mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-03-15 15:31:33 +08:00
2569 lines
78 KiB
C
2569 lines
78 KiB
C
/* Inlining decision heuristics.
|
|
Copyright (C) 2003-2015 Free Software Foundation, Inc.
|
|
Contributed by Jan Hubicka
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Inlining decision heuristics
|
|
|
|
The implementation of inliner is organized as follows:
|
|
|
|
inlining heuristics limits
|
|
|
|
can_inline_edge_p allow to check that particular inlining is allowed
|
|
by the limits specified by user (allowed function growth, growth and so
|
|
on).
|
|
|
|
Functions are inlined when it is obvious the result is profitable (such
|
|
as functions called once or when inlining reduce code size).
|
|
In addition to that we perform inlining of small functions and recursive
|
|
inlining.
|
|
|
|
inlining heuristics
|
|
|
|
The inliner itself is split into two passes:
|
|
|
|
pass_early_inlining
|
|
|
|
Simple local inlining pass inlining callees into current function.
|
|
This pass makes no use of whole unit analysis and thus it can do only
|
|
very simple decisions based on local properties.
|
|
|
|
The strength of the pass is that it is run in topological order
|
|
(reverse postorder) on the callgraph. Functions are converted into SSA
|
|
form just before this pass and optimized subsequently. As a result, the
|
|
callees of the function seen by the early inliner was already optimized
|
|
and results of early inlining adds a lot of optimization opportunities
|
|
for the local optimization.
|
|
|
|
The pass handle the obvious inlining decisions within the compilation
|
|
unit - inlining auto inline functions, inlining for size and
|
|
flattening.
|
|
|
|
main strength of the pass is the ability to eliminate abstraction
|
|
penalty in C++ code (via combination of inlining and early
|
|
optimization) and thus improve quality of analysis done by real IPA
|
|
optimizers.
|
|
|
|
Because of lack of whole unit knowledge, the pass can not really make
|
|
good code size/performance tradeoffs. It however does very simple
|
|
speculative inlining allowing code size to grow by
|
|
EARLY_INLINING_INSNS when callee is leaf function. In this case the
|
|
optimizations performed later are very likely to eliminate the cost.
|
|
|
|
pass_ipa_inline
|
|
|
|
This is the real inliner able to handle inlining with whole program
|
|
knowledge. It performs following steps:
|
|
|
|
1) inlining of small functions. This is implemented by greedy
|
|
algorithm ordering all inlinable cgraph edges by their badness and
|
|
inlining them in this order as long as inline limits allows doing so.
|
|
|
|
This heuristics is not very good on inlining recursive calls. Recursive
|
|
calls can be inlined with results similar to loop unrolling. To do so,
|
|
special purpose recursive inliner is executed on function when
|
|
recursive edge is met as viable candidate.
|
|
|
|
2) Unreachable functions are removed from callgraph. Inlining leads
|
|
to devirtualization and other modification of callgraph so functions
|
|
may become unreachable during the process. Also functions declared as
|
|
extern inline or virtual functions are removed, since after inlining
|
|
we no longer need the offline bodies.
|
|
|
|
3) Functions called once and not exported from the unit are inlined.
|
|
This should almost always lead to reduction of code size by eliminating
|
|
the need for offline copy of the function. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "trans-mem.h"
|
|
#include "calls.h"
|
|
#include "tree-inline.h"
|
|
#include "langhooks.h"
|
|
#include "flags.h"
|
|
#include "diagnostic.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "params.h"
|
|
#include "intl.h"
|
|
#include "tree-pass.h"
|
|
#include "coverage.h"
|
|
#include "rtl.h"
|
|
#include "bitmap.h"
|
|
#include "profile.h"
|
|
#include "predict.h"
|
|
#include "vec.h"
|
|
#include "hashtab.h"
|
|
#include "hash-set.h"
|
|
#include "machmode.h"
|
|
#include "hard-reg-set.h"
|
|
#include "input.h"
|
|
#include "function.h"
|
|
#include "basic-block.h"
|
|
#include "tree-ssa-alias.h"
|
|
#include "internal-fn.h"
|
|
#include "gimple-expr.h"
|
|
#include "is-a.h"
|
|
#include "gimple.h"
|
|
#include "gimple-ssa.h"
|
|
#include "hash-map.h"
|
|
#include "plugin-api.h"
|
|
#include "ipa-ref.h"
|
|
#include "cgraph.h"
|
|
#include "alloc-pool.h"
|
|
#include "symbol-summary.h"
|
|
#include "ipa-prop.h"
|
|
#include "except.h"
|
|
#include "target.h"
|
|
#include "ipa-inline.h"
|
|
#include "ipa-utils.h"
|
|
#include "sreal.h"
|
|
#include "auto-profile.h"
|
|
#include "cilk.h"
|
|
#include "builtins.h"
|
|
#include "fibonacci_heap.h"
|
|
|
|
typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
|
|
typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
|
|
|
|
/* Statistics we collect about inlining algorithm. */
|
|
static int overall_size;
|
|
static gcov_type max_count;
|
|
static gcov_type spec_rem;
|
|
|
|
/* Pre-computed constants 1/CGRAPH_FREQ_BASE and 1/100. */
|
|
static sreal cgraph_freq_base_rec, percent_rec;
|
|
|
|
/* Return false when inlining edge E would lead to violating
|
|
limits on function unit growth or stack usage growth.
|
|
|
|
The relative function body growth limit is present generally
|
|
to avoid problems with non-linear behavior of the compiler.
|
|
To allow inlining huge functions into tiny wrapper, the limit
|
|
is always based on the bigger of the two functions considered.
|
|
|
|
For stack growth limits we always base the growth in stack usage
|
|
of the callers. We want to prevent applications from segfaulting
|
|
on stack overflow when functions with huge stack frames gets
|
|
inlined. */
|
|
|
|
static bool
|
|
caller_growth_limits (struct cgraph_edge *e)
|
|
{
|
|
struct cgraph_node *to = e->caller;
|
|
struct cgraph_node *what = e->callee->ultimate_alias_target ();
|
|
int newsize;
|
|
int limit = 0;
|
|
HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
|
|
inline_summary *info, *what_info, *outer_info = inline_summaries->get (to);
|
|
|
|
/* Look for function e->caller is inlined to. While doing
|
|
so work out the largest function body on the way. As
|
|
described above, we want to base our function growth
|
|
limits based on that. Not on the self size of the
|
|
outer function, not on the self size of inline code
|
|
we immediately inline to. This is the most relaxed
|
|
interpretation of the rule "do not grow large functions
|
|
too much in order to prevent compiler from exploding". */
|
|
while (true)
|
|
{
|
|
info = inline_summaries->get (to);
|
|
if (limit < info->self_size)
|
|
limit = info->self_size;
|
|
if (stack_size_limit < info->estimated_self_stack_size)
|
|
stack_size_limit = info->estimated_self_stack_size;
|
|
if (to->global.inlined_to)
|
|
to = to->callers->caller;
|
|
else
|
|
break;
|
|
}
|
|
|
|
what_info = inline_summaries->get (what);
|
|
|
|
if (limit < what_info->self_size)
|
|
limit = what_info->self_size;
|
|
|
|
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
|
|
|
|
/* Check the size after inlining against the function limits. But allow
|
|
the function to shrink if it went over the limits by forced inlining. */
|
|
newsize = estimate_size_after_inlining (to, e);
|
|
if (newsize >= info->size
|
|
&& newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
|
|
&& newsize > limit)
|
|
{
|
|
e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
|
|
return false;
|
|
}
|
|
|
|
if (!what_info->estimated_stack_size)
|
|
return true;
|
|
|
|
/* FIXME: Stack size limit often prevents inlining in Fortran programs
|
|
due to large i/o datastructures used by the Fortran front-end.
|
|
We ought to ignore this limit when we know that the edge is executed
|
|
on every invocation of the caller (i.e. its call statement dominates
|
|
exit block). We do not track this information, yet. */
|
|
stack_size_limit += ((gcov_type)stack_size_limit
|
|
* PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
|
|
|
|
inlined_stack = (outer_info->stack_frame_offset
|
|
+ outer_info->estimated_self_stack_size
|
|
+ what_info->estimated_stack_size);
|
|
/* Check new stack consumption with stack consumption at the place
|
|
stack is used. */
|
|
if (inlined_stack > stack_size_limit
|
|
/* If function already has large stack usage from sibling
|
|
inline call, we can inline, too.
|
|
This bit overoptimistically assume that we are good at stack
|
|
packing. */
|
|
&& inlined_stack > info->estimated_stack_size
|
|
&& inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
|
|
{
|
|
e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Dump info about why inlining has failed. */
|
|
|
|
static void
|
|
report_inline_failed_reason (struct cgraph_edge *e)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
|
|
xstrdup_for_dump (e->caller->name ()), e->caller->order,
|
|
xstrdup_for_dump (e->callee->name ()), e->callee->order,
|
|
cgraph_inline_failed_string (e->inline_failed));
|
|
}
|
|
}
|
|
|
|
/* Decide whether sanitizer-related attributes allow inlining. */
|
|
|
|
static bool
|
|
sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
|
|
{
|
|
/* Don't care if sanitizer is disabled */
|
|
if (!(flag_sanitize & SANITIZE_ADDRESS))
|
|
return true;
|
|
|
|
if (!caller || !callee)
|
|
return true;
|
|
|
|
return !!lookup_attribute ("no_sanitize_address",
|
|
DECL_ATTRIBUTES (caller)) ==
|
|
!!lookup_attribute ("no_sanitize_address",
|
|
DECL_ATTRIBUTES (callee));
|
|
}
|
|
|
|
/* Decide if we can inline the edge and possibly update
|
|
inline_failed reason.
|
|
We check whether inlining is possible at all and whether
|
|
caller growth limits allow doing so.
|
|
|
|
if REPORT is true, output reason to the dump file.
