity
|
|
(x OR x) == x. */
|
|
else if (partial && same_bool_result_p (t, partial))
|
|
return t;
|
|
}
|
|
|
|
/* Handle the AND case, where we are redistributing:
|
|
(inner1 AND inner2) OR (op2a code2 op2b)
|
|
=> (t AND (inner1 OR (op2a code2 op2b)))
|
|
=> (t AND partial) */
|
|
else
|
|
{
|
|
if (integer_zerop (t))
|
|
return boolean_false_node;
|
|
else if (partial)
|
|
{
|
|
/* We already got a simplification for the other
|
|
operand to the redistributed AND expression. The
|
|
interesting case is when at least one is true.
|
|
Or, if both are the same, we can apply the identity
|
|
(x AND x) == x. */
|
|
if (integer_onep (partial))
|
|
return t;
|
|
else if (integer_onep (t))
|
|
return partial;
|
|
else if (same_bool_result_p (t, partial))
|
|
return t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to simplify the OR of two comparisons defined by
|
|
(OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
|
|
If this can be done without constructing an intermediate value,
|
|
return the resulting tree; otherwise NULL_TREE is returned.
|
|
This function is deliberately asymmetric as it recurses on SSA_DEFs
|
|
in the first comparison but not the second. */
|
|
|
|
static tree
|
|
or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree truth_type = truth_type_for (TREE_TYPE (op1a));
|
|
|
|
/* First check for ((x CODE1 y) OR (x CODE2 y)). */
|
|
if (operand_equal_p (op1a, op2a, 0)
|
|
&& operand_equal_p (op1b, op2b, 0))
|
|
{
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
|
TRUTH_ORIF_EXPR, code1, code2,
|
|
truth_type, op1a, op1b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* Likewise the swapped case of the above. */
|
|
if (operand_equal_p (op1a, op2b, 0)
|
|
&& operand_equal_p (op1b, op2a, 0))
|
|
{
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
|
TRUTH_ORIF_EXPR, code1,
|
|
swap_tree_comparison (code2),
|
|
truth_type, op1a, op1b);
|
|
if (t)
|
|
return t;
|
|
}
|
|
|
|
/* If both comparisons are of the same value against constants, we might
|
|
be able to merge them. */
|
|
if (operand_equal_p (op1a, op2a, 0)
|
|
&& TREE_CODE (op1b) == INTEGER_CST
|
|
&& TREE_CODE (op2b) == INTEGER_CST)
|
|
{
|
|
int cmp = tree_int_cst_compare (op1b, op2b);
|
|
|
|
/* If we have (op1a != op1b), we should either be able to
|
|
return that or TRUE, depending on whether the constant op1b
|
|
also satisfies the other comparison against op2b. */
|
|
if (code1 == NE_EXPR)
|
|
{
|
|
bool done = true;
|
|
bool val;
|
|
switch (code2)
|
|
{
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
|
case NE_EXPR: val = (cmp != 0); break;
|
|
case LT_EXPR: val = (cmp < 0); break;
|
|
case GT_EXPR: val = (cmp > 0); break;
|
|
case LE_EXPR: val = (cmp <= 0); break;
|
|
case GE_EXPR: val = (cmp >= 0); break;
|
|
default: done = false;
|
|
}
|
|
if (done)
|
|
{
|
|
if (val)
|
|
return boolean_true_node;
|
|
else
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
|
}
|
|
}
|
|
/* Likewise if the second comparison is a != comparison. */
|
|
else if (code2 == NE_EXPR)
|
|
{
|
|
bool done = true;
|
|
bool val;
|
|
switch (code1)
|
|
{
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
|
case NE_EXPR: val = (cmp != 0); break;
|
|
case LT_EXPR: val = (cmp > 0); break;
|
|
case GT_EXPR: val = (cmp < 0); break;
|
|
case LE_EXPR: val = (cmp >= 0); break;
|
|
case GE_EXPR: val = (cmp <= 0); break;
|
|
default: done = false;
|
|
}
|
|
if (done)
|
|
{
|
|
if (val)
|
|
return boolean_true_node;
|
|
else
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
|
}
|
|
}
|
|
|
|
/* See if an equality test is redundant with the other comparison. */
|
|
else if (code1 == EQ_EXPR)
|
|
{
|
|
bool val;
|
|
switch (code2)
|
|
{
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
|
case NE_EXPR: val = (cmp != 0); break;
|
|
case LT_EXPR: val = (cmp < 0); break;
|
|
case GT_EXPR: val = (cmp > 0); break;
|
|
case LE_EXPR: val = (cmp <= 0); break;
|
|
case GE_EXPR: val = (cmp >= 0); break;
|
|
default:
|
|
val = false;
|
|
}
|
|
if (val)
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
|
}
|
|
else if (code2 == EQ_EXPR)
|
|
{
|
|
bool val;
|
|
switch (code1)
|
|
{
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
|
case NE_EXPR: val = (cmp != 0); break;
|
|
case LT_EXPR: val = (cmp > 0); break;
|
|
case GT_EXPR: val = (cmp < 0); break;
|
|
case LE_EXPR: val = (cmp >= 0); break;
|
|
case GE_EXPR: val = (cmp <= 0); break;
|
|
default:
|
|
val = false;
|
|
}
|
|
if (val)
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
|
}
|
|
|
|
/* Chose the less restrictive of two < or <= comparisons. */
|
|
else if ((code1 == LT_EXPR || code1 == LE_EXPR)
|
|
&& (code2 == LT_EXPR || code2 == LE_EXPR))
|
|
{
|
|
if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
|
else
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
|
}
|
|
|
|
/* Likewise chose the less restrictive of two > or >= comparisons. */
|
|
else if ((code1 == GT_EXPR || code1 == GE_EXPR)
|
|
&& (code2 == GT_EXPR || code2 == GE_EXPR))
|
|
{
|
|
if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
|
else
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
|
}
|
|
|
|
/* Check for singleton ranges. */
|
|
else if (cmp == 0
|
|
&& ((code1 == LT_EXPR && code2 == GT_EXPR)
|
|
|| (code1 == GT_EXPR && code2 == LT_EXPR)))
|
|
return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b);
|
|
|
|
/* Check for less/greater pairs that don't restrict the range at all. */
|
|
else if (cmp >= 0
|
|
&& (code1 == LT_EXPR || code1 == LE_EXPR)
|
|
&& (code2 == GT_EXPR || code2 == GE_EXPR))
|
|
return boolean_true_node;
|
|
else if (cmp <= 0
|
|
&& (code1 == GT_EXPR || code1 == GE_EXPR)
|
|
&& (code2 == LT_EXPR || code2 == LE_EXPR))
|
|
return boolean_true_node;
|
|
}
|
|
|
|
/* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
|
|
NAME's definition is a truth value. See if there are any simplifications
|
|
that can be done against the NAME's definition. */
|
|
if (TREE_CODE (op1a) == SSA_NAME
|
|
&& (code1 == NE_EXPR || code1 == EQ_EXPR)
|
|
&& (integer_zerop (op1b) || integer_onep (op1b)))
|
|
{
|
|
bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
|
|
|| (code1 == NE_EXPR && integer_onep (op1b)));
|
|
gimple stmt = SSA_NAME_DEF_STMT (op1a);
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
/* Try to simplify by copy-propagating the definition. */
|
|
return or_var_with_comparison (op1a, invert, code2, op2a, op2b);
|
|
|
|
case GIMPLE_PHI:
|
|
/* If every argument to the PHI produces the same result when
|
|
ORed with the second comparison, we win.
