gcc/libstdc++/stl/hashtable.h
Jason Merrill 6599da043e Initial revision
From-SVN: r14877
1997-08-21 18:57:35 -04:00

1014 lines
28 KiB
C++

/*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifndef __SGI_STL_HASHTABLE_H
#define __SGI_STL_HASHTABLE_H
// Hashtable class, used to implement the hashed associative containers
// hash_set, hash_map, hash_multiset, and hash_multimap.
#include <stdlib.h>
#include <stddef.h>
#include <algo.h>
#include <vector.h>
template <class Key> struct hash { };
inline size_t __stl_hash_string(const char* s)
{
unsigned long h = 0;
for ( ; *s; ++s)
h = 5*h + *s;
return size_t(h);
}
struct hash<char*>
{
size_t operator()(const char* s) const { return __stl_hash_string(s); }
};
struct hash<const char*>
{
size_t operator()(const char* s) const { return __stl_hash_string(s); }
};
struct hash<char> {
size_t operator()(char x) const { return x; }
};
struct hash<unsigned char> {
size_t operator()(unsigned char x) const { return x; }
};
struct hash<signed char> {
size_t operator()(unsigned char x) const { return x; }
};
struct hash<short> {
size_t operator()(short x) const { return x; }
};
struct hash<unsigned short> {
size_t operator()(unsigned short x) const { return x; }
};
struct hash<int> {
size_t operator()(int x) const { return x; }
};
struct hash<unsigned int> {
size_t operator()(unsigned int x) const { return x; }
};
struct hash<long> {
size_t operator()(long x) const { return x; }
};
struct hash<unsigned long> {
size_t operator()(unsigned long x) const { return x; }
};
template <class Value>
struct __hashtable_node
{
__hashtable_node* next;
Value val;
};
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc = alloc>
class hashtable;
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_iterator;
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_const_iterator;
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_iterator {
typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
hashtable;
typedef __hashtable_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc>
iterator;
typedef __hashtable_const_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc>
const_iterator;
typedef __hashtable_node<Value> node;
typedef forward_iterator_tag iterator_category;
typedef Value value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef Value& reference;
typedef const Value& const_reference;
typedef Value* pointer;
node* cur;
hashtable* ht;
__hashtable_iterator(node* n, hashtable* tab) : cur(n), ht(tab) {}
__hashtable_iterator() {}
reference operator*() const { return cur->val; }
iterator& operator++();
iterator operator++(int);
bool operator==(const iterator& it) const { return cur == it.cur; }
bool operator!=(const iterator& it) const { return cur != it.cur; }
};
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_const_iterator {
typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
hashtable;
typedef __hashtable_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc>
iterator;
typedef __hashtable_const_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc>
const_iterator;
typedef __hashtable_node<Value> node;
typedef forward_iterator_tag iterator_category;
typedef Value value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef Value& reference;
typedef const Value& const_reference;
typedef Value* pointer;
const node* cur;
const hashtable* ht;
__hashtable_const_iterator(const node* n, const hashtable* tab)
: cur(n), ht(tab) {}
__hashtable_const_iterator() {}
__hashtable_const_iterator(const iterator& it) : cur(it.cur), ht(it.ht) {}
const_reference operator*() const { return cur->val; }
const_iterator& operator++();
const_iterator operator++(int);
bool operator==(const const_iterator& it) const { return cur == it.cur; }
bool operator!=(const const_iterator& it) const { return cur != it.cur; }
};
// Note: assumes long is at least 32 bits.