|
|
|
|
if DISREGARD_LIMITS is true, ignore size limits.*/
|
|
|
|
static bool
|
|
can_inline_edge_p (struct cgraph_edge *e, bool report,
|
|
bool disregard_limits = false)
|
|
{
|
|
bool inlinable = true;
|
|
enum availability avail;
|
|
cgraph_node *callee = e->callee->ultimate_alias_target (&avail);
|
|
tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->decl);
|
|
tree callee_tree
|
|
= callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
|
|
struct function *caller_fun = e->caller->get_fun ();
|
|
struct function *callee_fun = callee ? callee->get_fun () : NULL;
|
|
|
|
gcc_assert (e->inline_failed);
|
|
|
|
if (!callee || !callee->definition)
|
|
{
|
|
e->inline_failed = CIF_BODY_NOT_AVAILABLE;
|
|
inlinable = false;
|
|
}
|
|
else if (callee->calls_comdat_local)
|
|
{
|
|
e->inline_failed = CIF_USES_COMDAT_LOCAL;
|
|
inlinable = false;
|
|
}
|
|
else if (!inline_summaries->get (callee)->inlinable
|
|
|| (caller_fun && fn_contains_cilk_spawn_p (caller_fun)))
|
|
{
|
|
e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
|
|
inlinable = false;
|
|
}
|
|
else if (avail <= AVAIL_INTERPOSABLE)
|
|
{
|
|
e->inline_failed = CIF_OVERWRITABLE;
|
|
inlinable = false;
|
|
}
|
|
else if (e->call_stmt_cannot_inline_p)
|
|
{
|
|
if (e->inline_failed != CIF_FUNCTION_NOT_OPTIMIZED)
|
|
e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
|
|
inlinable = false;
|
|
}
|
|
/* Don't inline if the functions have different EH personalities. */
|
|
else if (DECL_FUNCTION_PERSONALITY (e->caller->decl)
|
|
&& DECL_FUNCTION_PERSONALITY (callee->decl)
|
|
&& (DECL_FUNCTION_PERSONALITY (e->caller->decl)
|
|
!= DECL_FUNCTION_PERSONALITY (callee->decl)))
|
|
{
|
|
e->inline_failed = CIF_EH_PERSONALITY;
|
|
inlinable = false;
|
|
}
|
|
/* TM pure functions should not be inlined into non-TM_pure
|
|
functions. */
|
|
else if (is_tm_pure (callee->decl)
|
|
&& !is_tm_pure (e->caller->decl))
|
|
{
|
|
e->inline_failed = CIF_UNSPECIFIED;
|
|
inlinable = false;
|
|
}
|
|
/* Don't inline if the callee can throw non-call exceptions but the
|
|
caller cannot.
|
|
FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
|
|
Move the flag into cgraph node or mirror it in the inline summary. */
|
|
else if (callee_fun && callee_fun->can_throw_non_call_exceptions
|
|
&& !(caller_fun && caller_fun->can_throw_non_call_exceptions))
|
|
{
|
|
e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
|
|
inlinable = false;
|
|
}
|
|
/* Check compatibility of target optimization options. */
|
|
else if (!targetm.target_option.can_inline_p (e->caller->decl,
|
|
callee->decl))
|
|
{
|
|
e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
|
|
inlinable = false;
|
|
}
|
|
/* Don't inline a function with mismatched sanitization attributes. */
|
|
else if (!sanitize_attrs_match_for_inline_p (e->caller->decl, callee->decl))
|
|
{
|
|
e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
|
|
inlinable = false;
|
|
}
|
|
/* Check if caller growth allows the inlining. */
|
|
else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
|
|
&& !disregard_limits
|
|
&& !lookup_attribute ("flatten",
|
|
DECL_ATTRIBUTES
|
|
(e->caller->global.inlined_to
|
|
? e->caller->global.inlined_to->decl
|
|
: e->caller->decl))
|
|
&& !caller_growth_limits (e))
|
|
inlinable = false;
|
|
/* Don't inline a function with a higher optimization level than the
|
|
caller. FIXME: this is really just tip of iceberg of handling
|
|
optimization attribute. */
|
|
else if (caller_tree != callee_tree)
|
|
{
|
|
if (((opt_for_fn (e->caller->decl, optimize)
|
|
> opt_for_fn (e->callee->decl, optimize))
|
|
|| (opt_for_fn (e->caller->decl, optimize_size)
|
|
!= opt_for_fn (e->callee->decl, optimize_size)))
|
|
/* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
|
|
&& !DECL_DISREGARD_INLINE_LIMITS (e->callee->decl))
|
|
{
|
|
e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
|
|
inlinable = false;
|
|
}
|
|
}
|
|
|
|
if (!inlinable && report)
|
|
report_inline_failed_reason (e);
|
|
return inlinable;
|
|
}
|
|
|
|
|
|
/* Return true if the edge E is inlinable during early inlining. */
|
|
|
|
static bool
|
|
can_early_inline_edge_p (struct cgraph_edge *e)
|
|
{
|
|
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
|
|
/* Early inliner might get called at WPA stage when IPA pass adds new
|
|
function. In this case we can not really do any of early inlining
|
|
because function bodies are missing. */
|
|
if (!gimple_has_body_p (callee->decl))
|
|
{
|
|
e->inline_failed = CIF_BODY_NOT_AVAILABLE;
|
|
return false;
|
|
}
|
|
/* In early inliner some of callees may not be in SSA form yet
|
|
(i.e. the callgraph is cyclic and we did not process
|
|
the callee by early inliner, yet). We don't have CIF code for this
|
|
case; later we will re-do the decision in the real inliner. */
|
|
if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
|
|
|| !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " edge not inlinable: not in SSA form\n");
|
|
return false;
|
|
}
|
|
if (!can_inline_edge_p (e, true))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Return number of calls in N. Ignore cheap builtins. */
|
|
|
|
static int
|
|
num_calls (struct cgraph_node *n)
|
|
{
|
|
struct cgraph_edge *e;
|
|
int num = 0;
|
|
|
|
for (e = n->callees; e; e = e->next_callee)
|
|
if (!is_inexpensive_builtin (e->callee->decl))
|
|
num++;
|
|
return num;
|
|
}
|
|
|
|
|
|
/* Return true if we are interested in inlining small function. */
|
|
|
|
static bool
|
|
want_early_inline_function_p (struct cgraph_edge *e)
|
|
{
|
|
bool want_inline = true;
|
|
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
|
|
|
|
if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
|
|
;
|
|
/* For AutoFDO, we need to make sure that before profile summary, all
|
|
hot paths' IR look exactly the same as profiled binary. As a result,
|
|
in einliner, we will disregard size limit and inline those callsites
|
|
that are:
|
|
* inlined in the profiled binary, and
|
|
* the cloned callee has enough samples to be considered "hot". */
|
|
else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
|
|
;
|
|
else if (!DECL_DECLARED_INLINE_P (callee->decl)
|
|
&& !opt_for_fn (e->caller->decl, flag_inline_small_functions))
|
|
{
|
|
e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
|
|
report_inline_failed_reason (e);
|
|
want_inline = false;
|
|
}
|
|
else
|
|
{
|
|
int growth = estimate_edge_growth (e);
|
|
int n;
|
|
|
|
if (growth <= 0)
|
|
;
|
|
else if (!e->maybe_hot_p ()
|
|
&& growth > 0)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
|
|
"call is cold and code would grow by %i\n",
|
|
xstrdup_for_dump (e->caller->name ()),
|
|
e->caller->order,
|
|
xstrdup_for_dump (callee->name ()), callee->order,
|
|
growth);
|
|
want_inline = false;
|
|
}
|
|
else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
|
|
"growth %i exceeds --param early-inlining-insns\n",
|
|
xstrdup_for_dump (e->caller->name ()),
|
|
e->caller->order,
|
|
xstrdup_for_dump (callee->name ()), callee->order,
|
|
growth);
|
|
want_inline = false;
|
|
}
|
|
else if ((n = num_calls (callee)) != 0
|
|
&& growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
|
|
"growth %i exceeds --param early-inlining-insns "
|
|
"divided by number of calls\n",
|
|
xstrdup_for_dump (e->caller->name ()),
|
|
e->caller->order,
|
|
xstrdup_for_dump (callee->name ()), callee->order,
|
|
growth);
|
|
want_inline = false;
|
|
}
|
|
}
|
|
return want_inline;
|
|
}
|
|
|
|
/* Compute time of the edge->caller + edge->callee execution when inlining
|
|
does not happen. */
|
|
|
|
inline sreal
|
|
compute_uninlined_call_time (struct inline_summary *callee_info,
|
|
struct cgraph_edge *edge)
|
|
{
|
|
sreal uninlined_call_time = (sreal)callee_info->time
|
|
* MAX (edge->frequency, 1)
|
|
* cgraph_freq_base_rec;
|
|
int caller_time = inline_summaries->get (edge->caller->global.inlined_to
|
|
? edge->caller->global.inlined_to
|
|
: edge->caller)->time;
|
|
return uninlined_call_time + caller_time;
|
|
}
|
|
|
|
/* Same as compute_uinlined_call_time but compute time when inlining
|
|
does happen. */
|
|
|
|
inline sreal
|
|
compute_inlined_call_time (struct cgraph_edge *edge,
|
|
int edge_time)
|
|
{
|
|
int caller_time = inline_summaries->get (edge->caller->global.inlined_to
|
|
? edge->caller->global.inlined_to
|
|
: edge->caller)->time;
|
|
sreal time = (sreal)caller_time
|
|
+ ((sreal) (edge_time - inline_edge_summary (edge)->call_stmt_time)
|
|
* MAX (edge->frequency, 1)
|
|
* cgraph_freq_base_rec);
|
|
gcc_checking_assert (time >= 0);
|
|
return time;
|
|
}
|
|
|
|
/* Return true if the speedup for inlining E is bigger than
|
|
PARAM_MAX_INLINE_MIN_SPEEDUP. */
|
|
|
|
static bool
|
|
big_speedup_p (struct cgraph_edge *e)
|
|
{
|
|
sreal time = compute_uninlined_call_time (inline_summaries->get (e->callee), e);
|
|
sreal inlined_time = compute_inlined_call_time (e, estimate_edge_time (e));
|
|
if (time - inlined_time
|
|
> (sreal) time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP)
|
|
* percent_rec)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Return true if we are interested in inlining small function.