|
|
Do not do this unless the type is bool since we need a bool
|
|
result here anyway. */
|
|
if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
|
|
{
|
|
tree result = NULL_TREE;
|
|
unsigned i;
|
|
for (i = 0; i < gimple_phi_num_args (stmt); i++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
|
|
|
/* If this PHI has itself as an argument, ignore it.
|
|
If all the other args produce the same result,
|
|
we're still OK. */
|
|
if (arg == gimple_phi_result (stmt))
|
|
continue;
|
|
else if (TREE_CODE (arg) == INTEGER_CST)
|
|
{
|
|
if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
|
|
{
|
|
if (!result)
|
|
result = boolean_true_node;
|
|
else if (!integer_onep (result))
|
|
return NULL_TREE;
|
|
}
|
|
else if (!result)
|
|
result = fold_build2 (code2, boolean_type_node,
|
|
op2a, op2b);
|
|
else if (!same_bool_comparison_p (result,
|
|
code2, op2a, op2b))
|
|
return NULL_TREE;
|
|
}
|
|
else if (TREE_CODE (arg) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
tree temp;
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (arg);
|
|
/* In simple cases we can look through PHI nodes,
|
|
but we have to be careful with loops.
|
|
See PR49073. */
|
|
if (! dom_info_available_p (CDI_DOMINATORS)
|
|
|| gimple_bb (def_stmt) == gimple_bb (stmt)
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
|
gimple_bb (def_stmt),
|
|
gimple_bb (stmt)))
|
|
return NULL_TREE;
|
|
temp = or_var_with_comparison (arg, invert, code2,
|
|
op2a, op2b);
|
|
if (!temp)
|
|
return NULL_TREE;
|
|
else if (!result)
|
|
result = temp;
|
|
else if (!same_bool_result_p (result, temp))
|
|
return NULL_TREE;
|
|
}
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to simplify the OR of two comparisons, specified by
|
|
(OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
|
|
If this can be simplified to a single expression (without requiring
|
|
introducing more SSA variables to hold intermediate values),
|
|
return the resulting tree. Otherwise return NULL_TREE.
|
|
If the result expression is non-null, it has boolean type. */
|
|
|
|
tree
|
|
maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b,
|
|
enum tree_code code2, tree op2a, tree op2b)
|
|
{
|
|
tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
|
|
if (t)
|
|
return t;
|
|
else
|
|
return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
|
|
}
|
|
|
|
|
|
/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
|
|
|
|
Either NULL_TREE, a simplified but non-constant or a constant
|
|
is returned.
|
|
|
|
??? This should go into a gimple-fold-inline.h file to be eventually
|
|
privatized with the single valueize function used in the various TUs
|
|
to avoid the indirect function call overhead. */
|
|
|
|
tree
|
|
gimple_fold_stmt_to_constant_1 (gimple stmt, tree (*valueize) (tree),
|
|
tree (*gvalueize) (tree))
|
|
{
|
|
code_helper rcode;
|
|
tree ops[3] = {};
|
|
/* ??? The SSA propagators do not correctly deal with following SSA use-def
|
|
edges if there are intermediate VARYING defs. For this reason
|
|
do not follow SSA edges here even though SCCVN can technically
|
|
just deal fine with that. */
|
|
if (gimple_simplify (stmt, &rcode, ops, NULL, gvalueize, valueize)
|
|
&& rcode.is_tree_code ()
|
|
&& (TREE_CODE_LENGTH ((tree_code) rcode) == 0
|
|
|| ((tree_code) rcode) == ADDR_EXPR)
|
|
&& is_gimple_val (ops[0]))
|
|
{
|
|
tree res = ops[0];
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "Match-and-simplified ");
|
|
print_gimple_expr (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, " to ");
|
|
print_generic_expr (dump_file, res, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
return res;
|
|
}
|
|
|
|
location_t loc = gimple_location (stmt);
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
enum tree_code_class kind = TREE_CODE_CLASS (subcode);
|
|
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
|
{
|
|
/* If the RHS is an SSA_NAME, return its known constant value,
|
|
if any. */
|
|
return (*valueize) (rhs);
|
|
}
|
|
/* Handle propagating invariant addresses into address
|
|
operations. */
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR
|
|
&& !is_gimple_min_invariant (rhs))
|
|
{
|
|
HOST_WIDE_INT offset = 0;
|
|
tree base;
|
|
base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0),
|
|
&offset,
|
|
valueize);
|
|
if (base
|
|
&& (CONSTANT_CLASS_P (base)
|
|
|| decl_address_invariant_p (base)))
|
|
return build_invariant_address (TREE_TYPE (rhs),
|
|
base, offset);
|
|
}
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
|
|
&& (CONSTRUCTOR_NELTS (rhs)
|
|
== TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
|
|
{
|
|
unsigned i;
|
|
tree val, *vec;
|
|
|
|
vec = XALLOCAVEC (tree,
|
|
TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)));
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
|
{
|
|
val = (*valueize) (val);
|
|
if (TREE_CODE (val) == INTEGER_CST
|
|
|| TREE_CODE (val) == REAL_CST
|
|
|| TREE_CODE (val) == FIXED_CST)
|
|
vec[i] = val;
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
|
|
return build_vector (TREE_TYPE (rhs), vec);
|
|
}
|
|
if (subcode == OBJ_TYPE_REF)
|
|
{
|
|
tree val = (*valueize) (OBJ_TYPE_REF_EXPR (rhs));
|
|
/* If callee is constant, we can fold away the wrapper. */
|
|
if (is_gimple_min_invariant (val))
|
|
return val;
|
|
}
|
|
|
|
if (kind == tcc_reference)
|
|
{
|
|
if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
|
|
|| TREE_CODE (rhs) == REALPART_EXPR
|
|
|| TREE_CODE (rhs) == IMAGPART_EXPR)
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
|
{