static const int __stl_num_primes = 28;
static const unsigned long __stl_prime_list[__stl_num_primes] =
{
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
inline unsigned long __stl_next_prime(unsigned long n)
{
const unsigned long* first = __stl_prime_list;
const unsigned long* last = __stl_prime_list + __stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);
return pos == last ? *(last - 1) : *pos;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey,
class Alloc>
class hashtable {
public:
typedef Key key_type;
typedef Value value_type;
typedef HashFcn hasher;
typedef EqualKey key_equal;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
hasher hash_funct() const { return hash; }
key_equal key_eq() const { return equals; }
private:
hasher hash;
key_equal equals;
ExtractKey get_key;
typedef __hashtable_node<Value> node;
typedef simple_alloc<node, Alloc> node_allocator;
vector<node*,Alloc> buckets;
size_type num_elements;
public:
typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,
Alloc>
iterator;
typedef __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,
Alloc>
const_iterator;
friend struct
__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>;
friend struct
__hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>;
public:
hashtable(size_type n,
const HashFcn& hf,
const EqualKey& eql,
const ExtractKey& ext)
: hash(hf), equals(eql), get_key(ext), num_elements(0)
{
initialize_buckets(n);
}
hashtable(size_type n,
const HashFcn& hf,
const EqualKey& eql)
: hash(hf), equals(eql), get_key(ExtractKey()), num_elements(0)
{
initialize_buckets(n);
}
hashtable(const hashtable& ht)
: hash(ht.hash), equals(ht.equals), get_key(ht.get_key), num_elements(0)
{
copy_from(ht);
}
hashtable& operator= (const hashtable& ht)
{
if (&ht != this) {
clear();
hash = ht.hash;
equals = ht.equals;
get_key = ht.get_key;
copy_from(ht);
}
return *this;
}
~hashtable() { clear(); }
size_type size() const { return num_elements; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return size() == 0; }
void swap(hashtable& ht)
{
::swap(hash, ht.hash);
::swap(equals, ht.equals);
::swap(get_key, ht.get_key);
buckets.swap(ht.buckets);
::swap(num_elements, ht.num_elements);
}
iterator begin()
{
for (size_type n = 0; n < buckets.size(); ++n)
if (buckets[n])
return iterator(buckets[n], this);
return end();
}
iterator end() { return iterator(0, this); }
const_iterator begin() const
{
for (size_type n = 0; n < buckets.size(); ++n)
if (buckets[n])
return const_iterator(buckets[n], this);
return end();
}
const_iterator end() const { return const_iterator(0, this); }
friend bool operator== (const hashtable<Value, Key,
HashFcn, ExtractKey, EqualKey,
Alloc>&,
const hashtable<Value, Key,
HashFcn, ExtractKey, EqualKey,
Alloc>&);
public:
size_type bucket_count() const { return buckets.size(); }
size_type max_bucket_count() const
{ return __stl_prime_list[__stl_num_primes - 1]; }
size_type elems_in_bucket(size_type bucket) const
{
size_type result = 0;
for (node* cur = buckets[bucket]; cur; cur = cur->next)
result += 1;
return result;
}
pair<iterator, bool> insert_unique(const value_type& obj)
{
resize(num_elements + 1);
return insert_unique_noresize(obj);
}
iterator insert_equal(const value_type& obj)
{
resize(num_elements + 1);
return insert_equal_noresize(obj);
}
pair<iterator, bool> insert_unique_noresize(const value_type& obj);
iterator insert_equal_noresize(const value_type& obj);
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert_unique(InputIterator f, InputIterator l)
{
insert_unique(f, l, iterator_category(f));
}
template <class InputIterator>
void insert_equal(InputIterator f, InputIterator l)
{
insert_equal(f, l, iterator_category(f));
}
template <class InputIterator>
void insert_unique(InputIterator f, InputIterator l,
input_iterator_tag)
{
for ( ; f != l; ++f)
insert_unique(*f);
}
template <class InputIterator>