|
|
When REPORT is true, report reason to dump file. */
|
|
|
|
static bool
|
|
want_inline_small_function_p (struct cgraph_edge *e, bool report)
|
|
{
|
|
bool want_inline = true;
|
|
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
|
|
|
|
if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
|
|
;
|
|
else if (!DECL_DECLARED_INLINE_P (callee->decl)
|
|
&& !opt_for_fn (e->caller->decl, flag_inline_small_functions))
|
|
{
|
|
e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
|
|
want_inline = false;
|
|
}
|
|
/* Do fast and conservative check if the function can be good
|
|
inline candidate. At the moment we allow inline hints to
|
|
promote non-inline functions to inline and we increase
|
|
MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
|
|
else if ((!DECL_DECLARED_INLINE_P (callee->decl)
|
|
&& (!e->count || !e->maybe_hot_p ()))
|
|
&& inline_summaries->get (callee)->min_size
|
|
- inline_edge_summary (e)->call_stmt_size
|
|
> MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
|
|
{
|
|
e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
|
|
want_inline = false;
|
|
}
|
|
else if ((DECL_DECLARED_INLINE_P (callee->decl) || e->count)
|
|
&& inline_summaries->get (callee)->min_size
|
|
- inline_edge_summary (e)->call_stmt_size
|
|
> 16 * MAX_INLINE_INSNS_SINGLE)
|
|
{
|
|
e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
|
|
? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
|
|
: CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
|
|
want_inline = false;
|
|
}
|
|
else
|
|
{
|
|
int growth = estimate_edge_growth (e);
|
|
inline_hints hints = estimate_edge_hints (e);
|
|
bool big_speedup = big_speedup_p (e);
|
|
|
|
if (growth <= 0)
|
|
;
|
|
/* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
|
|
hints suggests that inlining given function is very profitable. */
|
|
else if (DECL_DECLARED_INLINE_P (callee->decl)
|
|
&& growth >= MAX_INLINE_INSNS_SINGLE
|
|
&& ((!big_speedup
|
|
&& !(hints & (INLINE_HINT_indirect_call
|
|
| INLINE_HINT_known_hot
|
|
| INLINE_HINT_loop_iterations
|
|
| INLINE_HINT_array_index
|
|
| INLINE_HINT_loop_stride)))
|
|
|| growth >= MAX_INLINE_INSNS_SINGLE * 16))
|
|
{
|
|
e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
|
|
want_inline = false;
|
|
}
|
|
else if (!DECL_DECLARED_INLINE_P (callee->decl)
|
|
&& !opt_for_fn (e->caller->decl, flag_inline_functions))
|
|
{
|
|
/* growth_likely_positive is expensive, always test it last. */
|
|
if (growth >= MAX_INLINE_INSNS_SINGLE
|
|
|| growth_likely_positive (callee, growth))
|
|
{
|
|
e->inline_failed = CIF_NOT_DECLARED_INLINED;
|
|
want_inline = false;
|
|
}
|
|
}
|
|
/* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
|
|
Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
|
|
inlining given function is very profitable. */
|
|
else if (!DECL_DECLARED_INLINE_P (callee->decl)
|
|
&& !big_speedup
|
|
&& !(hints & INLINE_HINT_known_hot)
|
|
&& growth >= ((hints & (INLINE_HINT_indirect_call
|
|
| INLINE_HINT_loop_iterations
|
|
| INLINE_HINT_array_index
|
|
| INLINE_HINT_loop_stride))
|
|
? MAX (MAX_INLINE_INSNS_AUTO,
|
|
MAX_INLINE_INSNS_SINGLE)
|
|
: MAX_INLINE_INSNS_AUTO))
|
|
{
|
|
/* growth_likely_positive is expensive, always test it last. */
|
|
if (growth >= MAX_INLINE_INSNS_SINGLE
|
|
|| growth_likely_positive (callee, growth))
|
|
{
|
|
e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
|
|
want_inline = false;
|
|
}
|
|
}
|
|
/* If call is cold, do not inline when function body would grow. */
|
|
else if (!e->maybe_hot_p ()
|
|
&& (growth >= MAX_INLINE_INSNS_SINGLE
|
|
|| growth_likely_positive (callee, growth)))
|
|
{
|
|
e->inline_failed = CIF_UNLIKELY_CALL;
|
|
want_inline = false;
|
|
}
|
|
}
|
|
if (!want_inline && report)
|
|
report_inline_failed_reason (e);
|
|
return want_inline;
|
|
}
|
|
|
|
/* EDGE is self recursive edge.
|
|
We hand two cases - when function A is inlining into itself
|
|
or when function A is being inlined into another inliner copy of function
|
|
A within function B.
|
|
|
|
In first case OUTER_NODE points to the toplevel copy of A, while
|
|
in the second case OUTER_NODE points to the outermost copy of A in B.
|
|
|
|
In both cases we want to be extra selective since
|
|
inlining the call will just introduce new recursive calls to appear. */
|
|
|
|
static bool
|
|
want_inline_self_recursive_call_p (struct cgraph_edge *edge,
|
|
struct cgraph_node *outer_node,
|
|
bool peeling,
|
|
int depth)
|
|
{
|
|
char const *reason = NULL;
|
|
bool want_inline = true;
|
|
int caller_freq = CGRAPH_FREQ_BASE;
|
|
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
|
|
|
|
if (DECL_DECLARED_INLINE_P (edge->caller->decl))
|
|
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
|
|
|
|
if (!edge->maybe_hot_p ())
|
|
{
|
|
reason = "recursive call is cold";
|
|
want_inline = false;
|
|
}
|
|
else if (max_count && !outer_node->count)
|
|
{
|
|
reason = "not executed in profile";
|
|
want_inline = false;
|
|
}
|
|
else if (depth > max_depth)
|
|
{
|
|
reason = "--param max-inline-recursive-depth exceeded.";
|
|
want_inline = false;
|
|
}
|
|
|
|
if (outer_node->global.inlined_to)
|
|
caller_freq = outer_node->callers->frequency;
|
|
|
|
if (!caller_freq)
|
|
{
|
|
reason = "function is inlined and unlikely";
|
|
want_inline = false;
|
|
}
|
|
|
|
if (!want_inline)
|
|
;
|
|
/* Inlining of self recursive function into copy of itself within other function
|
|
is transformation similar to loop peeling.
|
|
|
|
Peeling is profitable if we can inline enough copies to make probability
|
|
of actual call to the self recursive function very small. Be sure that
|
|
the probability of recursion is small.
|
|
|
|
We ensure that the frequency of recursing is at most 1 - (1/max_depth).
|
|
This way the expected number of recision is at most max_depth. */
|
|
else if (peeling)
|
|
{
|
|
int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
|
|
/ max_depth);
|
|
int i;
|
|
for (i = 1; i < depth; i++)
|
|
max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
|
|
if (max_count
|
|
&& (edge->count * CGRAPH_FREQ_BASE / outer_node->count
|
|
>= max_prob))
|
|
{
|
|
reason = "profile of recursive call is too large";
|
|
want_inline = false;
|
|
}
|
|
if (!max_count
|
|
&& (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
|
|
>= max_prob))
|
|
{
|
|
reason = "frequency of recursive call is too large";
|
|
want_inline = false;
|
|
}
|
|
}
|
|
/* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
|
|
depth is large. We reduce function call overhead and increase chances that
|
|
things fit in hardware return predictor.
|
|
|
|
Recursive inlining might however increase cost of stack frame setup
|
|
actually slowing down functions whose recursion tree is wide rather than
|
|
deep.
|
|
|
|
Deciding reliably on when to do recursive inlining without profile feedback
|
|
is tricky. For now we disable recursive inlining when probability of self
|
|
recursion is low.
|
|
|
|
Recursive inlining of self recursive call within loop also results in large loop
|
|
depths that generally optimize badly. We may want to throttle down inlining
|
|
in those cases. In particular this seems to happen in one of libstdc++ rb tree
|
|
methods. */
|
|
else
|
|
{
|
|
if (max_count
|
|
&& (edge->count * 100 / outer_node->count
|
|
<= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
|
|
{
|
|
reason = "profile of recursive call is too small";
|
|
want_inline = false;
|
|
}
|
|
else if (!max_count
|
|
&& (edge->frequency * 100 / caller_freq
|
|
<= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
|
|
{
|
|
reason = "frequency of recursive call is too small";
|
|
want_inline = false;
|
|
}
|
|
}
|
|
if (!want_inline && dump_file)
|
|
fprintf (dump_file, " not inlining recursively: %s\n", reason);
|
|
return want_inline;
|
|
}
|
|
|
|
/* Return true when NODE has uninlinable caller;
|
|
set HAS_HOT_CALL if it has hot call.
|
|
Worker for cgraph_for_node_and_aliases. */
|
|
|
|
static bool
|
|
check_callers (struct cgraph_node *node, void *has_hot_call)
|
|
{
|
|
struct cgraph_edge *e;
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
{
|
|
if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once))
|
|
return true;
|
|
if (!can_inline_edge_p (e, true))
|
|
return true;
|
|
if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
|
|
*(bool *)has_hot_call = true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* If NODE has a caller, return true. */
|
|
|
|
static bool
|
|
has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
if (node->callers)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Decide if inlining NODE would reduce unit size by eliminating
|
|
the offline copy of function.
|
|
When COLD is true the cold calls are considered, too. */
|
|
|
|
static bool
|
|
want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
|
|
{
|
|
bool has_hot_call = false;
|
|
|
|
if (node->ultimate_alias_target () != node)
|
|
return false;
|
|
/* Already inlined? */
|
|
if (node->global.inlined_to)
|
|
return false;
|
|
/* Does it have callers? */
|
|
if (!node->call_for_symbol_thunks_and_aliases (has_caller_p, NULL, true))
|
|
return false;
|
|
/* Inlining into all callers would increase size? */
|
|
if (estimate_growth (node) > 0)
|
|
return false;
|
|
/* All inlines must be possible. */
|
|
if (node->call_for_symbol_thunks_and_aliases (check_callers, &has_hot_call,
|
|
true))
|
|
return false;
|
|
if (!cold && !has_hot_call)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
#define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
|
|
|
|
/* Return relative time improvement for inlining EDGE in range
|
|
as value NUMERATOR/DENOMINATOR. */
|
|
|
|
static inline void
|
|
relative_time_benefit (struct inline_summary *callee_info,
|
|
struct cgraph_edge *edge,
|
|
int edge_time,
|
|
sreal *numerator,
|
|
sreal *denominator)
|
|
{
|
|
/* Inlining into extern inline function is not a win. */
|
|
if (DECL_EXTERNAL (edge->caller->global.inlined_to
|
|
? edge->caller->global.inlined_to->decl
|
|
: edge->caller->decl))
|
|
{
|
|
*numerator = (sreal) 1;
|
|
*denominator = (sreal) 1024;
|
|
return;
|
|
}
|
|
|
|
sreal uninlined_call_time = compute_uninlined_call_time (callee_info, edge);
|
|
sreal inlined_call_time = compute_inlined_call_time (edge, edge_time);
|
|
|
|
/* Compute relative time benefit, i.e. how much the call becomes faster.