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
|
return fold_unary_loc (EXPR_LOCATION (rhs),
|
|
TREE_CODE (rhs),
|
|
TREE_TYPE (rhs), val);
|
|
}
|
|
else if (TREE_CODE (rhs) == BIT_FIELD_REF
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
|
{
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
|
return fold_ternary_loc (EXPR_LOCATION (rhs),
|
|
TREE_CODE (rhs),
|
|
TREE_TYPE (rhs), val,
|
|
TREE_OPERAND (rhs, 1),
|
|
TREE_OPERAND (rhs, 2));
|
|
}
|
|
else if (TREE_CODE (rhs) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
|
{
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
|
if (TREE_CODE (val) == ADDR_EXPR
|
|
&& is_gimple_min_invariant (val))
|
|
{
|
|
tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
|
|
unshare_expr (val),
|
|
TREE_OPERAND (rhs, 1));
|
|
if (tem)
|
|
rhs = tem;
|
|
}
|
|
}
|
|
return fold_const_aggregate_ref_1 (rhs, valueize);
|
|
}
|
|
else if (kind == tcc_declaration)
|
|
return get_symbol_constant_value (rhs);
|
|
return rhs;
|
|
}
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
return NULL_TREE;
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
{
|
|
/* Handle binary operators that can appear in GIMPLE form. */
|
|
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
|
|
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
|
|
|
|
/* Translate &x + CST into an invariant form suitable for
|
|
further propagation. */
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
|
|
&& TREE_CODE (op0) == ADDR_EXPR
|
|
&& TREE_CODE (op1) == INTEGER_CST)
|
|
{
|
|
tree off = fold_convert (ptr_type_node, op1);
|
|
return build_fold_addr_expr_loc
|
|
(loc,
|
|
fold_build2 (MEM_REF,
|
|
TREE_TYPE (TREE_TYPE (op0)),
|
|
unshare_expr (op0), off));
|
|
}
|
|
|
|
return fold_binary_loc (loc, subcode,
|
|
gimple_expr_type (stmt), op0, op1);
|
|
}
|
|
|
|
case GIMPLE_TERNARY_RHS:
|
|
{
|
|
/* Handle ternary operators that can appear in GIMPLE form. */
|
|
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
|
|
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
|
|
tree op2 = (*valueize) (gimple_assign_rhs3 (stmt));
|
|
|
|
/* Fold embedded expressions in ternary codes. */
|
|
if ((subcode == COND_EXPR
|
|
|| subcode == VEC_COND_EXPR)
|
|
&& COMPARISON_CLASS_P (op0))
|
|
{
|
|
tree op00 = (*valueize) (TREE_OPERAND (op0, 0));
|
|
tree op01 = (*valueize) (TREE_OPERAND (op0, 1));
|
|
tree tem = fold_binary_loc (loc, TREE_CODE (op0),
|
|
TREE_TYPE (op0), op00, op01);
|
|
if (tem)
|
|
op0 = tem;
|
|
}
|
|
|
|
return fold_ternary_loc (loc, subcode,
|
|
gimple_expr_type (stmt), op0, op1, op2);
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
case GIMPLE_CALL:
|
|
{
|
|
tree fn;
|
|
gcall *call_stmt = as_a <gcall *> (stmt);
|
|
|
|
if (gimple_call_internal_p (stmt))
|
|
{
|
|
enum tree_code subcode = ERROR_MARK;
|
|
switch (gimple_call_internal_fn (stmt))
|
|
{
|
|
case IFN_UBSAN_CHECK_ADD:
|
|
subcode = PLUS_EXPR;
|
|
break;
|
|
case IFN_UBSAN_CHECK_SUB:
|
|
subcode = MINUS_EXPR;
|
|
break;
|
|
case IFN_UBSAN_CHECK_MUL:
|
|
subcode = MULT_EXPR;
|
|
break;
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
tree arg0 = gimple_call_arg (stmt, 0);
|
|
tree arg1 = gimple_call_arg (stmt, 1);
|
|
tree op0 = (*valueize) (arg0);
|
|
tree op1 = (*valueize) (arg1);
|
|
|
|
if (TREE_CODE (op0) != INTEGER_CST
|
|
|| TREE_CODE (op1) != INTEGER_CST)
|
|
{
|
|
switch (subcode)
|
|
{
|
|
case MULT_EXPR:
|
|
/* x * 0 = 0 * x = 0 without overflow. */
|
|
if (integer_zerop (op0) || integer_zerop (op1))
|
|
return build_zero_cst (TREE_TYPE (arg0));
|
|
break;
|
|
case MINUS_EXPR:
|
|
/* y - y = 0 without overflow. */
|
|
if (operand_equal_p (op0, op1, 0))
|
|
return build_zero_cst (TREE_TYPE (arg0));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
tree res
|
|
= fold_binary_loc (loc, subcode, TREE_TYPE (arg0), op0, op1);
|
|
if (res
|
|
&& TREE_CODE (res) == INTEGER_CST
|
|
&& !TREE_OVERFLOW (res))
|
|
return res;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
fn = (*valueize) (gimple_call_fn (stmt));
|
|
if (TREE_CODE (fn) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
|
&& DECL_BUILT_IN (TREE_OPERAND (fn, 0))
|
|
&& gimple_builtin_call_types_compatible_p (stmt,
|
|
TREE_OPERAND (fn, 0)))
|
|
{
|
|
tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
|
|
tree retval;
|
|
unsigned i;
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
args[i] = (*valueize) (gimple_call_arg (stmt, i));
|
|
retval = fold_builtin_call_array (loc,
|
|
gimple_call_return_type (call_stmt),
|
|
fn, gimple_call_num_args (stmt), args);
|
|
if (retval)
|
|
{
|
|
/* fold_call_expr wraps the result inside a NOP_EXPR. */
|
|
STRIP_NOPS (retval);
|
|
retval = fold_convert (gimple_call_return_type (call_stmt),
|
|
retval);
|
|
}
|
|
return retval;
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
|
|
Returns NULL_TREE if folding to a constant is not possible, otherwise
|
|
returns a constant according to is_gimple_min_invariant. */
|
|
|
|
tree
|
|
gimple_fold_stmt_to_constant (gimple stmt, tree (*valueize) (tree))
|
|
{
|
|
tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize);
|
|
if (res && is_gimple_min_invariant (res))
|
|
return res;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
|
|
/* The following set of functions are supposed to fold references using
|
|
their constant initializers. */
|
|
|
|
/* See if we can find constructor defining value of BASE.
|
|
When we know the consructor with constant offset (such as
|
|
base is array[40] and we do know constructor of array), then
|
|
BIT_OFFSET is adjusted accordingly.
