gcc/libgo/go/math/big/sqrt_test.go
Ian Lance Taylor 1a2f01efa6 libgo: update to Go1.10beta1
Update the Go library to the 1.10beta1 release.
    
    Requires a few changes to the compiler for modifications to the map
    runtime code, and to handle some nowritebarrier cases in the runtime.
    
    Reviewed-on: https://go-review.googlesource.com/86455

gotools/:
	* Makefile.am (go_cmd_vet_files): New variable.
	(go_cmd_buildid_files, go_cmd_test2json_files): New variables.
	(s-zdefaultcc): Change from constants to functions.
	(noinst_PROGRAMS): Add vet, buildid, and test2json.
	(cgo$(EXEEXT)): Link against $(LIBGOTOOL).
	(vet$(EXEEXT)): New target.
	(buildid$(EXEEXT)): New target.
	(test2json$(EXEEXT)): New target.
	(install-exec-local): Install all $(noinst_PROGRAMS).
	(uninstall-local): Uninstasll all $(noinst_PROGRAMS).
	(check-go-tool): Depend on $(noinst_PROGRAMS).  Copy down
	objabi.go.
	(check-runtime): Depend on $(noinst_PROGRAMS).
	(check-cgo-test, check-carchive-test): Likewise.
	(check-vet): New target.
	(check): Depend on check-vet.  Look at cmd_vet-testlog.
	(.PHONY): Add check-vet.
	* Makefile.in: Rebuild.

From-SVN: r256365
2018-01-09 01:23:08 +00:00

132 lines
5.0 KiB
Go

// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big
import (
"fmt"
"math"
"math/rand"
"runtime"
"testing"
)
// TestFloatSqrt64 tests that Float.Sqrt of numbers with 53bit mantissa
// behaves like float math.Sqrt.
func TestFloatSqrt64(t *testing.T) {
// This test fails for gccgo on 386 with a one ULP difference,
// presumably due to the use of extended precision floating
// point.
if runtime.Compiler == "gccgo" && runtime.GOARCH == "386" {
t.Skip("skipping on gccgo for 386; gets a one ULP difference")
}
for i := 0; i < 1e5; i++ {
r := rand.Float64()
got := new(Float).SetPrec(53)
got.Sqrt(NewFloat(r))
want := NewFloat(math.Sqrt(r))
if got.Cmp(want) != 0 {
t.Fatalf("Sqrt(%g) =\n got %g;\nwant %g", r, got, want)
}
}
}
func TestFloatSqrt(t *testing.T) {
for _, test := range []struct {
x string
want string
}{
// Test values were generated on Wolfram Alpha using query
// 'sqrt(N) to 350 digits'
// 350 decimal digits give up to 1000 binary digits.
{"0.03125", "0.17677669529663688110021109052621225982120898442211850914708496724884155980776337985629844179095519659187673077886403712811560450698134215158051518713749197892665283324093819909447499381264409775757143376369499645074628431682460775184106467733011114982619404115381053858929018135497032545349940642599871090667456829147610370507757690729404938184321879"},
{"0.125", "0.35355339059327376220042218105242451964241796884423701829416993449768311961552675971259688358191039318375346155772807425623120901396268430316103037427498395785330566648187639818894998762528819551514286752738999290149256863364921550368212935466022229965238808230762107717858036270994065090699881285199742181334913658295220741015515381458809876368643757"},
{"0.5", "0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692311545614851246241802792536860632206074854996791570661133296375279637789997525057639103028573505477998580298513726729843100736425870932044459930477616461524215435716072541988130181399762570399484362669827316590441482031030762917619752737287514"},
{"2.0", "1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214508397626036279952514079896872533965463318088296406206152583523950547457503"},
{"3.0", "1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450949989524788116555120943736485280932319023055820679748201010846749232650153123432669033228866506722546689218379712270471316603678615880190499865373798593894676503475065760507566183481296061009476021871903250831458295239598"},
{"4.0", "2.0"},
{"1p512", "1p256"},
{"4p1024", "2p512"},
{"9p2048", "3p1024"},
{"1p-1024", "1p-512"},
{"4p-2048", "2p-1024"},
{"9p-4096", "3p-2048"},
} {
for _, prec := range []uint{24, 53, 64, 65, 100, 128, 129, 200, 256, 400, 600, 800, 1000} {
x := new(Float).SetPrec(prec)
x.Parse(test.x, 10)
got := new(Float).SetPrec(prec).Sqrt(x)
want := new(Float).SetPrec(prec)
want.Parse(test.want, 10)
if got.Cmp(want) != 0 {
t.Errorf("prec = %d, Sqrt(%v) =\ngot %g;\nwant %g",
prec, test.x, got, want)
}
// Square test.
// If got holds the square root of x to precision p, then
// got = √x + k
// for some k such that |k| < 2**(-p). Thus,
// got² = (√x + k)² = x + 2k√n + k²
// and the error must satisfy
// err = |got² - x| ≈ | 2k√n | < 2**(-p+1)*√n
// Ignoring the k² term for simplicity.
// err = |got² - x|
// (but do intermediate steps with 32 guard digits to
// avoid introducing spurious rounding-related errors)
sq := new(Float).SetPrec(prec+32).Mul(got, got)
diff := new(Float).Sub(sq, x)
err := diff.Abs(diff).SetPrec(prec)
// maxErr = 2**(-p+1)*√x
one := new(Float).SetPrec(prec).SetInt64(1)
maxErr := new(Float).Mul(new(Float).SetMantExp(one, -int(prec)+1), got)
if err.Cmp(maxErr) >= 0 {
t.Errorf("prec = %d, Sqrt(%v) =\ngot err %g;\nwant maxErr %g",
prec, test.x, err, maxErr)
}
}
}
}
func TestFloatSqrtSpecial(t *testing.T) {
for _, test := range []struct {
x *Float
want *Float
}{
{NewFloat(+0), NewFloat(+0)},
{NewFloat(-0), NewFloat(-0)},
{NewFloat(math.Inf(+1)), NewFloat(math.Inf(+1))},
} {
got := new(Float).Sqrt(test.x)
if got.neg != test.want.neg || got.form != test.want.form {
t.Errorf("Sqrt(%v) = %v (neg: %v); want %v (neg: %v)",
test.x, got, got.neg, test.want, test.want.neg)
}
}
}
// Benchmarks
func BenchmarkFloatSqrt(b *testing.B) {
for _, prec := range []uint{64, 128, 256, 1e3, 1e4, 1e5, 1e6} {
x := NewFloat(2)
z := new(Float).SetPrec(prec)
b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
b.ReportAllocs()
for n := 0; n < b.N; n++ {
z.Sqrt(x)
}
})
}
}