|
|
??? perhaps computing how much the caller+calle together become faster
|
|
would lead to more realistic results. */
|
|
if (uninlined_call_time == (sreal) 0)
|
|
uninlined_call_time = 1;
|
|
|
|
/* Avoid zeros, these are not useful later in calculations. */
|
|
if (uninlined_call_time == inlined_call_time)
|
|
*numerator = ((sreal) 1)>>8;
|
|
else
|
|
*numerator = uninlined_call_time - inlined_call_time;
|
|
*denominator = uninlined_call_time;
|
|
#ifdef ENABLE_CHECKING
|
|
gcc_checking_assert (*numerator >= 0);
|
|
gcc_checking_assert (*denominator >= 0);
|
|
#endif
|
|
}
|
|
|
|
/* A cost model driving the inlining heuristics in a way so the edges with
|
|
smallest badness are inlined first. After each inlining is performed
|
|
the costs of all caller edges of nodes affected are recomputed so the
|
|
metrics may accurately depend on values such as number of inlinable callers
|
|
of the function or function body size. */
|
|
|
|
static sreal
|
|
edge_badness (struct cgraph_edge *edge, bool dump)
|
|
{
|
|
sreal badness;
|
|
int growth, edge_time;
|
|
struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
|
|
struct inline_summary *callee_info = inline_summaries->get (callee);
|
|
inline_hints hints;
|
|
|
|
if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
|
|
return sreal::min ();
|
|
|
|
growth = estimate_edge_growth (edge);
|
|
edge_time = estimate_edge_time (edge);
|
|
hints = estimate_edge_hints (edge);
|
|
gcc_checking_assert (edge_time >= 0);
|
|
gcc_checking_assert (edge_time <= callee_info->time);
|
|
gcc_checking_assert (growth <= callee_info->size);
|
|
|
|
if (dump)
|
|
{
|
|
fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n",
|
|
xstrdup_for_dump (edge->caller->name ()),
|
|
edge->caller->order,
|
|
xstrdup_for_dump (callee->name ()),
|
|
edge->callee->order);
|
|
fprintf (dump_file, " size growth %i, time %i ",
|
|
growth,
|
|
edge_time);
|
|
dump_inline_hints (dump_file, hints);
|
|
if (big_speedup_p (edge))
|
|
fprintf (dump_file, " big_speedup");
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* Always prefer inlining saving code size. */
|
|
if (growth <= 0)
|
|
{
|
|
badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
|
|
if (dump)
|
|
fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
|
|
growth);
|
|
}
|
|
|
|
/* When profiling is available, compute badness as:
|
|
|
|
edge_count * relative_time_benefit
|
|
goodness = -------------------------------------------
|
|
growth_of_caller
|
|
badness = - goodness
|
|
|
|
The fraction is upside down, because on edge counts and time beneits
|
|
the bounds are known. Edge growth is essentially unlimited. */
|
|
|
|
else if (max_count)
|
|
{
|
|
sreal numerator, denominator;
|
|
relative_time_benefit (callee_info, edge, edge_time, &numerator,
|
|
&denominator);
|
|
|
|
if (edge->count)
|
|
numerator *= edge->count;
|
|
denominator *= growth;
|
|
|
|
badness = - numerator / denominator;
|
|
|
|
if (dump)
|
|
{
|
|
sreal num,den;
|
|
relative_time_benefit (callee_info, edge, edge_time, &num, &den);
|
|
fprintf (dump_file,
|
|
" %f: profile info. count %"PRId64
|
|
" * Relative benefit %f / growth %i\n",
|
|
badness.to_double (), (int64_t)edge->count,
|
|
(num / den * 100).to_double (), growth);
|
|
}
|
|
}
|
|
|
|
/* When function local profile is available. Compute badness as:
|
|
|
|
relative_time_benefit
|
|
goodness = ---------------------------------
|
|
growth_of_caller * overall_growth
|
|
|
|
badness = - goodness
|
|
|
|
compensated by the inline hints.
|
|
*/
|
|
/* TODO: We ought suport mixing units where some functions are profiled
|
|
and some not. */
|
|
else if (flag_guess_branch_prob)
|
|
{
|
|
sreal numerator, denominator;
|
|
relative_time_benefit (callee_info, edge, edge_time, &numerator,
|
|
&denominator);
|
|
denominator *= growth;
|
|
if (callee_info->growth > 0)
|
|
denominator *= callee_info->growth;
|
|
|
|
badness = - numerator / denominator;
|
|
|
|
if (dump)
|
|
{
|
|
sreal num,den;
|
|
relative_time_benefit (callee_info, edge, edge_time, &num, &den);
|
|
fprintf (dump_file,
|
|
" %f: guessed profile. frequency %f,"
|
|
" benefit %f%%, time w/o inlining %f, time w inlining %f"
|
|
" overall growth %i (current) %i (original)\n",
|
|
badness.to_double (), (double)edge->frequency / CGRAPH_FREQ_BASE,
|
|
(num/den).to_double () * 100,
|
|
compute_uninlined_call_time (callee_info, edge).to_double (),
|
|
compute_inlined_call_time (edge, edge_time).to_double (),
|
|
estimate_growth (callee),
|
|
callee_info->growth);
|
|
}
|
|
}
|
|
/* When function local profile is not available or it does not give
|
|
useful information (ie frequency is zero), base the cost on
|
|
loop nest and overall size growth, so we optimize for overall number
|
|
of functions fully inlined in program. */
|
|
else
|
|
{
|
|
int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
|
|
badness = growth;
|
|
|
|
/* Decrease badness if call is nested. */
|
|
if (badness > 0)
|
|
badness = badness >> nest;
|
|
else
|
|
badness = badness << nest;
|
|
if (dump)
|
|
fprintf (dump_file, " %f: no profile. nest %i\n", badness.to_double (),
|
|
nest);
|
|
}
|
|
gcc_checking_assert (badness != 0);
|
|
|
|
if (edge->recursive_p ())
|
|
badness = badness.shift (badness > 0 ? 4 : -4);
|
|
if ((hints & (INLINE_HINT_indirect_call
|
|
| INLINE_HINT_loop_iterations
|
|
| INLINE_HINT_array_index
|
|
| INLINE_HINT_loop_stride))
|
|
|| callee_info->growth <= 0)
|
|
badness = badness.shift (badness > 0 ? -2 : 2);
|
|
if (hints & (INLINE_HINT_same_scc))
|
|
badness = badness.shift (badness > 0 ? 3 : -3);
|
|
else if (hints & (INLINE_HINT_in_scc))
|
|
badness = badness.shift (badness > 0 ? 2 : -2);
|
|
else if (hints & (INLINE_HINT_cross_module))
|
|
badness = badness.shift (badness > 0 ? 1 : -1);
|
|
if ((hints & INLINE_HINT_declared_inline))
|
|
badness = badness.shift (badness > 0 ? -3 : 3);
|
|
if (dump)
|
|
fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
|
|
return badness;
|
|
}
|
|
|
|
/* Recompute badness of EDGE and update its key in HEAP if needed. */
|
|
static inline void
|
|
update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
|
|
{
|
|
sreal badness = edge_badness (edge, false);
|
|
if (edge->aux)
|
|
{
|
|
edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
|
|
gcc_checking_assert (n->get_data () == edge);
|
|
|
|
/* fibonacci_heap::replace_key does busy updating of the
|
|
heap that is unnecesarily expensive.
|
|
We do lazy increases: after extracting minimum if the key
|
|
turns out to be out of date, it is re-inserted into heap
|
|
with correct value. */
|
|
if (badness < n->get_key ())
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
" decreasing badness %s/%i -> %s/%i, %f"
|
|
" to %f\n",
|
|
xstrdup_for_dump (edge->caller->name ()),
|
|
edge->caller->order,
|
|
xstrdup_for_dump (edge->callee->name ()),
|
|
edge->callee->order,
|
|
n->get_key ().to_double (),
|
|
badness.to_double ());
|
|
}
|
|
heap->decrease_key (n, badness);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
" enqueuing call %s/%i -> %s/%i, badness %f\n",
|
|
xstrdup_for_dump (edge->caller->name ()),
|
|
edge->caller->order,
|
|
xstrdup_for_dump (edge->callee->name ()),
|
|
edge->callee->order,
|
|
badness.to_double ());
|
|
}
|
|
edge->aux = heap->insert (badness, edge);
|
|
}
|
|
}
|
|
|
|
|
|
/* NODE was inlined.
|
|
All caller edges needs to be resetted because
|
|
size estimates change. Similarly callees needs reset
|
|
because better context may be known. */
|
|
|
|
static void
|
|
reset_edge_caches (struct cgraph_node *node)
|
|
{
|
|
struct cgraph_edge *edge;
|
|
struct cgraph_edge *e = node->callees;
|
|
struct cgraph_node *where = node;
|
|
struct ipa_ref *ref;
|
|
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
|
|
/* WHERE body size has changed, the cached growth is invalid. */
|
|
reset_node_growth_cache (where);
|
|
|
|
for (edge = where->callers; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
reset_edge_growth_cache (edge);
|
|
|
|
FOR_EACH_ALIAS (where, ref)
|
|
reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
|
|
|
|
if (!e)
|
|
return;
|
|
|
|
while (true)
|
|
if (!e->inline_failed && e->callee->callees)
|
|
e = e->callee->callees;
|
|
else
|
|
{
|
|
if (e->inline_failed)
|
|
reset_edge_growth_cache (e);
|
|
if (e->next_callee)
|
|
e = e->next_callee;
|
|
else
|
|
{
|
|
do
|
|
{
|
|
if (e->caller == node)
|
|
return;
|
|
e = e->caller->callers;
|
|
}
|
|
while (!e->next_callee);
|
|
e = e->next_callee;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Recompute HEAP nodes for each of caller of NODE.
|
|
UPDATED_NODES track nodes we already visited, to avoid redundant work.
|
|
When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
|
|
it is inlinable. Otherwise check all edges. */
|
|
|
|
static void
|
|
update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
|
|
bitmap updated_nodes,
|
|
struct cgraph_edge *check_inlinablity_for)
|
|
{
|
|
struct cgraph_edge *edge;
|
|
struct ipa_ref *ref;
|
|
|
|
if ((!node->alias && !inline_summaries->get (node)->inlinable)
|
|
|| node->global.inlined_to)
|
|
return;
|
|
if (!bitmap_set_bit (updated_nodes, node->uid))
|
|
return;
|
|
|
|
FOR_EACH_ALIAS (node, ref)
|
|
{
|
|
struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
|
|
update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
|
|
}
|
|
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
{
|
|
if (!check_inlinablity_for
|
|
|| check_inlinablity_for == edge)
|
|
{
|
|
if (can_inline_edge_p (edge, false)
|
|
&& want_inline_small_function_p (edge, false))
|
|
update_edge_key (heap, edge);
|
|
else if (edge->aux)
|
|
{
|
|
report_inline_failed_reason (edge);
|
|
heap->delete_node ((edge_heap_node_t *) edge->aux);
|
|
edge->aux = NULL;
|
|
}
|
|
}
|
|
else if (edge->aux)
|
|
update_edge_key (heap, edge);
|
|
}
|
|
}
|
|
|
|
/* Recompute HEAP nodes for each uninlined call in NODE.