|
|
|
|
As a special case, return error_mark_node when constructor
|
|
is not explicitly available, but it is known to be zero
|
|
such as 'static const int a;'. */
|
|
static tree
|
|
get_base_constructor (tree base, HOST_WIDE_INT *bit_offset,
|
|
tree (*valueize)(tree))
|
|
{
|
|
HOST_WIDE_INT bit_offset2, size, max_size;
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
{
|
|
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
|
{
|
|
if (!tree_fits_shwi_p (TREE_OPERAND (base, 1)))
|
|
return NULL_TREE;
|
|
*bit_offset += (mem_ref_offset (base).to_short_addr ()
|
|
* BITS_PER_UNIT);
|
|
}
|
|
|
|
if (valueize
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
|
base = valueize (TREE_OPERAND (base, 0));
|
|
if (!base || TREE_CODE (base) != ADDR_EXPR)
|
|
return NULL_TREE;
|
|
base = TREE_OPERAND (base, 0);
|
|
}
|
|
|
|
/* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
|
|
DECL_INITIAL. If BASE is a nested reference into another
|
|
ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
|
|
the inner reference. */
|
|
switch (TREE_CODE (base))
|
|
{
|
|
case VAR_DECL:
|
|
case CONST_DECL:
|
|
{
|
|
tree init = ctor_for_folding (base);
|
|
|
|
/* Our semantic is exact opposite of ctor_for_folding;
|
|
NULL means unknown, while error_mark_node is 0. */
|
|
if (init == error_mark_node)
|
|
return NULL_TREE;
|
|
if (!init)
|
|
return error_mark_node;
|
|
return init;
|
|
}
|
|
|
|
case ARRAY_REF:
|
|
case COMPONENT_REF:
|
|
base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
|
|
if (max_size == -1 || size != max_size)
|
|
return NULL_TREE;
|
|
*bit_offset += bit_offset2;
|
|
return get_base_constructor (base, bit_offset, valueize);
|
|
|
|
case STRING_CST:
|
|
case CONSTRUCTOR:
|
|
return base;
|
|
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
|
|
SIZE to the memory at bit OFFSET. */
|
|
|
|
static tree
|
|
fold_array_ctor_reference (tree type, tree ctor,
|
|
unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size,
|
|
tree from_decl)
|
|
{
|
|
unsigned HOST_WIDE_INT cnt;
|
|
tree cfield, cval;
|
|
offset_int low_bound;
|
|
offset_int elt_size;
|
|
offset_int index, max_index;
|
|
offset_int access_index;
|
|
tree domain_type = NULL_TREE, index_type = NULL_TREE;
|
|
HOST_WIDE_INT inner_offset;
|
|
|
|
/* Compute low bound and elt size. */
|
|
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
|
|
domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
|
|
if (domain_type && TYPE_MIN_VALUE (domain_type))
|
|
{
|
|
/* Static constructors for variably sized objects makes no sense. */
|
|
gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
|
|
index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
|
|
low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
|
|
}
|
|
else
|
|
low_bound = 0;
|
|
/* Static constructors for variably sized objects makes no sense. */
|
|
gcc_assert (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
|
|
== INTEGER_CST);
|
|
elt_size = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
|
|
|
|
/* We can handle only constantly sized accesses that are known to not
|
|
be larger than size of array element. */
|
|
if (!TYPE_SIZE_UNIT (type)
|
|
|| TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
|
|
|| wi::lts_p (elt_size, wi::to_offset (TYPE_SIZE_UNIT (type)))
|
|
|| elt_size == 0)
|
|
return NULL_TREE;
|
|
|
|
/* Compute the array index we look for. */
|
|
access_index = wi::udiv_trunc (offset_int (offset / BITS_PER_UNIT),
|
|
elt_size);
|
|
access_index += low_bound;
|
|
if (index_type)
|
|
access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
|
|
TYPE_SIGN (index_type));
|
|
|
|
/* And offset within the access. */
|
|
inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT);
|
|
|
|
/* See if the array field is large enough to span whole access. We do not
|
|
care to fold accesses spanning multiple array indexes. */
|
|
if (inner_offset + size > elt_size.to_uhwi () * BITS_PER_UNIT)
|
|
return NULL_TREE;
|
|
|
|
index = low_bound - 1;
|
|
if (index_type)
|
|
index = wi::ext (index, TYPE_PRECISION (index_type),
|
|
TYPE_SIGN (index_type));
|
|
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
|
|
{
|
|
/* Array constructor might explicitely set index, or specify range
|
|
or leave index NULL meaning that it is next index after previous
|
|
one. */
|
|
if (cfield)
|
|
{
|
|
if (TREE_CODE (cfield) == INTEGER_CST)
|
|
max_index = index = wi::to_offset (cfield);
|
|
else
|
|
{
|
|
gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
|
|
index = wi::to_offset (TREE_OPERAND (cfield, 0));
|
|
max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
index += 1;
|
|
if (index_type)
|
|
index = wi::ext (index, TYPE_PRECISION (index_type),
|
|
TYPE_SIGN (index_type));
|
|
max_index = index;
|
|
}
|
|
|
|
/* Do we have match? */
|
|
if (wi::cmpu (access_index, index) >= 0
|
|
&& wi::cmpu (access_index, max_index) <= 0)
|
|
return fold_ctor_reference (type, cval, inner_offset, size,
|
|
from_decl);
|
|
}
|
|
/* When memory is not explicitely mentioned in constructor,
|
|
it is 0 (or out of range). */
|
|
return build_zero_cst (type);
|
|
}
|
|
|
|
/* CTOR is CONSTRUCTOR of an aggregate or vector.
|
|
Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
|
|
|
|
static tree
|
|
fold_nonarray_ctor_reference (tree type, tree ctor,
|
|
unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size,
|
|
tree from_decl)
|
|
{
|
|
unsigned HOST_WIDE_INT cnt;
|
|
tree cfield, cval;
|
|
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
|
|
cval)
|
|
{
|
|
tree byte_offset = DECL_FIELD_OFFSET (cfield);
|
|
tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
|
|
tree field_size = DECL_SIZE (cfield);
|
|
offset_int bitoffset;
|
|
offset_int bitoffset_end, access_end;
|
|
|
|
/* Variable sized objects in static constructors makes no sense,
|
|
but field_size can be NULL for flexible array members. */
|
|
gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
|
|
&& TREE_CODE (byte_offset) == INTEGER_CST
|
|
&& (field_size != NULL_TREE
|
|
? TREE_CODE (field_size) == INTEGER_CST
|
|
: TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
|
|
|
|
/* Compute bit offset of the field. */
|
|
bitoffset = (wi::to_offset (field_offset)
|
|
+ wi::lshift (wi::to_offset (byte_offset),
|
|
LOG2_BITS_PER_UNIT));
|
|
/* Compute bit offset where the field ends. */