void insert_equal(InputIterator f, InputIterator l,
input_iterator_tag)
{
for ( ; f != l; ++f)
insert_equal(*f);
}
template <class ForwardIterator>
void insert_unique(ForwardIterator f, ForwardIterator l,
forward_iterator_tag)
{
size_type n = 0;
distance(f, l, n);
resize(num_elements + n);
for ( ; n > 0; --n, ++f)
insert_unique_noresize(*f);
}
template <class ForwardIterator>
void insert_equal(ForwardIterator f, ForwardIterator l,
forward_iterator_tag)
{
size_type n = 0;
distance(f, l, n);
resize(num_elements + n);
for ( ; n > 0; --n, ++f)
insert_equal_noresize(*f);
}
template <class BidirectionalIterator>
void insert_unique(BidirectionalIterator f, BidirectionalIterator l,
bidirectional_iterator_tag)
{
insert_unique(f, l, forward_iterator_tag());
}
template <class BidirectionalIterator>
void insert_equal(BidirectionalIterator f, BidirectionalIterator l,
bidirectional_iterator_tag)
{
insert_equal(f, l, forward_iterator_tag());
}
template <class RandomAccessIterator>
void insert_unique(RandomAccessIterator f, RandomAccessIterator l,
random_access_iterator_tag)
{
insert_unique(f, l, forward_iterator_tag());
}
template <class RandomAccessIterator>
void insert_equal(RandomAccessIterator f, RandomAccessIterator l,
random_access_iterator_tag)
{
insert_equal(f, l, forward_iterator_tag());
}
#else /* __STL_MEMBER_TEMPLATES */
void insert_unique(const value_type* f, const value_type* l)
{
size_type n = l - f;
resize(num_elements + n);
for ( ; n > 0; --n, ++f)
insert_unique_noresize(*f);
}
void insert_equal(const value_type* f, const value_type* l)
{
size_type n = l - f;
resize(num_elements + n);
for ( ; n > 0; --n, ++f)
insert_equal_noresize(*f);
}
void insert_unique(const_iterator f, const_iterator l)
{
size_type n = 0;
distance(f, l, n);
resize(num_elements + n);
for ( ; n > 0; --n, ++f)
insert_unique_noresize(*f);
}
void insert_equal(const_iterator f, const_iterator l)
{
size_type n = 0;
distance(f, l, n);
resize(num_elements + n);
for ( ; n > 0; --n, ++f)
insert_equal_noresize(*f);
}
#endif /*__STL_MEMBER_TEMPLATES */
reference find_or_insert(const value_type& obj);
iterator find(const key_type& key)
{
size_type n = bkt_num_key(key);
node* first;
for ( first = buckets[n];
first && !equals(get_key(first->val), key);
first = first->next)
{}
return iterator(first, this);
}
const_iterator find(const key_type& key) const
{
size_type n = bkt_num_key(key);
const node* first;
for ( first = buckets[n];
first && !equals(get_key(first->val), key);
first = first->next)
{}
return const_iterator(first, this);
}
size_type count(const key_type& key) const
{
const size_type n = bkt_num_key(key);
size_type result = 0;
for (const node* cur = buckets[n]; cur; cur = cur->next)
if (equals(get_key(cur->val), key))
++result;
return result;
}
pair<iterator, iterator> equal_range(const key_type& key);
pair<const_iterator, const_iterator> equal_range(const key_type& key) const;
size_type erase(const key_type& key);
void erase(const iterator& it);
void erase(iterator first, iterator last);
void erase(const const_iterator& it);
void erase(const_iterator first, const_iterator last);
void resize(size_type num_elements_hint);
void clear();
private:
size_type next_size(size_type n) const { return __stl_next_prime(n); }
void initialize_buckets(size_type n)
{
const size_type n_buckets = next_size(n);
buckets.reserve(n_buckets);
buckets.insert(buckets.end(), n_buckets, (node*) 0);
num_elements = 0;
}
size_type bkt_num_key(const key_type& key) const
{
return bkt_num_key(key, buckets.size());
}
size_type bkt_num(const value_type& obj) const
{
return bkt_num_key(get_key(obj));
}
size_type bkt_num_key(const key_type& key, size_t n) const
{
return hash(key) % n;
}
size_type bkt_num(const value_type& obj, size_t n) const
{
return bkt_num_key(get_key(obj), n);
}
node* new_node(const value_type& obj)
{
node* n = node_allocator::allocate();
n->next = 0;