|
|
This is used when we know that edge badnesses are going only to increase
|
|
(we introduced new call site) and thus all we need is to insert newly
|
|
created edges into heap. */
|
|
|
|
static void
|
|
update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
|
|
bitmap updated_nodes)
|
|
{
|
|
struct cgraph_edge *e = node->callees;
|
|
|
|
if (!e)
|
|
return;
|
|
while (true)
|
|
if (!e->inline_failed && e->callee->callees)
|
|
e = e->callee->callees;
|
|
else
|
|
{
|
|
enum availability avail;
|
|
struct cgraph_node *callee;
|
|
/* We do not reset callee growth cache here. Since we added a new call,
|
|
growth chould have just increased and consequentely badness metric
|
|
don't need updating. */
|
|
if (e->inline_failed
|
|
&& (callee = e->callee->ultimate_alias_target (&avail))
|
|
&& inline_summaries->get (callee)->inlinable
|
|
&& avail >= AVAIL_AVAILABLE
|
|
&& !bitmap_bit_p (updated_nodes, callee->uid))
|
|
{
|
|
if (can_inline_edge_p (e, false)
|
|
&& want_inline_small_function_p (e, false))
|
|
update_edge_key (heap, e);
|
|
else if (e->aux)
|
|
{
|
|
report_inline_failed_reason (e);
|
|
heap->delete_node ((edge_heap_node_t *) e->aux);
|
|
e->aux = NULL;
|
|
}
|
|
}
|
|
if (e->next_callee)
|
|
e = e->next_callee;
|
|
else
|
|
{
|
|
do
|
|
{
|
|
if (e->caller == node)
|
|
return;
|
|
e = e->caller->callers;
|
|
}
|
|
while (!e->next_callee);
|
|
e = e->next_callee;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Enqueue all recursive calls from NODE into priority queue depending on
|
|
how likely we want to recursively inline the call. */
|
|
|
|
static void
|
|
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
|
|
edge_heap_t *heap)
|
|
{
|
|
struct cgraph_edge *e;
|
|
enum availability avail;
|
|
|
|
for (e = where->callees; e; e = e->next_callee)
|
|
if (e->callee == node
|
|
|| (e->callee->ultimate_alias_target (&avail) == node
|
|
&& avail > AVAIL_INTERPOSABLE))
|
|
{
|
|
/* When profile feedback is available, prioritize by expected number
|
|
of calls. */
|
|
heap->insert (!max_count ? -e->frequency
|
|
: -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
|
|
e);
|
|
}
|
|
for (e = where->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
lookup_recursive_calls (node, e->callee, heap);
|
|
}
|
|
|
|
/* Decide on recursive inlining: in the case function has recursive calls,
|
|
inline until body size reaches given argument. If any new indirect edges
|
|
are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
|
|
is NULL. */
|
|
|
|
static bool
|
|
recursive_inlining (struct cgraph_edge *edge,
|
|
vec<cgraph_edge *> *new_edges)
|
|
{
|
|
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
|
|
edge_heap_t heap (sreal::min ());
|
|
struct cgraph_node *node;
|
|
struct cgraph_edge *e;
|
|
struct cgraph_node *master_clone = NULL, *next;
|
|
int depth = 0;
|
|
int n = 0;
|
|
|
|
node = edge->caller;
|
|
if (node->global.inlined_to)
|
|
node = node->global.inlined_to;
|
|
|
|
if (DECL_DECLARED_INLINE_P (node->decl))
|
|
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
|
|
|
|
/* Make sure that function is small enough to be considered for inlining. */
|
|
if (estimate_size_after_inlining (node, edge) >= limit)
|
|
return false;
|
|
lookup_recursive_calls (node, node, &heap);
|
|
if (heap.empty ())
|
|
return false;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Performing recursive inlining on %s\n",
|
|
node->name ());
|
|
|
|
/* Do the inlining and update list of recursive call during process. */
|
|
while (!heap.empty ())
|
|
{
|
|
struct cgraph_edge *curr = heap.extract_min ();
|
|
struct cgraph_node *cnode, *dest = curr->callee;
|
|
|
|
if (!can_inline_edge_p (curr, true))
|
|
continue;
|
|
|
|
/* MASTER_CLONE is produced in the case we already started modified
|
|
the function. Be sure to redirect edge to the original body before
|
|
estimating growths otherwise we will be seeing growths after inlining
|
|
the already modified body. */
|
|
if (master_clone)
|
|
{
|
|
curr->redirect_callee (master_clone);
|
|
reset_edge_growth_cache (curr);
|
|
}
|
|
|
|
if (estimate_size_after_inlining (node, curr) > limit)
|
|
{
|
|
curr->redirect_callee (dest);
|
|
reset_edge_growth_cache (curr);
|
|
break;
|
|
}
|
|
|
|
depth = 1;
|
|
for (cnode = curr->caller;
|
|
cnode->global.inlined_to; cnode = cnode->callers->caller)
|
|
if (node->decl
|
|
== curr->callee->ultimate_alias_target ()->decl)
|
|
depth++;
|
|
|
|
if (!want_inline_self_recursive_call_p (curr, node, false, depth))
|
|
{
|
|
curr->redirect_callee (dest);
|
|
reset_edge_growth_cache (curr);
|
|
continue;
|
|
}
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
" Inlining call of depth %i", depth);
|
|
if (node->count)
|
|
{
|
|
fprintf (dump_file, " called approx. %.2f times per call",
|
|
(double)curr->count / node->count);
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
if (!master_clone)
|
|
{
|
|
/* We need original clone to copy around. */
|
|
master_clone = node->create_clone (node->decl, node->count,
|
|
CGRAPH_FREQ_BASE, false, vNULL,
|
|
true, NULL, NULL);
|
|
for (e = master_clone->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
clone_inlined_nodes (e, true, false, NULL, CGRAPH_FREQ_BASE);
|
|
curr->redirect_callee (master_clone);
|
|
reset_edge_growth_cache (curr);
|
|
}
|
|
|
|
inline_call (curr, false, new_edges, &overall_size, true);
|
|
lookup_recursive_calls (node, curr->callee, &heap);
|
|
n++;
|
|
}
|
|
|
|
if (!heap.empty () && dump_file)
|
|
fprintf (dump_file, " Recursive inlining growth limit met.\n");
|
|
|
|
if (!master_clone)
|
|
return false;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\n Inlined %i times, "
|
|
"body grown from size %i to %i, time %i to %i\n", n,
|
|
inline_summaries->get (master_clone)->size, inline_summaries->get (node)->size,
|
|
inline_summaries->get (master_clone)->time, inline_summaries->get (node)->time);
|
|
|
|
/* Remove master clone we used for inlining. We rely that clones inlined
|
|
into master clone gets queued just before master clone so we don't
|
|
need recursion. */
|
|
for (node = symtab->first_function (); node != master_clone;
|
|
node = next)
|
|
{
|
|
next = symtab->next_function (node);
|
|
if (node->global.inlined_to == master_clone)
|
|
node->remove ();
|
|
}
|
|
master_clone->remove ();
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Given whole compilation unit estimate of INSNS, compute how large we can
|
|
allow the unit to grow. */
|
|
|
|
static int
|
|
compute_max_insns (int insns)
|
|
{
|
|
int max_insns = insns;
|
|
if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
|
|
max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
|
|
|
|
return ((int64_t) max_insns
|
|
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
|
|
}
|
|
|
|
|
|
/* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
|
|
|
|
static void
|
|
add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
|
|
{
|
|
while (new_edges.length () > 0)
|
|
{
|
|
struct cgraph_edge *edge = new_edges.pop ();
|
|
|
|
gcc_assert (!edge->aux);
|
|
if (edge->inline_failed
|
|
&& can_inline_edge_p (edge, true)
|
|
&& want_inline_small_function_p (edge, true))
|
|
edge->aux = heap->insert (edge_badness (edge, false), edge);
|
|
}
|
|
}
|
|
|
|
/* Remove EDGE from the fibheap. */
|
|
|
|
static void
|
|
heap_edge_removal_hook (struct cgraph_edge *e, void *data)
|
|
{
|
|
if (e->callee)
|
|
reset_node_growth_cache (e->callee);
|
|
if (e->aux)
|
|
{
|
|
((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
|
|
e->aux = NULL;
|
|
}
|
|
}
|
|
|
|
/* Return true if speculation of edge E seems useful.
|
|
If ANTICIPATE_INLINING is true, be conservative and hope that E
|
|
may get inlined. */
|
|
|
|
bool
|
|
speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
|
|
{
|
|
enum availability avail;
|
|
struct cgraph_node *target = e->callee->ultimate_alias_target (&avail);
|
|
struct cgraph_edge *direct, *indirect;
|
|
struct ipa_ref *ref;
|
|
|
|
gcc_assert (e->speculative && !e->indirect_unknown_callee);
|
|
|
|
if (!e->maybe_hot_p ())
|
|
return false;
|
|
|
|
/* See if IP optimizations found something potentially useful about the
|
|
function. For now we look only for CONST/PURE flags. Almost everything
|
|
else we propagate is useless. */
|
|
if (avail >= AVAIL_AVAILABLE)
|
|
{
|
|
int ecf_flags = flags_from_decl_or_type (target->decl);
|
|
if (ecf_flags & ECF_CONST)
|
|
{
|
|
e->speculative_call_info (direct, indirect, ref);
|
|
if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
|
|
return true;
|
|
}
|
|
else if (ecf_flags & ECF_PURE)
|
|
{
|
|
e->speculative_call_info (direct, indirect, ref);
|
|
if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
|
|
return true;
|
|
}
|
|
}
|
|
/* If we did not managed to inline the function nor redirect
|
|
to an ipa-cp clone (that are seen by having local flag set),
|
|
it is probably pointless to inline it unless hardware is missing
|
|
indirect call predictor. */
|
|
if (!anticipate_inlining && e->inline_failed && !target->local.local)
|
|
return false;
|
|
/* For overwritable targets there is not much to do. */
|
|
if (e->inline_failed && !can_inline_edge_p (e, false, true))
|
|
return false;
|
|
/* OK, speculation seems interesting. */
|
|
return true;
|
|
}
|
|
|
|
/* We know that EDGE is not going to be inlined.
|
|
See if we can remove speculation. */
|
|
|
|
static void
|
|
resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
|
|
{
|
|
if (edge->speculative && !speculation_useful_p (edge, false))
|
|
{
|
|
struct cgraph_node *node = edge->caller;
|
|
struct cgraph_node *where = node->global.inlined_to
|
|
? node->global.inlined_to : node;
|
|
bitmap updated_nodes = BITMAP_ALLOC (NULL);
|
|
|
|
spec_rem += edge->count;
|
|
edge->resolve_speculation ();
|
|
reset_edge_caches (where);
|
|
inline_update_overall_summary (where);
|
|
update_caller_keys (edge_heap, where,
|
|
updated_nodes, NULL);
|
|
update_callee_keys (edge_heap, where,
|
|
updated_nodes);
|
|
BITMAP_FREE (updated_nodes);
|
|
}
|
|
}
|
|
|
|
/* We use greedy algorithm for inlining of small functions:
|
|
All inline candidates are put into prioritized heap ordered in
|
|
increasing badness.