|
|
if (field_size != NULL_TREE)
|
|
bitoffset_end = bitoffset + wi::to_offset (field_size);
|
|
else
|
|
bitoffset_end = 0;
|
|
|
|
access_end = offset_int (offset) + size;
|
|
|
|
/* Is there any overlap between [OFFSET, OFFSET+SIZE) and
|
|
[BITOFFSET, BITOFFSET_END)? */
|
|
if (wi::cmps (access_end, bitoffset) > 0
|
|
&& (field_size == NULL_TREE
|
|
|| wi::lts_p (offset, bitoffset_end)))
|
|
{
|
|
offset_int inner_offset = offset_int (offset) - bitoffset;
|
|
/* We do have overlap. Now see if field is large enough to
|
|
cover the access. Give up for accesses spanning multiple
|
|
fields. */
|
|
if (wi::cmps (access_end, bitoffset_end) > 0)
|
|
return NULL_TREE;
|
|
if (wi::lts_p (offset, bitoffset))
|
|
return NULL_TREE;
|
|
return fold_ctor_reference (type, cval,
|
|
inner_offset.to_uhwi (), size,
|
|
from_decl);
|
|
}
|
|
}
|
|
/* When memory is not explicitely mentioned in constructor, it is 0. */
|
|
return build_zero_cst (type);
|
|
}
|
|
|
|
/* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
|
|
to the memory at bit OFFSET. */
|
|
|
|
tree
|
|
fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size, tree from_decl)
|
|
{
|
|
tree ret;
|
|
|
|
/* We found the field with exact match. */
|
|
if (useless_type_conversion_p (type, TREE_TYPE (ctor))
|
|
&& !offset)
|
|
return canonicalize_constructor_val (unshare_expr (ctor), from_decl);
|
|
|
|
/* We are at the end of walk, see if we can view convert the
|
|
result. */
|
|
if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
|
|
/* VIEW_CONVERT_EXPR is defined only for matching sizes. */
|
|
&& !compare_tree_int (TYPE_SIZE (type), size)
|
|
&& !compare_tree_int (TYPE_SIZE (TREE_TYPE (ctor)), size))
|
|
{
|
|
ret = canonicalize_constructor_val (unshare_expr (ctor), from_decl);
|
|
ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
|
|
if (ret)
|
|
STRIP_USELESS_TYPE_CONVERSION (ret);
|
|
return ret;
|
|
}
|
|
/* For constants and byte-aligned/sized reads try to go through
|
|
native_encode/interpret. */
|
|
if (CONSTANT_CLASS_P (ctor)
|
|
&& BITS_PER_UNIT == 8
|
|
&& offset % BITS_PER_UNIT == 0
|
|
&& size % BITS_PER_UNIT == 0
|
|
&& size <= MAX_BITSIZE_MODE_ANY_MODE)
|
|
{
|
|
unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
|
|
if (native_encode_expr (ctor, buf, size / BITS_PER_UNIT,
|
|
offset / BITS_PER_UNIT) > 0)
|
|
return native_interpret_expr (type, buf, size / BITS_PER_UNIT);
|
|
}
|
|
if (TREE_CODE (ctor) == CONSTRUCTOR)
|
|
{
|
|
|
|
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE
|
|
|| TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE)
|
|
return fold_array_ctor_reference (type, ctor, offset, size,
|
|
from_decl);
|
|
else
|
|
return fold_nonarray_ctor_reference (type, ctor, offset, size,
|
|
from_decl);
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Return the tree representing the element referenced by T if T is an
|
|
ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA
|
|
names using VALUEIZE. Return NULL_TREE otherwise. */
|
|
|
|
tree
|
|
fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
|
|
{
|
|
tree ctor, idx, base;
|
|
HOST_WIDE_INT offset, size, max_size;
|
|
tree tem;
|
|
|
|
if (TREE_THIS_VOLATILE (t))
|
|
return NULL_TREE;
|
|
|
|
if (DECL_P (t))
|
|
return get_symbol_constant_value (t);
|
|
|
|
tem = fold_read_from_constant_string (t);
|
|
if (tem)
|
|
return tem;
|
|
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
/* Constant indexes are handled well by get_base_constructor.
|
|
Only special case variable offsets.
|
|
FIXME: This code can't handle nested references with variable indexes
|
|
(they will be handled only by iteration of ccp). Perhaps we can bring
|
|
get_ref_base_and_extent here and make it use a valueize callback. */
|
|
if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
|
|
&& valueize
|
|
&& (idx = (*valueize) (TREE_OPERAND (t, 1)))
|
|
&& TREE_CODE (idx) == INTEGER_CST)
|
|
{
|
|
tree low_bound, unit_size;
|
|
|
|
/* If the resulting bit-offset is constant, track it. */
|
|
if ((low_bound = array_ref_low_bound (t),
|
|
TREE_CODE (low_bound) == INTEGER_CST)
|
|
&& (unit_size = array_ref_element_size (t),
|
|
tree_fits_uhwi_p (unit_size)))
|
|
{
|
|
offset_int woffset
|
|
= wi::sext (wi::to_offset (idx) - wi::to_offset (low_bound),
|
|
TYPE_PRECISION (TREE_TYPE (idx)));
|
|
|
|
if (wi::fits_shwi_p (woffset))
|
|
{
|
|
offset = woffset.to_shwi ();
|
|
/* TODO: This code seems wrong, multiply then check
|
|
to see if it fits. */
|
|
offset *= tree_to_uhwi (unit_size);
|
|
offset *= BITS_PER_UNIT;
|
|
|
|
base = TREE_OPERAND (t, 0);
|
|
ctor = get_base_constructor (base, &offset, valueize);
|
|
/* Empty constructor. Always fold to 0. */
|
|
if (ctor == error_mark_node)
|
|
return build_zero_cst (TREE_TYPE (t));
|
|
/* Out of bound array access. Value is undefined,
|
|
but don't fold. */
|
|
if (offset < 0)
|
|
return NULL_TREE;
|
|
/* We can not determine ctor. */
|
|
if (!ctor)
|
|
return NULL_TREE;
|
|
return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
|
|
tree_to_uhwi (unit_size)
|
|
* BITS_PER_UNIT,
|
|
base);
|
|
}
|
|
}
|
|
}
|
|
/* Fallthru. */
|
|
|
|
case COMPONENT_REF:
|
|
case BIT_FIELD_REF:
|
|
case TARGET_MEM_REF:
|
|
case MEM_REF:
|
|
base = get_ref_base_and_extent (t, &offset, &size, &max_size);
|
|
ctor = get_base_constructor (base, &offset, valueize);
|
|
|
|
/* Empty constructor. Always fold to 0. */
|
|
if (ctor == error_mark_node)
|
|
return build_zero_cst (TREE_TYPE (t));
|
|
/* We do not know precise address. */
|
|
if (max_size == -1 || max_size != size)
|
|
return NULL_TREE;
|
|
/* We can not determine ctor. */
|
|
if (!ctor)
|
|
return NULL_TREE;
|
|
|
|
/* Out of bound array access. Value is undefined, but don't fold. */
|
|
if (offset < 0)
|
|
return NULL_TREE;
|
|
|
|
return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size,
|
|
base);
|
|
|
|
case REALPART_EXPR:
|
|
case IMAGPART_EXPR:
|
|
{
|
|
tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize);
|
|
if (c && TREE_CODE (c) == COMPLEX_CST)
|
|
return fold_build1_loc (EXPR_LOCATION (t),
|
|
TREE_CODE (t), TREE_TYPE (t), c);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
tree
|
|
fold_const_aggregate_ref (tree t)
|
|
{
|
|
return fold_const_aggregate_ref_1 (t, NULL);
|
|
}
|
|
|
|
/* Lookup virtual method with index TOKEN in a virtual table V
|
|
at OFFSET.