# ifdef __STL_USE_EXCEPTIONS
try {
# endif /* __STL_USE_EXCEPTIONS */
construct(&n->val, obj);
return n;
# ifdef __STL_USE_EXCEPTIONS
}
catch(...) {
node_allocator::deallocate(n);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
}
void delete_node(node* n)
{
destroy(&n->val);
node_allocator::deallocate(n);
}
void erase_bucket(const size_type n, node* first, node* last);
void erase_bucket(const size_type n, node* last);
void copy_from(const hashtable& ht);
};
template <class V, class K, class HF, class ExK, class EqK, class A>
__hashtable_iterator<V, K, HF, ExK, EqK, A>&
__hashtable_iterator<V, K, HF, ExK, EqK, A>::operator++()
{
const node* old = cur;
cur = cur->next;
if (!cur) {
size_type bucket = ht->bkt_num(old->val);
while (!cur && ++bucket < ht->buckets.size())
cur = ht->buckets[bucket];
}
return *this;
}
template <class V, class K, class HF, class ExK, class EqK, class A>
inline __hashtable_iterator<V, K, HF, ExK, EqK, A>
__hashtable_iterator<V, K, HF, ExK, EqK, A>::operator++(int)
{
iterator tmp = *this;
++*this;
return tmp;
}
template <class V, class K, class HF, class ExK, class EqK, class A>
__hashtable_const_iterator<V, K, HF, ExK, EqK, A>&
__hashtable_const_iterator<V, K, HF, ExK, EqK, A>::operator++()
{
const node* old = cur;
cur = cur->next;
if (!cur) {
size_type bucket = ht->bkt_num(old->val);
while (!cur && ++bucket < ht->buckets.size())
cur = ht->buckets[bucket];
}
return *this;
}
template <class V, class K, class HF, class ExK, class EqK, class A>
inline __hashtable_const_iterator<V, K, HF, ExK, EqK, A>
__hashtable_const_iterator<V, K, HF, ExK, EqK, A>::operator++(int)
{
const_iterator tmp = *this;
++*this;
return tmp;
}
template <class V, class K, class HF, class ExK, class EqK, class All>
inline forward_iterator_tag
iterator_category(const __hashtable_iterator<V, K, HF, ExK, EqK, All>&)
{
return forward_iterator_tag();
}
template <class V, class K, class HF, class ExK, class EqK, class All>
inline V* value_type(const __hashtable_iterator<V, K, HF, ExK, EqK, All>&)
{
return (V*) 0;
}
template <class V, class K, class HF, class ExK, class EqK, class All>
inline hashtable<V, K, HF, ExK, EqK, All>::difference_type*
distance_type(const __hashtable_iterator<V, K, HF, ExK, EqK, All>&)
{
return (hashtable<V, K, HF, ExK, EqK, All>::difference_type*) 0;
}
template <class V, class K, class HF, class ExK, class EqK, class All>
inline forward_iterator_tag
iterator_category(const __hashtable_const_iterator<V, K, HF, ExK, EqK, All>&)
{
return forward_iterator_tag();
}
template <class V, class K, class HF, class ExK, class EqK, class All>
inline V*
value_type(const __hashtable_const_iterator<V, K, HF, ExK, EqK, All>&)
{
return (V*) 0;
}
template <class V, class K, class HF, class ExK, class EqK, class All>
inline hashtable<V, K, HF, ExK, EqK, All>::difference_type*
distance_type(const __hashtable_const_iterator<V, K, HF, ExK, EqK, All>&)
{
return (hashtable<V, K, HF, ExK, EqK, All>::difference_type*) 0;
}
template <class V, class K, class HF, class Ex, class Eq, class A>
bool operator==(const hashtable<V, K, HF, Ex, Eq, A>& ht1,
const hashtable<V, K, HF, Ex, Eq, A>& ht2)
{
typedef hashtable<V, K, HF, Ex, Eq, A>::node node;
if (ht1.buckets.size() != ht2.buckets.size())
return false;
for (int n = 0; n < ht1.buckets.size(); ++n) {
node* cur1 = ht1.buckets[n];
node* cur2 = ht2.buckets[n];
for ( ; cur1 && cur2 && cur1->val == cur2->val;
cur1 = cur1->next, cur2 = cur2->next)
{}
if (cur1 || cur2)
return false;
}
return true;
}
template <class V, class K, class HF, class Ex, class Eq, class A>
pair<hashtable<V, K, HF, Ex, Eq, A>::iterator, bool>
hashtable<V, K, HF, Ex, Eq, A>::insert_unique_noresize(const value_type& obj)
{
const size_type n = bkt_num(obj);
node* first = buckets[n];
for (node* cur = first; cur; cur = cur->next)
if (equals(get_key(cur->val), get_key(obj)))