|
|
|
|
The inlining of small functions is bounded by unit growth parameters. */
|
|
|
|
static void
|
|
inline_small_functions (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct cgraph_edge *edge;
|
|
edge_heap_t edge_heap (sreal::min ());
|
|
bitmap updated_nodes = BITMAP_ALLOC (NULL);
|
|
int min_size, max_size;
|
|
auto_vec<cgraph_edge *> new_indirect_edges;
|
|
int initial_size = 0;
|
|
struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
|
|
struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
|
new_indirect_edges.create (8);
|
|
|
|
edge_removal_hook_holder
|
|
= symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
|
|
|
|
/* Compute overall unit size and other global parameters used by badness
|
|
metrics. */
|
|
|
|
max_count = 0;
|
|
ipa_reduced_postorder (order, true, true, NULL);
|
|
free (order);
|
|
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
if (!node->global.inlined_to)
|
|
{
|
|
if (node->has_gimple_body_p ()
|
|
|| node->thunk.thunk_p)
|
|
{
|
|
struct inline_summary *info = inline_summaries->get (node);
|
|
struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
|
|
|
|
/* Do not account external functions, they will be optimized out
|
|
if not inlined. Also only count the non-cold portion of program. */
|
|
if (!DECL_EXTERNAL (node->decl)
|
|
&& node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED)
|
|
initial_size += info->size;
|
|
info->growth = estimate_growth (node);
|
|
if (dfs && dfs->next_cycle)
|
|
{
|
|
struct cgraph_node *n2;
|
|
int id = dfs->scc_no + 1;
|
|
for (n2 = node; n2;
|
|
n2 = ((struct ipa_dfs_info *) node->aux)->next_cycle)
|
|
{
|
|
struct inline_summary *info2 = inline_summaries->get (n2);
|
|
if (info2->scc_no)
|
|
break;
|
|
info2->scc_no = id;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (max_count < edge->count)
|
|
max_count = edge->count;
|
|
}
|
|
ipa_free_postorder_info ();
|
|
initialize_growth_caches ();
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nDeciding on inlining of small functions. Starting with size %i.\n",
|
|
initial_size);
|
|
|
|
overall_size = initial_size;
|
|
max_size = compute_max_insns (overall_size);
|
|
min_size = overall_size;
|
|
|
|
/* Populate the heap with all edges we might inline. */
|
|
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
{
|
|
bool update = false;
|
|
struct cgraph_edge *next;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Enqueueing calls in %s/%i.\n",
|
|
node->name (), node->order);
|
|
|
|
for (edge = node->callees; edge; edge = next)
|
|
{
|
|
next = edge->next_callee;
|
|
if (edge->inline_failed
|
|
&& !edge->aux
|
|
&& can_inline_edge_p (edge, true)
|
|
&& want_inline_small_function_p (edge, true)
|
|
&& edge->inline_failed)
|
|
{
|
|
gcc_assert (!edge->aux);
|
|
update_edge_key (&edge_heap, edge);
|
|
}
|
|
if (edge->speculative && !speculation_useful_p (edge, edge->aux != NULL))
|
|
{
|
|
edge->resolve_speculation ();
|
|
update = true;
|
|
}
|
|
}
|
|
if (update)
|
|
{
|
|
struct cgraph_node *where = node->global.inlined_to
|
|
? node->global.inlined_to : node;
|
|
inline_update_overall_summary (where);
|
|
reset_node_growth_cache (where);
|
|
reset_edge_caches (where);
|
|
update_caller_keys (&edge_heap, where,
|
|
updated_nodes, NULL);
|
|
bitmap_clear (updated_nodes);
|
|
}
|
|
}
|
|
|
|
gcc_assert (in_lto_p
|
|
|| !max_count
|
|
|| (profile_info && flag_branch_probabilities));
|
|
|
|
while (!edge_heap.empty ())
|
|
{
|
|
int old_size = overall_size;
|
|
struct cgraph_node *where, *callee;
|
|
sreal badness = edge_heap.min_key ();
|
|
sreal current_badness;
|
|
int growth;
|
|
|
|
edge = edge_heap.extract_min ();
|
|
gcc_assert (edge->aux);
|
|
edge->aux = NULL;
|
|
if (!edge->inline_failed || !edge->callee->analyzed)
|
|
continue;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
/* Be sure that caches are maintained consistent. */
|
|
sreal cached_badness = edge_badness (edge, false);
|
|
reset_edge_growth_cache (edge);
|
|
reset_node_growth_cache (edge->callee);
|
|
|
|
/* When updating the edge costs, we only decrease badness in the keys.
|
|
Increases of badness are handled lazilly; when we see key with out
|
|
of date value on it, we re-insert it now. */
|
|
current_badness = edge_badness (edge, false);
|
|
gcc_assert (cached_badness == current_badness);
|
|
gcc_assert (current_badness >= badness);
|
|
#else
|
|
current_badness = edge_badness (edge, false);
|
|
#endif
|
|
if (current_badness != badness)
|
|
{
|
|
if (edge_heap.min () && badness > edge_heap.min_key ())
|
|
{
|
|
edge->aux = edge_heap.insert (current_badness, edge);
|
|
continue;
|
|
}
|
|
else
|
|
badness = current_badness;
|
|
}
|
|
|
|
if (!can_inline_edge_p (edge, true))
|
|
{
|
|
resolve_noninline_speculation (&edge_heap, edge);
|
|
continue;
|
|
}
|
|
|
|
callee = edge->callee->ultimate_alias_target ();
|
|
growth = estimate_edge_growth (edge);
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nConsidering %s/%i with %i size\n",
|
|
callee->name (), callee->order,
|
|
inline_summaries->get (callee)->size);
|
|
fprintf (dump_file,
|
|
" to be inlined into %s/%i in %s:%i\n"
|
|
" Estimated badness is %f, frequency %.2f.\n",
|
|
edge->caller->name (), edge->caller->order,
|
|
edge->call_stmt ? "unknown"
|
|
: gimple_filename ((const_gimple) edge->call_stmt),
|
|
edge->call_stmt ? -1
|
|
: gimple_lineno ((const_gimple) edge->call_stmt),
|
|
badness.to_double (),
|
|
edge->frequency / (double)CGRAPH_FREQ_BASE);
|
|
if (edge->count)
|
|
fprintf (dump_file," Called %"PRId64"x\n",
|
|
edge->count);
|
|
if (dump_flags & TDF_DETAILS)
|
|
edge_badness (edge, true);
|
|
}
|
|
|
|
if (overall_size + growth > max_size
|
|
&& !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
|
|
{
|
|
edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
|
|
report_inline_failed_reason (edge);
|
|
resolve_noninline_speculation (&edge_heap, edge);
|
|
continue;
|
|
}
|
|
|
|
if (!want_inline_small_function_p (edge, true))
|
|
{
|
|
resolve_noninline_speculation (&edge_heap, edge);
|
|
continue;
|
|
}
|
|
|
|
/* Heuristics for inlining small functions work poorly for
|
|
recursive calls where we do effects similar to loop unrolling.
|
|
When inlining such edge seems profitable, leave decision on
|
|
specific inliner. */
|
|
if (edge->recursive_p ())
|
|
{
|
|
where = edge->caller;
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
if (!recursive_inlining (edge,
|
|
opt_for_fn (edge->caller->decl,
|
|
flag_indirect_inlining)
|
|
? &new_indirect_edges : NULL))
|
|
{
|
|
edge->inline_failed = CIF_RECURSIVE_INLINING;
|
|
resolve_noninline_speculation (&edge_heap, edge);
|
|
continue;
|
|
}
|
|
reset_edge_caches (where);
|
|
/* Recursive inliner inlines all recursive calls of the function
|
|
at once. Consequently we need to update all callee keys. */
|
|
if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
|
|
add_new_edges_to_heap (&edge_heap, new_indirect_edges);
|
|
update_callee_keys (&edge_heap, where, updated_nodes);
|
|
bitmap_clear (updated_nodes);
|
|
}
|
|
else
|
|
{
|
|
struct cgraph_node *outer_node = NULL;
|
|
int depth = 0;
|
|
|
|
/* Consider the case where self recursive function A is inlined
|
|
into B. This is desired optimization in some cases, since it
|
|
leads to effect similar of loop peeling and we might completely
|
|
optimize out the recursive call. However we must be extra
|
|
selective. */
|
|
|
|
where = edge->caller;
|
|
while (where->global.inlined_to)
|
|
{
|
|
if (where->decl == callee->decl)
|
|
outer_node = where, depth++;
|
|
where = where->callers->caller;
|
|
}
|
|
if (outer_node
|
|
&& !want_inline_self_recursive_call_p (edge, outer_node,
|
|
true, depth))
|
|
{
|
|
edge->inline_failed
|
|
= (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
|
resolve_noninline_speculation (&edge_heap, edge);
|
|
continue;
|
|
}
|
|
else if (depth && dump_file)
|
|
fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
|
|
|
|
gcc_checking_assert (!callee->global.inlined_to);
|
|
inline_call (edge, true, &new_indirect_edges, &overall_size, true);
|
|
add_new_edges_to_heap (&edge_heap, new_indirect_edges);
|
|
|
|
reset_edge_caches (edge->callee);
|
|
reset_node_growth_cache (callee);
|
|
|
|
update_callee_keys (&edge_heap, where, updated_nodes);
|
|
}
|
|
where = edge->caller;
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
|
|
/* Our profitability metric can depend on local properties
|
|
such as number of inlinable calls and size of the function body.