|
|
Set CAN_REFER if non-NULL to false if method
|
|
is not referable or if the virtual table is ill-formed (such as rewriten
|
|
by non-C++ produced symbol). Otherwise just return NULL in that calse. */
|
|
|
|
tree
|
|
gimple_get_virt_method_for_vtable (HOST_WIDE_INT token,
|
|
tree v,
|
|
unsigned HOST_WIDE_INT offset,
|
|
bool *can_refer)
|
|
{
|
|
tree vtable = v, init, fn;
|
|
unsigned HOST_WIDE_INT size;
|
|
unsigned HOST_WIDE_INT elt_size, access_index;
|
|
tree domain_type;
|
|
|
|
if (can_refer)
|
|
*can_refer = true;
|
|
|
|
/* First of all double check we have virtual table. */
|
|
if (TREE_CODE (v) != VAR_DECL
|
|
|| !DECL_VIRTUAL_P (v))
|
|
{
|
|
/* Pass down that we lost track of the target. */
|
|
if (can_refer)
|
|
*can_refer = false;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
init = ctor_for_folding (v);
|
|
|
|
/* The virtual tables should always be born with constructors
|
|
and we always should assume that they are avaialble for
|
|
folding. At the moment we do not stream them in all cases,
|
|
but it should never happen that ctor seem unreachable. */
|
|
gcc_assert (init);
|
|
if (init == error_mark_node)
|
|
{
|
|
gcc_assert (in_lto_p);
|
|
/* Pass down that we lost track of the target. */
|
|
if (can_refer)
|
|
*can_refer = false;
|
|
return NULL_TREE;
|
|
}
|
|
gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE);
|
|
size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v))));
|
|
offset *= BITS_PER_UNIT;
|
|
offset += token * size;
|
|
|
|
/* Lookup the value in the constructor that is assumed to be array.
|
|
This is equivalent to
|
|
fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), init,
|
|
offset, size, NULL);
|
|
but in a constant time. We expect that frontend produced a simple
|
|
array without indexed initializers. */
|
|
|
|
gcc_checking_assert (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE);
|
|
domain_type = TYPE_DOMAIN (TREE_TYPE (init));
|
|
gcc_checking_assert (integer_zerop (TYPE_MIN_VALUE (domain_type)));
|
|
elt_size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (init))));
|
|
|
|
access_index = offset / BITS_PER_UNIT / elt_size;
|
|
gcc_checking_assert (offset % (elt_size * BITS_PER_UNIT) == 0);
|
|
|
|
/* This code makes an assumption that there are no
|
|
indexed fileds produced by C++ FE, so we can directly index the array. */
|
|
if (access_index < CONSTRUCTOR_NELTS (init))
|
|
{
|
|
fn = CONSTRUCTOR_ELT (init, access_index)->value;
|
|
gcc_checking_assert (!CONSTRUCTOR_ELT (init, access_index)->index);
|
|
STRIP_NOPS (fn);
|
|
}
|
|
else
|
|
fn = NULL;
|
|
|
|
/* For type inconsistent program we may end up looking up virtual method
|
|
in virtual table that does not contain TOKEN entries. We may overrun
|
|
the virtual table and pick up a constant or RTTI info pointer.
|
|
In any case the call is undefined. */
|
|
if (!fn
|
|
|| (TREE_CODE (fn) != ADDR_EXPR && TREE_CODE (fn) != FDESC_EXPR)
|
|
|| TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
|
|
fn = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
|
|
else
|
|
{
|
|
fn = TREE_OPERAND (fn, 0);
|
|
|
|
/* When cgraph node is missing and function is not public, we cannot
|
|
devirtualize. This can happen in WHOPR when the actual method
|
|
ends up in other partition, because we found devirtualization
|
|
possibility too late. */
|
|
if (!can_refer_decl_in_current_unit_p (fn, vtable))
|
|
{
|
|
if (can_refer)
|
|
{
|
|
*can_refer = false;
|
|
return fn;
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Make sure we create a cgraph node for functions we'll reference.
|
|
They can be non-existent if the reference comes from an entry
|
|
of an external vtable for example. */
|
|
cgraph_node::get_create (fn);
|
|
|
|
return fn;
|
|
}
|
|
|
|
/* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
|
|
is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
|
|
KNOWN_BINFO carries the binfo describing the true type of
|
|
OBJ_TYPE_REF_OBJECT(REF).
|
|
Set CAN_REFER if non-NULL to false if method
|
|
is not referable or if the virtual table is ill-formed (such as rewriten
|
|
by non-C++ produced symbol). Otherwise just return NULL in that calse. */
|
|
|
|
tree
|
|
gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo,
|
|
bool *can_refer)
|
|
{
|
|
unsigned HOST_WIDE_INT offset;
|
|
tree v;
|
|
|
|
v = BINFO_VTABLE (known_binfo);
|
|
/* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */
|
|
if (!v)
|
|
return NULL_TREE;
|
|
|
|
if (!vtable_pointer_value_to_vtable (v, &v, &offset))
|
|
{
|
|
if (can_refer)
|
|
*can_refer = false;
|
|
return NULL_TREE;
|
|
}
|
|
return gimple_get_virt_method_for_vtable (token, v, offset, can_refer);
|
|
}
|
|
|
|
/* Return true iff VAL is a gimple expression that is known to be
|
|
non-negative. Restricted to floating-point inputs. */
|
|
|
|
bool
|
|
gimple_val_nonnegative_real_p (tree val)
|
|
{
|
|
gimple def_stmt;
|
|
|
|
gcc_assert (val && SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)));
|
|
|
|
/* Use existing logic for non-gimple trees. */
|
|
if (tree_expr_nonnegative_p (val))
|
|
return true;
|
|
|
|
if (TREE_CODE (val) != SSA_NAME)
|
|
return false;
|
|
|
|
/* Currently we look only at the immediately defining statement
|
|
to make this determination, since recursion on defining
|
|
statements of operands can lead to quadratic behavior in the
|
|
worst case. This is expected to catch almost all occurrences
|
|
in practice. It would be possible to implement limited-depth
|
|
recursion if important cases are lost. Alternatively, passes
|
|
that need this information (such as the pow/powi lowering code
|
|
in the cse_sincos pass) could be revised to provide it through
|
|
dataflow propagation. */
|
|
|
|
def_stmt = SSA_NAME_DEF_STMT (val);
|
|
|
|
if (is_gimple_assign (def_stmt))
|
|
{
|
|
tree op0, op1;
|
|
|
|
/* See fold-const.c:tree_expr_nonnegative_p for additional
|
|
cases that could be handled with recursion. */
|
|
|
|
switch (gimple_assign_rhs_code (def_stmt))
|
|
{
|
|
case ABS_EXPR:
|
|
/* Always true for floating-point operands. */
|
|
return true;
|
|
|
|
case MULT_EXPR:
|
|
/* True if the two operands are identical (since we are
|
|
restricted to floating-point inputs). */
|
|
op0 = gimple_assign_rhs1 (def_stmt);
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
|
|
|
if (op0 == op1
|
|
|| operand_equal_p (op0, op1, 0))
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
else if (is_gimple_call (def_stmt))