return pair<iterator, bool>(iterator(cur, this), false);
node* tmp = new_node(obj);
tmp->next = first;
buckets[n] = tmp;
++num_elements;
return pair<iterator, bool>(iterator(tmp, this), true);
}
template <class V, class K, class HF, class Ex, class Eq, class A>
hashtable<V, K, HF, Ex, Eq, A>::iterator
hashtable<V, K, HF, Ex, Eq, A>::insert_equal_noresize(const value_type& obj)
{
const size_type n = bkt_num(obj);
node* first = buckets[n];
for (node* cur = first; cur; cur = cur->next)
if (equals(get_key(cur->val), get_key(obj))) {
node* tmp = new_node(obj);
tmp->next = cur->next;
cur->next = tmp;
++num_elements;
return iterator(tmp, this);
}
node* tmp = new_node(obj);
tmp->next = first;
buckets[n] = tmp;
++num_elements;
return iterator(tmp, this);
}
template <class V, class K, class HF, class Ex, class Eq, class A>
hashtable<V, K, HF, Ex, Eq, A>::reference
hashtable<V, K, HF, Ex, Eq, A>::find_or_insert(const value_type& obj)
{
resize(num_elements + 1);
size_type n = bkt_num(obj);
node* first = buckets[n];
for (node* cur = first; cur; cur = cur->next)
if (equals(get_key(cur->val), get_key(obj)))
return cur->val;
node* tmp = new_node(obj);
tmp->next = first;
buckets[n] = tmp;
++num_elements;
return tmp->val;
}
template <class V, class K, class HF, class Ex, class Eq, class A>
pair<hashtable<V, K, HF, Ex, Eq, A>::iterator,
hashtable<V, K, HF, Ex, Eq, A>::iterator>
hashtable<V, K, HF, Ex, Eq, A>::equal_range(const key_type& key)
{
typedef pair<iterator, iterator> pii;
const size_type n = bkt_num_key(key);
for (node* first = buckets[n]; first; first = first->next) {
if (equals(get_key(first->val), key)) {
for (node* cur = first->next; cur; cur = cur->next)
if (!equals(get_key(cur->val), key))
return pii(iterator(first, this), iterator(cur, this));
for (size_type m = n + 1; m < buckets.size(); ++m)
if (buckets[m])
return pii(iterator(first, this),
iterator(buckets[m], this));
return pii(iterator(first, this), end());
}
}
return pii(end(), end());
}
template <class V, class K, class HF, class Ex, class Eq, class A>
pair<hashtable<V, K, HF, Ex, Eq, A>::const_iterator,
hashtable<V, K, HF, Ex, Eq, A>::const_iterator>
hashtable<V, K, HF, Ex, Eq, A>::equal_range(const key_type& key) const
{
typedef pair<const_iterator, const_iterator> pii;
const size_type n = bkt_num_key(key);
for (const node* first = buckets[n] ; first; first = first->next) {
if (equals(get_key(first->val), key)) {
for (const node* cur = first->next; cur; cur = cur->next)
if (!equals(get_key(cur->val), key))
return pii(const_iterator(first, this),
const_iterator(cur, this));
for (size_type m = n + 1; m < buckets.size(); ++m)
if (buckets[m])
return pii(const_iterator(first, this),
const_iterator(buckets[m], this));
return pii(const_iterator(first, this), end());
}
}
return pii(end(), end());
}
template <class V, class K, class HF, class Ex, class Eq, class A>
hashtable<V, K, HF, Ex, Eq, A>::size_type
hashtable<V, K, HF, Ex, Eq, A>::erase(const key_type& key)
{
const size_type n = bkt_num_key(key);
node* first = buckets[n];
size_type erased = 0;
if (first) {
node* cur = first;
node* next = cur->next;
while (next) {
if (equals(get_key(next->val), key)) {
cur->next = next->next;
delete_node(next);
next = cur->next;
++erased;
--num_elements;
}
else {
cur = next;
next = cur->next;
}
}
if (equals(get_key(first->val), key)) {
buckets[n] = first->next;
delete_node(first);
++erased;
--num_elements;
}
}
return erased;
}
template <class V, class K, class HF, class Ex, class Eq, class A>
void hashtable<V, K, HF, Ex, Eq, A>::erase(const iterator& it)
{
if (node* const p = it.cur) {
const size_type n = bkt_num(p->val);
node* cur = buckets[n];
if (cur == p) {
buckets[n] = cur->next;
delete_node(cur);
--num_elements;
}
else {
node* next = cur->next;
while (next) {
if (next == p) {
cur->next = next->next;
delete_node(next);
--num_elements;
break;
}
else {
cur = next;
next = cur->next;
}
}
}