|
|
After inlining these properties might change for the function we
|
|
inlined into (since it's body size changed) and for the functions
|
|
called by function we inlined (since number of it inlinable callers
|
|
might change). */
|
|
update_caller_keys (&edge_heap, where, updated_nodes, NULL);
|
|
bitmap_clear (updated_nodes);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has time %i and size %i,"
|
|
"net change of %+i.\n",
|
|
edge->caller->name (),
|
|
inline_summaries->get (edge->caller)->time,
|
|
inline_summaries->get (edge->caller)->size,
|
|
overall_size - old_size);
|
|
}
|
|
if (min_size > overall_size)
|
|
{
|
|
min_size = overall_size;
|
|
max_size = compute_max_insns (min_size);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "New minimal size reached: %i\n", min_size);
|
|
}
|
|
}
|
|
|
|
free_growth_caches ();
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Unit growth for small function inlining: %i->%i (%i%%)\n",
|
|
initial_size, overall_size,
|
|
initial_size ? overall_size * 100 / (initial_size) - 100: 0);
|
|
BITMAP_FREE (updated_nodes);
|
|
symtab->remove_edge_removal_hook (edge_removal_hook_holder);
|
|
}
|
|
|
|
/* Flatten NODE. Performed both during early inlining and
|
|
at IPA inlining time. */
|
|
|
|
static void
|
|
flatten_function (struct cgraph_node *node, bool early)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
/* We shouldn't be called recursively when we are being processed. */
|
|
gcc_assert (node->aux == NULL);
|
|
|
|
node->aux = (void *) node;
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
struct cgraph_node *orig_callee;
|
|
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
|
|
|
|
/* We've hit cycle? It is time to give up. */
|
|
if (callee->aux)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Not inlining %s into %s to avoid cycle.\n",
|
|
xstrdup_for_dump (callee->name ()),
|
|
xstrdup_for_dump (e->caller->name ()));
|
|
e->inline_failed = CIF_RECURSIVE_INLINING;
|
|
continue;
|
|
}
|
|
|
|
/* When the edge is already inlined, we just need to recurse into
|
|
it in order to fully flatten the leaves. */
|
|
if (!e->inline_failed)
|
|
{
|
|
flatten_function (callee, early);
|
|
continue;
|
|
}
|
|
|
|
/* Flatten attribute needs to be processed during late inlining. For
|
|
extra code quality we however do flattening during early optimization,
|
|
too. */
|
|
if (!early
|
|
? !can_inline_edge_p (e, true)
|
|
: !can_early_inline_edge_p (e))
|
|
continue;
|
|
|
|
if (e->recursive_p ())
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
|
continue;
|
|
}
|
|
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Not inlining: SSA form does not match.\n");
|
|
continue;
|
|
}
|
|
|
|
/* Inline the edge and flatten the inline clone. Avoid
|
|
recursing through the original node if the node was cloned. */
|
|
if (dump_file)
|
|
fprintf (dump_file, " Inlining %s into %s.\n",
|
|
xstrdup_for_dump (callee->name ()),
|
|
xstrdup_for_dump (e->caller->name ()));
|
|
orig_callee = callee;
|
|
inline_call (e, true, NULL, NULL, false);
|
|
if (e->callee != orig_callee)
|
|
orig_callee->aux = (void *) node;
|
|
flatten_function (e->callee, early);
|
|
if (e->callee != orig_callee)
|
|
orig_callee->aux = NULL;
|
|
}
|
|
|
|
node->aux = NULL;
|
|
if (!node->global.inlined_to)
|
|
inline_update_overall_summary (node);
|
|
}
|
|
|
|
/* Count number of callers of NODE and store it into DATA (that
|
|
points to int. Worker for cgraph_for_node_and_aliases. */
|
|
|
|
static bool
|
|
sum_callers (struct cgraph_node *node, void *data)
|
|
{
|
|
struct cgraph_edge *e;
|
|
int *num_calls = (int *)data;
|
|
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
(*num_calls)++;
|
|
return false;
|
|
}
|
|
|
|
/* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
|
|
DATA points to number of calls originally found so we avoid infinite
|
|
recursion. */
|
|
|
|
static bool
|
|
inline_to_all_callers (struct cgraph_node *node, void *data)
|
|
{
|
|
int *num_calls = (int *)data;
|
|
bool callee_removed = false;
|
|
|
|
while (node->callers && !node->global.inlined_to)
|
|
{
|
|
struct cgraph_node *caller = node->callers->caller;
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nInlining %s size %i.\n",
|
|
node->name (),
|
|
inline_summaries->get (node)->size);
|
|
fprintf (dump_file,
|
|
" Called once from %s %i insns.\n",
|
|
node->callers->caller->name (),
|
|
inline_summaries->get (node->callers->caller)->size);
|
|
}
|
|
|
|
inline_call (node->callers, true, NULL, NULL, true, &callee_removed);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has %i size\n",
|
|
caller->name (),
|
|
inline_summaries->get (caller)->size);
|
|
if (!(*num_calls)--)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "New calls found; giving up.\n");
|
|
return callee_removed;
|
|
}
|
|
if (callee_removed)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Output overall time estimate. */
|
|
static void
|
|
dump_overall_stats (void)
|
|
{
|
|
int64_t sum_weighted = 0, sum = 0;
|
|
struct cgraph_node *node;
|
|
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
if (!node->global.inlined_to
|
|
&& !node->alias)
|
|
{
|
|
int time = inline_summaries->get (node)->time;
|
|
sum += time;
|
|
sum_weighted += time * node->count;
|
|
}
|
|
fprintf (dump_file, "Overall time estimate: "
|
|
"%"PRId64" weighted by profile: "
|
|
"%"PRId64"\n", sum, sum_weighted);
|
|
}
|
|
|
|
/* Output some useful stats about inlining. */
|
|
|
|
static void
|
|
dump_inline_stats (void)
|
|
{
|
|
int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
|
|
int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
|
|
int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
|
|
int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
|
|
int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
|
|
int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
|
|
int64_t reason[CIF_N_REASONS][3];
|
|
int i;
|
|
struct cgraph_node *node;
|
|
|
|
memset (reason, 0, sizeof (reason));
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
{
|
|
struct cgraph_edge *e;
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
if (e->inline_failed)
|
|
{
|
|
reason[(int) e->inline_failed][0] += e->count;
|
|
reason[(int) e->inline_failed][1] += e->frequency;
|
|
reason[(int) e->inline_failed][2] ++;
|
|
if (DECL_VIRTUAL_P (e->callee->decl))
|
|
{
|
|
if (e->indirect_inlining_edge)
|
|
noninlined_virt_indir_cnt += e->count;
|
|
else
|
|
noninlined_virt_cnt += e->count;
|
|
}
|
|
else
|
|
{
|
|
if (e->indirect_inlining_edge)
|
|
noninlined_indir_cnt += e->count;
|
|
else
|
|
noninlined_cnt += e->count;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (e->speculative)
|
|
{
|
|
if (DECL_VIRTUAL_P (e->callee->decl))
|
|
inlined_speculative_ply += e->count;
|
|
else
|
|
inlined_speculative += e->count;
|
|
}
|
|
else if (DECL_VIRTUAL_P (e->callee->decl))
|
|
{
|
|
if (e->indirect_inlining_edge)
|
|
inlined_virt_indir_cnt += e->count;
|
|
else
|
|
inlined_virt_cnt += e->count;
|
|
}
|
|
else
|
|
{
|
|
if (e->indirect_inlining_edge)
|
|
inlined_indir_cnt += e->count;
|
|
else
|
|
inlined_cnt += e->count;
|
|
}
|
|
}
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
if (e->indirect_info->polymorphic)
|
|
indirect_poly_cnt += e->count;
|
|
else
|
|
indirect_cnt += e->count;
|
|
}
|
|
if (max_count)
|
|
{
|
|
fprintf (dump_file,
|
|
"Inlined %"PRId64 " + speculative "
|
|
"%"PRId64 " + speculative polymorphic "
|
|
"%"PRId64 " + previously indirect "
|
|
"%"PRId64 " + virtual "
|
|
"%"PRId64 " + virtual and previously indirect "
|
|
"%"PRId64 "\n" "Not inlined "
|
|
"%"PRId64 " + previously indirect "
|
|
"%"PRId64 " + virtual "
|
|
"%"PRId64 " + virtual and previously indirect "
|
|
"%"PRId64 " + stil indirect "
|
|
"%"PRId64 " + still indirect polymorphic "
|
|
"%"PRId64 "\n", inlined_cnt,
|
|
inlined_speculative, inlined_speculative_ply,
|
|
inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
|
|
noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
|
|
noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
|
|
fprintf (dump_file,
|
|
"Removed speculations %"PRId64 "\n",
|
|
spec_rem);
|
|
}
|
|
dump_overall_stats ();
|
|
fprintf (dump_file, "\nWhy inlining failed?\n");
|
|
for (i = 0; i < CIF_N_REASONS; i++)
|
|
if (reason[i][2])
|
|
fprintf (dump_file, "%-50s: %8i calls, %8i freq, %"PRId64" count\n",
|
|
cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
|
|
(int) reason[i][2], (int) reason[i][1], reason[i][0]);
|
|
}
|
|
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
|
expenses on updating data structures. */
|
|
|
|
static unsigned int
|
|
ipa_inline (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
int nnodes;
|
|
struct cgraph_node **order;
|
|
int i;
|
|
int cold;
|
|
bool remove_functions = false;
|
|
|
|
if (!optimize)
|
|
return 0;
|
|
|
|
cgraph_freq_base_rec = (sreal) 1 / (sreal) CGRAPH_FREQ_BASE;
|
|
percent_rec = (sreal) 1 / (sreal) 100;
|
|
|
|
order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
|
|
|
|
if (in_lto_p && optimize)
|
|
ipa_update_after_lto_read ();
|
|
|
|
if (dump_file)
|
|
dump_inline_summaries (dump_file);
|
|
|
|
nnodes = ipa_reverse_postorder (order);
|
|
|
|
FOR_EACH_FUNCTION (node)
|
|
node->aux = 0;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nFlattening functions:\n");
|
|
|
|
/* In the first pass handle functions to be flattened. Do this with
|
|
a priority so none of our later choices will make this impossible. */
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
node = order[i];
|
|
|
|
/* Handle nodes to be flattened.
|
|
Ideally when processing callees we stop inlining at the
|
|
entry of cycles, possibly cloning that entry point and
|
|
try to flatten itself turning it into a self-recursive
|
|
function. */
|
|
if (lookup_attribute ("flatten",
|
|
DECL_ATTRIBUTES (node->decl)) != NULL)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Flattening %s\n", node->name ());
|
|
flatten_function (node, false);
|
|
}
|
|
}
|
|
if (dump_file)
|
|
dump_overall_stats ();
|
|
|
|
inline_small_functions ();
|
|
|
|
gcc_assert (symtab->state == IPA_SSA);
|
|
symtab->state = IPA_SSA_AFTER_INLINING;
|
|
/* Do first after-inlining removal. We want to remove all "stale" extern
|
|
inline functions and virtual functions so we really know what is called
|
|
once. */
|
|
symtab->remove_unreachable_nodes (dump_file);
|
|
free (order);
|
|
|
|
/* Inline functions with a property that after inlining into all callers the
|
|
code size will shrink because the out-of-line copy is eliminated.
|
|
We do this regardless on the callee size as long as function growth limits
|
|
are met. */
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nDeciding on functions to be inlined into all callers and "
|
|
"removing useless speculations:\n");
|
|
|
|
/* Inlining one function called once has good chance of preventing
|
|
inlining other function into the same callee. Ideally we should
|
|
work in priority order, but probably inlining hot functions first
|
|
is good cut without the extra pain of maintaining the queue.