|
|
{
|
|
tree fndecl = gimple_call_fndecl (def_stmt);
|
|
if (fndecl
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
|
{
|
|
tree arg1;
|
|
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
|
{
|
|
CASE_FLT_FN (BUILT_IN_ACOS):
|
|
CASE_FLT_FN (BUILT_IN_ACOSH):
|
|
CASE_FLT_FN (BUILT_IN_CABS):
|
|
CASE_FLT_FN (BUILT_IN_COSH):
|
|
CASE_FLT_FN (BUILT_IN_ERFC):
|
|
CASE_FLT_FN (BUILT_IN_EXP):
|
|
CASE_FLT_FN (BUILT_IN_EXP10):
|
|
CASE_FLT_FN (BUILT_IN_EXP2):
|
|
CASE_FLT_FN (BUILT_IN_FABS):
|
|
CASE_FLT_FN (BUILT_IN_FDIM):
|
|
CASE_FLT_FN (BUILT_IN_HYPOT):
|
|
CASE_FLT_FN (BUILT_IN_POW10):
|
|
return true;
|
|
|
|
CASE_FLT_FN (BUILT_IN_SQRT):
|
|
/* sqrt(-0.0) is -0.0, and sqrt is not defined over other
|
|
nonnegative inputs. */
|
|
if (!HONOR_SIGNED_ZEROS (val))
|
|
return true;
|
|
|
|
break;
|
|
|
|
CASE_FLT_FN (BUILT_IN_POWI):
|
|
/* True if the second argument is an even integer. */
|
|
arg1 = gimple_call_arg (def_stmt, 1);
|
|
|
|
if (TREE_CODE (arg1) == INTEGER_CST
|
|
&& (TREE_INT_CST_LOW (arg1) & 1) == 0)
|
|
return true;
|
|
|
|
break;
|
|
|
|
CASE_FLT_FN (BUILT_IN_POW):
|
|
/* True if the second argument is an even integer-valued
|
|
real. */
|
|
arg1 = gimple_call_arg (def_stmt, 1);
|
|
|
|
if (TREE_CODE (arg1) == REAL_CST)
|
|
{
|
|
REAL_VALUE_TYPE c;
|
|
HOST_WIDE_INT n;
|
|
|
|
c = TREE_REAL_CST (arg1);
|
|
n = real_to_integer (&c);
|
|
|
|
if ((n & 1) == 0)
|
|
{
|
|
REAL_VALUE_TYPE cint;
|
|
real_from_integer (&cint, VOIDmode, n, SIGNED);
|
|
if (real_identical (&c, &cint))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Given a pointer value OP0, return a simplified version of an
|
|
indirection through OP0, or NULL_TREE if no simplification is
|
|
possible. Note that the resulting type may be different from
|
|
the type pointed to in the sense that it is still compatible
|
|
from the langhooks point of view. */
|
|
|
|
tree
|
|
gimple_fold_indirect_ref (tree t)
|
|
{
|
|
tree ptype = TREE_TYPE (t), type = TREE_TYPE (ptype);
|
|
tree sub = t;
|
|
tree subtype;
|
|
|
|
STRIP_NOPS (sub);
|
|
subtype = TREE_TYPE (sub);
|
|
if (!POINTER_TYPE_P (subtype))
|
|
return NULL_TREE;
|
|
|
|
if (TREE_CODE (sub) == ADDR_EXPR)
|
|
{
|
|
tree op = TREE_OPERAND (sub, 0);
|
|
tree optype = TREE_TYPE (op);
|
|
/* *&p => p */
|
|
if (useless_type_conversion_p (type, optype))
|
|
return op;
|
|
|
|
/* *(foo *)&fooarray => fooarray[0] */
|
|
if (TREE_CODE (optype) == ARRAY_TYPE
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (optype))) == INTEGER_CST
|
|
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
|
|
{
|
|
tree type_domain = TYPE_DOMAIN (optype);
|
|
tree min_val = size_zero_node;
|
|
if (type_domain && TYPE_MIN_VALUE (type_domain))
|
|
min_val = TYPE_MIN_VALUE (type_domain);
|
|
if (TREE_CODE (min_val) == INTEGER_CST)
|
|
return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
|
|
}
|
|
/* *(foo *)&complexfoo => __real__ complexfoo */
|
|
else if (TREE_CODE (optype) == COMPLEX_TYPE
|
|
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
|
|
return fold_build1 (REALPART_EXPR, type, op);
|
|
/* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
|
|
else if (TREE_CODE (optype) == VECTOR_TYPE
|
|
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
|
|
{
|
|
tree part_width = TYPE_SIZE (type);
|
|
tree index = bitsize_int (0);
|
|
return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
|
|
}
|
|
}
|
|
|
|
/* *(p + CST) -> ... */
|
|
if (TREE_CODE (sub) == POINTER_PLUS_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
|
|
{
|
|
tree addr = TREE_OPERAND (sub, 0);
|
|
tree off = TREE_OPERAND (sub, 1);
|
|
tree addrtype;
|
|
|
|
STRIP_NOPS (addr);
|
|
addrtype = TREE_TYPE (addr);
|
|
|
|
/* ((foo*)&vectorfoo)[1] -> BIT_FIELD_REF<vectorfoo,...> */
|
|
if (TREE_CODE (addr) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_TYPE (addrtype)) == VECTOR_TYPE
|
|
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype)))
|
|
&& tree_fits_uhwi_p (off))
|
|
{
|
|
unsigned HOST_WIDE_INT offset = tree_to_uhwi (off);
|
|
tree part_width = TYPE_SIZE (type);
|
|
unsigned HOST_WIDE_INT part_widthi
|
|
= tree_to_shwi (part_width) / BITS_PER_UNIT;
|
|
unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
|
|
tree index = bitsize_int (indexi);
|
|
if (offset / part_widthi
|
|
< TYPE_VECTOR_SUBPARTS (TREE_TYPE (addrtype)))
|
|
return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (addr, 0),
|
|
part_width, index);
|
|
}
|
|
|
|
/* ((foo*)&complexfoo)[1] -> __imag__ complexfoo */
|
|
if (TREE_CODE (addr) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_TYPE (addrtype)) == COMPLEX_TYPE
|
|
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype))))
|
|
{
|
|
tree size = TYPE_SIZE_UNIT (type);
|
|
if (tree_int_cst_equal (size, off))
|
|
return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (addr, 0));
|
|
}
|
|
|
|
/* *(p + CST) -> MEM_REF <p, CST>. */
|
|
if (TREE_CODE (addr) != ADDR_EXPR
|
|
|| DECL_P (TREE_OPERAND (addr, 0)))
|
|
return fold_build2 (MEM_REF, type,
|
|
addr,
|
|
wide_int_to_tree (ptype, off));
|
|
}
|
|
|
|
/* *(foo *)fooarrptr => (*fooarrptr)[0] */
|
|
if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (subtype)))) == INTEGER_CST
|
|
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (subtype))))
|
|
{
|
|
tree type_domain;
|
|
tree min_val = size_zero_node;
|
|
tree osub = sub;
|
|
sub = gimple_fold_indirect_ref (sub);
|
|
if (! sub)
|
|
sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub);
|
|
type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
|
|
if (type_domain && TYPE_MIN_VALUE (type_domain))
|
|
min_val = TYPE_MIN_VALUE (type_domain);
|
|
if (TREE_CODE (min_val) == INTEGER_CST)
|
|
return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Return true if CODE is an operation that when operating on signed
|
|
integer types involves undefined behavior on overflow and the
|
|
operation can be expressed with unsigned arithmetic. */
|
|
|
|
bool
|
|
arith_code_with_undefined_signed_overflow (tree_code code)
|
|
{
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case MULT_EXPR:
|
|
case NEGATE_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Rewrite STMT, an assignment with a signed integer or pointer arithmetic
|
|
operation that can be transformed to unsigned arithmetic by converting
|
|
its operand, carrying out the operation in the corresponding unsigned
|
|
type and converting the result back to the original type.