}
}
template <class V, class K, class HF, class Ex, class Eq, class A>
void hashtable<V, K, HF, Ex, Eq, A>::erase(iterator first, iterator last)
{
size_type f_bucket = first.cur ? bkt_num(first.cur->val) : buckets.size();
size_type l_bucket = last.cur ? bkt_num(last.cur->val) : buckets.size();
if (first.cur == last.cur)
return;
else if (f_bucket == l_bucket)
erase_bucket(f_bucket, first.cur, last.cur);
else {
erase_bucket(f_bucket, first.cur, 0);
for (size_type n = f_bucket + 1; n < l_bucket; ++n)
erase_bucket(n, 0);
if (l_bucket != buckets.size())
erase_bucket(l_bucket, last.cur);
}
}
template <class V, class K, class HF, class Ex, class Eq, class A>
inline void
hashtable<V, K, HF, Ex, Eq, A>::erase(const_iterator first,
const_iterator last)
{
erase(iterator(const_cast<hashtable::node*>(first.cur),
const_cast<hashtable*>(first.ht)),
iterator(const_cast<hashtable::node*>(last.cur),
const_cast<hashtable*>(last.ht)));
}
template <class V, class K, class HF, class Ex, class Eq, class A>
inline void
hashtable<V, K, HF, Ex, Eq, A>::erase(const const_iterator& it)
{
erase(iterator(const_cast<hashtable::node*>(it.cur),
const_cast<hashtable*>(it.ht)));
}
template <class V, class K, class HF, class Ex, class Eq, class A>
void hashtable<V, K, HF, Ex, Eq, A>::resize(size_type num_elements_hint)
{
const size_type old_n = buckets.size();
if (num_elements_hint > old_n) {
const size_type n = next_size(num_elements_hint);
if (n > old_n) {
vector<node*, A> tmp(n, (node*) 0);
# ifdef __STL_USE_EXCEPTIONS
try {
# endif /* __STL_USE_EXCEPTIONS */
for (size_type bucket = 0; bucket < old_n; ++bucket) {
node* first = buckets[bucket];
while (first) {
size_type new_bucket = bkt_num(first->val, n);
buckets[bucket] = first->next;
first->next = tmp[new_bucket];
tmp[new_bucket] = first;
first = buckets[bucket];
}
}
buckets.swap(tmp);
# ifdef __STL_USE_EXCEPTIONS
}
catch(...) {
for (size_type bucket = 0; bucket < tmp.size(); ++bucket) {
while (tmp[bucket]) {
node* next = tmp[bucket]->next;
delete_node(tmp[bucket]);
tmp[bucket] = next;
}
}
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
}
}
}
template <class V, class K, class HF, class Ex, class Eq, class A>
void hashtable<V, K, HF, Ex, Eq, A>::erase_bucket(const size_type n,
node* first, node* last)
{
node* cur = buckets[n];
if (cur == first)
erase_bucket(n, last);
else {
node* next;
for (next = cur->next; next != first; cur = next, next = cur->next)
;
while (next) {
cur->next = next->next;
delete_node(next);
next = cur->next;
--num_elements;
}
}
}
template <class V, class K, class HF, class Ex, class Eq, class A>
void
hashtable<V, K, HF, Ex, Eq, A>::erase_bucket(const size_type n, node* last)
{
node* cur = buckets[n];
while (cur != last) {
node* next = cur->next;
delete_node(cur);
cur = next;
buckets[n] = cur;
--num_elements;
}
}
template <class V, class K, class HF, class Ex, class Eq, class A>
void hashtable<V, K, HF, Ex, Eq, A>::clear()
{
for (size_type i = 0; i < buckets.size(); ++i) {
node* cur = buckets[i];
while (cur != 0) {
node* next = cur->next;
delete_node(cur);
cur = next;
}
buckets[i] = 0;
}
num_elements = 0;
}
template <class V, class K, class HF, class Ex, class Eq, class A>
void hashtable<V, K, HF, Ex, Eq, A>::copy_from(const hashtable& ht)
{
buckets.clear();
buckets.reserve(ht.buckets.size());
buckets.insert(buckets.end(), ht.buckets.size(), (node*) 0);
# ifdef __STL_USE_EXCEPTIONS
try {
# endif /* __STL_USE_EXCEPTIONS */
for (size_type i = 0; i < ht.buckets.size(); ++i) {
if (const node* cur = ht.buckets[i]) {
node* copy = new_node(cur->val);
buckets[i] = copy;
for (node* next = cur->next; next; cur = next, next = cur->next) {
copy->next = new_node(next->val);
copy = copy->next;
}
}
}
num_elements = ht.num_elements;
# ifdef __STL_USE_EXCEPTIONS
}
catch(...) {
clear();
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
}
#endif /* __SGI_STL_HASHTABLE_H */