|
|
|
|
??? this is not really fitting the bill perfectly: inlining function
|
|
into callee often leads to better optimization of callee due to
|
|
increased context for optimization.
|
|
For example if main() function calls a function that outputs help
|
|
and then function that does the main optmization, we should inline
|
|
the second with priority even if both calls are cold by themselves.
|
|
|
|
We probably want to implement new predicate replacing our use of
|
|
maybe_hot_edge interpreted as maybe_hot_edge || callee is known
|
|
to be hot. */
|
|
for (cold = 0; cold <= 1; cold ++)
|
|
{
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
|
{
|
|
struct cgraph_edge *edge, *next;
|
|
bool update=false;
|
|
|
|
for (edge = node->callees; edge; edge = next)
|
|
{
|
|
next = edge->next_callee;
|
|
if (edge->speculative && !speculation_useful_p (edge, false))
|
|
{
|
|
edge->resolve_speculation ();
|
|
spec_rem += edge->count;
|
|
update = true;
|
|
remove_functions = true;
|
|
}
|
|
}
|
|
if (update)
|
|
{
|
|
struct cgraph_node *where = node->global.inlined_to
|
|
? node->global.inlined_to : node;
|
|
reset_node_growth_cache (where);
|
|
reset_edge_caches (where);
|
|
inline_update_overall_summary (where);
|
|
}
|
|
if (want_inline_function_to_all_callers_p (node, cold))
|
|
{
|
|
int num_calls = 0;
|
|
node->call_for_symbol_thunks_and_aliases (sum_callers, &num_calls,
|
|
true);
|
|
while (node->call_for_symbol_thunks_and_aliases
|
|
(inline_to_all_callers, &num_calls, true))
|
|
;
|
|
remove_functions = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Free ipa-prop structures if they are no longer needed. */
|
|
if (optimize)
|
|
ipa_free_all_structures_after_iinln ();
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nInlined %i calls, eliminated %i functions\n\n",
|
|
ncalls_inlined, nfunctions_inlined);
|
|
dump_inline_stats ();
|
|
}
|
|
|
|
if (dump_file)
|
|
dump_inline_summaries (dump_file);
|
|
/* In WPA we use inline summaries for partitioning process. */
|
|
if (!flag_wpa)
|
|
inline_free_summary ();
|
|
return remove_functions ? TODO_remove_functions : 0;
|
|
}
|
|
|
|
/* Inline always-inline function calls in NODE. */
|
|
|
|
static bool
|
|
inline_always_inline_functions (struct cgraph_node *node)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool inlined = false;
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
|
|
if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
|
|
continue;
|
|
|
|
if (e->recursive_p ())
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Not inlining recursive call to %s.\n",
|
|
e->callee->name ());
|
|
e->inline_failed = CIF_RECURSIVE_INLINING;
|
|
continue;
|
|
}
|
|
|
|
if (!can_early_inline_edge_p (e))
|
|
{
|
|
/* Set inlined to true if the callee is marked "always_inline" but
|
|
is not inlinable. This will allow flagging an error later in
|
|
expand_call_inline in tree-inline.c. */
|
|
if (lookup_attribute ("always_inline",
|
|
DECL_ATTRIBUTES (callee->decl)) != NULL)
|
|
inlined = true;
|
|
continue;
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
|
|
xstrdup_for_dump (e->callee->name ()),
|
|
xstrdup_for_dump (e->caller->name ()));
|
|
inline_call (e, true, NULL, NULL, false);
|
|
inlined = true;
|
|
}
|
|
if (inlined)
|
|
inline_update_overall_summary (node);
|
|
|
|
return inlined;
|
|
}
|
|
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
|
expenses on updating data structures. */
|
|
|
|
static bool
|
|
early_inline_small_functions (struct cgraph_node *node)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool inlined = false;
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
|
|
if (!inline_summaries->get (callee)->inlinable
|
|
|| !e->inline_failed)
|
|
continue;
|
|
|
|
/* Do not consider functions not declared inline. */
|
|
if (!DECL_DECLARED_INLINE_P (callee->decl)
|
|
&& !opt_for_fn (node->decl, flag_inline_small_functions)
|
|
&& !opt_for_fn (node->decl, flag_inline_functions))
|
|
continue;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Considering inline candidate %s.\n",
|
|
callee->name ());
|
|
|
|
if (!can_early_inline_edge_p (e))
|
|
continue;
|
|
|
|
if (e->recursive_p ())
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Not inlining: recursive call.\n");
|
|
continue;
|
|
}
|
|
|
|
if (!want_early_inline_function_p (e))
|
|
continue;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, " Inlining %s into %s.\n",
|
|
xstrdup_for_dump (callee->name ()),
|
|
xstrdup_for_dump (e->caller->name ()));
|
|
inline_call (e, true, NULL, NULL, true);
|
|
inlined = true;
|
|
}
|
|
|
|
return inlined;
|
|
}
|
|
|
|
unsigned int
|
|
early_inliner (function *fun)
|
|
{
|
|
struct cgraph_node *node = cgraph_node::get (current_function_decl);
|
|
struct cgraph_edge *edge;
|
|
unsigned int todo = 0;
|
|
int iterations = 0;
|
|
bool inlined = false;
|
|
|
|
if (seen_error ())
|
|
return 0;
|
|
|
|
/* Do nothing if datastructures for ipa-inliner are already computed. This
|
|
happens when some pass decides to construct new function and
|
|
cgraph_add_new_function calls lowering passes and early optimization on
|
|
it. This may confuse ourself when early inliner decide to inline call to
|
|
function clone, because function clones don't have parameter list in
|
|
ipa-prop matching their signature. */
|
|
if (ipa_node_params_sum)
|
|
return 0;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
node->verify ();
|
|
#endif
|
|
node->remove_all_references ();
|
|
|
|
/* Even when not optimizing or not inlining inline always-inline
|
|
functions. */
|
|
inlined = inline_always_inline_functions (node);
|
|
|
|
if (!optimize
|
|
|| flag_no_inline
|
|
|| !flag_early_inlining
|
|
/* Never inline regular functions into always-inline functions
|
|
during incremental inlining. This sucks as functions calling
|
|
always inline functions will get less optimized, but at the
|
|
same time inlining of functions calling always inline
|
|
function into an always inline function might introduce
|
|
cycles of edges to be always inlined in the callgraph.
|
|
|
|
We might want to be smarter and just avoid this type of inlining. */
|
|
|| DECL_DISREGARD_INLINE_LIMITS (node->decl))
|
|
;
|
|
else if (lookup_attribute ("flatten",
|
|
DECL_ATTRIBUTES (node->decl)) != NULL)
|
|
{
|
|
/* When the function is marked to be flattened, recursively inline
|
|
all calls in it. */
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Flattening %s\n", node->name ());
|
|
flatten_function (node, true);
|
|
inlined = true;
|
|
}
|
|
else
|
|
{
|
|
/* We iterate incremental inlining to get trivial cases of indirect
|
|
inlining. */
|
|
while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
|
|
&& early_inline_small_functions (node))
|
|
{
|
|
timevar_push (TV_INTEGRATION);
|
|
todo |= optimize_inline_calls (current_function_decl);
|
|
|
|
/* Technically we ought to recompute inline parameters so the new
|
|
iteration of early inliner works as expected. We however have
|
|
values approximately right and thus we only need to update edge
|
|
info that might be cleared out for newly discovered edges. */
|
|
for (edge = node->callees; edge; edge = edge->next_callee)
|
|
{
|
|
/* We have no summary for new bound store calls yet. */
|
|
if (inline_edge_summary_vec.length () > (unsigned)edge->uid)
|
|
{
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
|
es->call_stmt_size
|
|
= estimate_num_insns (edge->call_stmt, &eni_size_weights);
|
|
es->call_stmt_time
|
|
= estimate_num_insns (edge->call_stmt, &eni_time_weights);
|
|
}
|
|
if (edge->callee->decl
|
|
&& !gimple_check_call_matching_types (
|
|
edge->call_stmt, edge->callee->decl, false))
|
|
edge->call_stmt_cannot_inline_p = true;
|
|
}
|
|
if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
|
|
inline_update_overall_summary (node);
|
|
timevar_pop (TV_INTEGRATION);
|
|
iterations++;
|
|
inlined = false;
|
|
}
|
|
if (dump_file)
|
|
fprintf (dump_file, "Iterations: %i\n", iterations);
|
|
}
|
|
|
|
if (inlined)
|
|
{
|
|
timevar_push (TV_INTEGRATION);
|
|
todo |= optimize_inline_calls (current_function_decl);
|
|
timevar_pop (TV_INTEGRATION);
|
|
}
|
|
|
|
fun->always_inline_functions_inlined = true;
|
|
|
|
return todo;
|
|
}
|
|
|
|
/* Do inlining of small functions. Doing so early helps profiling and other
|
|
passes to be somewhat more effective and avoids some code duplication in
|
|
later real inlining pass for testcases with very many function calls. */
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_early_inline =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"einline", /* name */
|
|
OPTGROUP_INLINE, /* optinfo_flags */
|
|
TV_EARLY_INLINING, /* tv_id */
|
|
PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_early_inline : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_early_inline (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_early_inline, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_early_inline
|
|
|
|
unsigned int
|
|
pass_early_inline::execute (function *fun)
|
|
{
|
|
return early_inliner (fun);
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_early_inline (gcc::context *ctxt)
|
|
{
|
|
return new pass_early_inline (ctxt);
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_ipa_inline =
|
|
{
|
|
IPA_PASS, /* type */
|
|
"inline", /* name */
|
|
OPTGROUP_INLINE, /* optinfo_flags */
|
|
TV_IPA_INLINING, /* tv_id */
|
|
0, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
( TODO_dump_symtab ), /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_ipa_inline : public ipa_opt_pass_d
|
|
{
|
|
public:
|
|
pass_ipa_inline (gcc::context *ctxt)
|
|
: ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
|
|
inline_generate_summary, /* generate_summary */
|
|
inline_write_summary, /* write_summary */
|
|
inline_read_summary, /* read_summary */
|
|
NULL, /* write_optimization_summary */
|
|
NULL, /* read_optimization_summary */
|
|
NULL, /* stmt_fixup */
|
|
0, /* function_transform_todo_flags_start */
|
|
inline_transform, /* function_transform */
|
|
NULL) /* variable_transform */
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual unsigned int execute (function *) { return ipa_inline (); }
|
|
|
|
}; // class pass_ipa_inline
|
|
|
|
} // anon namespace
|
|
|
|
ipa_opt_pass_d *
|
|
make_pass_ipa_inline (gcc::context *ctxt)
|
|
{
|
|
return new pass_ipa_inline (ctxt);
|
|
}
|