|
|
|
|
Returns a sequence of statements that replace STMT and also contain
|
|
a modified form of STMT itself. */
|
|
|
|
gimple_seq
|
|
rewrite_to_defined_overflow (gimple stmt)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "rewriting stmt with undefined signed "
|
|
"overflow ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree type = unsigned_type_for (TREE_TYPE (lhs));
|
|
gimple_seq stmts = NULL;
|
|
for (unsigned i = 1; i < gimple_num_ops (stmt); ++i)
|
|
{
|
|
gimple_seq stmts2 = NULL;
|
|
gimple_set_op (stmt, i,
|
|
force_gimple_operand (fold_convert (type,
|
|
gimple_op (stmt, i)),
|
|
&stmts2, true, NULL_TREE));
|
|
gimple_seq_add_seq (&stmts, stmts2);
|
|
}
|
|
gimple_assign_set_lhs (stmt, make_ssa_name (type, stmt));
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
|
|
gimple_assign_set_rhs_code (stmt, PLUS_EXPR);
|
|
gimple_seq_add_stmt (&stmts, stmt);
|
|
gimple cvt = gimple_build_assign (lhs, NOP_EXPR, gimple_assign_lhs (stmt));
|
|
gimple_seq_add_stmt (&stmts, cvt);
|
|
|
|
return stmts;
|
|
}
|
|
|
|
|
|
/* The valueization hook we use for the gimple_build API simplification.
|
|
This makes us match fold_buildN behavior by only combining with
|
|
statements in the sequence(s) we are currently building. */
|
|
|
|
static tree
|
|
gimple_build_valueize (tree op)
|
|
{
|
|
if (gimple_bb (SSA_NAME_DEF_STMT (op)) == NULL)
|
|
return op;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Build the expression CODE OP0 of type TYPE with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value and appends statements possibly defining it
|
|
to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum tree_code code, tree type, tree op0)
|
|
{
|
|
tree res = gimple_simplify (code, type, op0, seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
if (gimple_in_ssa_p (cfun))
|
|
res = make_ssa_name (type);
|
|
else
|
|
res = create_tmp_reg (type);
|
|
gimple stmt;
|
|
if (code == REALPART_EXPR
|
|
|| code == IMAGPART_EXPR
|
|
|| code == VIEW_CONVERT_EXPR)
|
|
stmt = gimple_build_assign (res, code, build1 (code, type, op0));
|
|
else
|
|
stmt = gimple_build_assign (res, code, op0);
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the expression OP0 CODE OP1 of type TYPE with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value and appends statements possibly defining it
|
|
to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum tree_code code, tree type, tree op0, tree op1)
|
|
{
|
|
tree res = gimple_simplify (code, type, op0, op1, seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
if (gimple_in_ssa_p (cfun))
|
|
res = make_ssa_name (type);
|
|
else
|
|
res = create_tmp_reg (type);
|
|
gimple stmt = gimple_build_assign (res, code, op0, op1);
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the expression (CODE OP0 OP1 OP2) of type TYPE with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value and appends statements possibly defining it
|
|
to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum tree_code code, tree type, tree op0, tree op1, tree op2)
|
|
{
|
|
tree res = gimple_simplify (code, type, op0, op1, op2,
|
|
seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
if (gimple_in_ssa_p (cfun))
|
|
res = make_ssa_name (type);
|
|
else
|
|
res = create_tmp_reg (type);
|
|
gimple stmt;
|
|
if (code == BIT_FIELD_REF)
|
|
stmt = gimple_build_assign (res, code,
|
|
build3 (code, type, op0, op1, op2));
|
|
else
|
|
stmt = gimple_build_assign (res, code, op0, op1, op2);
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the call FN (ARG0) with a result of type TYPE
|
|
(or no result if TYPE is void) with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value (or NULL_TREE if TYPE is void) and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum built_in_function fn, tree type, tree arg0)
|
|
{
|
|
tree res = gimple_simplify (fn, type, arg0, seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
tree decl = builtin_decl_implicit (fn);
|
|
gimple stmt = gimple_build_call (decl, 1, arg0);
|
|
if (!VOID_TYPE_P (type))
|
|
{
|
|
if (gimple_in_ssa_p (cfun))
|
|
res = make_ssa_name (type);
|
|
else
|
|
res = create_tmp_reg (type);
|
|
gimple_call_set_lhs (stmt, res);
|
|
}
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the call FN (ARG0, ARG1) with a result of type TYPE
|
|
(or no result if TYPE is void) with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value (or NULL_TREE if TYPE is void) and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum built_in_function fn, tree type, tree arg0, tree arg1)
|
|
{
|
|
tree res = gimple_simplify (fn, type, arg0, arg1, seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
tree decl = builtin_decl_implicit (fn);
|
|
gimple stmt = gimple_build_call (decl, 2, arg0, arg1);
|
|
if (!VOID_TYPE_P (type))
|
|
{
|
|
if (gimple_in_ssa_p (cfun))
|
|
res = make_ssa_name (type);
|
|
else
|
|
res = create_tmp_reg (type);
|
|
gimple_call_set_lhs (stmt, res);
|
|
}
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the call FN (ARG0, ARG1, ARG2) with a result of type TYPE
|
|
(or no result if TYPE is void) with location LOC,
|
|
simplifying it first if possible. Returns the built
|
|
expression value (or NULL_TREE if TYPE is void) and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_build (gimple_seq *seq, location_t loc,
|
|
enum built_in_function fn, tree type,
|
|
tree arg0, tree arg1, tree arg2)
|
|
{
|
|
tree res = gimple_simplify (fn, type, arg0, arg1, arg2,
|
|
seq, gimple_build_valueize);
|
|
if (!res)
|
|
{
|
|
tree decl = builtin_decl_implicit (fn);
|
|
gimple stmt = gimple_build_call (decl, 3, arg0, arg1, arg2);
|
|
if (!VOID_TYPE_P (type))
|
|
{
|
|
if (gimple_in_ssa_p (cfun))
|
|
res = make_ssa_name (type);
|
|
else
|
|
res = create_tmp_reg (type);
|
|
gimple_call_set_lhs (stmt, res);
|
|
}
|
|
gimple_set_location (stmt, loc);
|
|
gimple_seq_add_stmt_without_update (seq, stmt);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Build the conversion (TYPE) OP with a result of type TYPE
|
|
with location LOC if such conversion is neccesary in GIMPLE,
|
|
simplifying it first.
|
|
Returns the built expression value and appends
|
|
statements possibly defining it to SEQ. */
|
|
|
|
tree
|
|
gimple_convert (gimple_seq *seq, location_t loc, tree type, tree op)
|
|
{
|
|
if (useless_type_conversion_p (type, TREE_TYPE (op)))
|
|
return op;
|
|
return gimple_build (seq, loc, NOP_EXPR, type, op);
|
|
}
|