mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-01-10 23:35:28 +08:00
86289a4ff4
Merged revision: 82bc6a094e85014f1891ef9407496f44af8fe442 with the fix for PR sanitizer/102911
411 lines
13 KiB
C++
411 lines
13 KiB
C++
//===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of Sanitizer runtime.
|
|
// The deadlock detector maintains a directed graph of lock acquisitions.
|
|
// When a lock event happens, the detector checks if the locks already held by
|
|
// the current thread are reachable from the newly acquired lock.
|
|
//
|
|
// The detector can handle only a fixed amount of simultaneously live locks
|
|
// (a lock is alive if it has been locked at least once and has not been
|
|
// destroyed). When the maximal number of locks is reached the entire graph
|
|
// is flushed and the new lock epoch is started. The node ids from the old
|
|
// epochs can not be used with any of the detector methods except for
|
|
// nodeBelongsToCurrentEpoch().
|
|
//
|
|
// FIXME: this is work in progress, nothing really works yet.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SANITIZER_DEADLOCK_DETECTOR_H
|
|
#define SANITIZER_DEADLOCK_DETECTOR_H
|
|
|
|
#include "sanitizer_bvgraph.h"
|
|
#include "sanitizer_common.h"
|
|
|
|
namespace __sanitizer {
|
|
|
|
// Thread-local state for DeadlockDetector.
|
|
// It contains the locks currently held by the owning thread.
|
|
template <class BV>
|
|
class DeadlockDetectorTLS {
|
|
public:
|
|
// No CTOR.
|
|
void clear() {
|
|
bv_.clear();
|
|
epoch_ = 0;
|
|
n_recursive_locks = 0;
|
|
n_all_locks_ = 0;
|
|
}
|
|
|
|
bool empty() const { return bv_.empty(); }
|
|
|
|
void ensureCurrentEpoch(uptr current_epoch) {
|
|
if (epoch_ == current_epoch) return;
|
|
bv_.clear();
|
|
epoch_ = current_epoch;
|
|
n_recursive_locks = 0;
|
|
n_all_locks_ = 0;
|
|
}
|
|
|
|
uptr getEpoch() const { return epoch_; }
|
|
|
|
// Returns true if this is the first (non-recursive) acquisition of this lock.
|
|
bool addLock(uptr lock_id, uptr current_epoch, u32 stk) {
|
|
CHECK_EQ(epoch_, current_epoch);
|
|
if (!bv_.setBit(lock_id)) {
|
|
// The lock is already held by this thread, it must be recursive.
|
|
CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks));
|
|
recursive_locks[n_recursive_locks++] = lock_id;
|
|
return false;
|
|
}
|
|
CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_));
|
|
// lock_id < BV::kSize, can cast to a smaller int.
|
|
u32 lock_id_short = static_cast<u32>(lock_id);
|
|
LockWithContext l = {lock_id_short, stk};
|
|
all_locks_with_contexts_[n_all_locks_++] = l;
|
|
return true;
|
|
}
|
|
|
|
void removeLock(uptr lock_id) {
|
|
if (n_recursive_locks) {
|
|
for (sptr i = n_recursive_locks - 1; i >= 0; i--) {
|
|
if (recursive_locks[i] == lock_id) {
|
|
n_recursive_locks--;
|
|
Swap(recursive_locks[i], recursive_locks[n_recursive_locks]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if (!bv_.clearBit(lock_id))
|
|
return; // probably addLock happened before flush
|
|
if (n_all_locks_) {
|
|
for (sptr i = n_all_locks_ - 1; i >= 0; i--) {
|
|
if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) {
|
|
Swap(all_locks_with_contexts_[i],
|
|
all_locks_with_contexts_[n_all_locks_ - 1]);
|
|
n_all_locks_--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
u32 findLockContext(uptr lock_id) {
|
|
for (uptr i = 0; i < n_all_locks_; i++)
|
|
if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id))
|
|
return all_locks_with_contexts_[i].stk;
|
|
return 0;
|
|
}
|
|
|
|
const BV &getLocks(uptr current_epoch) const {
|
|
CHECK_EQ(epoch_, current_epoch);
|
|
return bv_;
|
|
}
|
|
|
|
uptr getNumLocks() const { return n_all_locks_; }
|
|
uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; }
|
|
|
|
private:
|
|
BV bv_;
|
|
uptr epoch_;
|
|
uptr recursive_locks[64];
|
|
uptr n_recursive_locks;
|
|
struct LockWithContext {
|
|
u32 lock;
|
|
u32 stk;
|
|
};
|
|
LockWithContext all_locks_with_contexts_[64];
|
|
uptr n_all_locks_;
|
|
};
|
|
|
|
// DeadlockDetector.
|
|
// For deadlock detection to work we need one global DeadlockDetector object
|
|
// and one DeadlockDetectorTLS object per evey thread.
|
|
// This class is not thread safe, all concurrent accesses should be guarded
|
|
// by an external lock.
|
|
// Most of the methods of this class are not thread-safe (i.e. should
|
|
// be protected by an external lock) unless explicitly told otherwise.
|
|
template <class BV>
|
|
class DeadlockDetector {
|
|
public:
|
|
typedef BV BitVector;
|
|
|
|
uptr size() const { return g_.size(); }
|
|
|
|
// No CTOR.
|
|
void clear() {
|
|
current_epoch_ = 0;
|
|
available_nodes_.clear();
|
|
recycled_nodes_.clear();
|
|
g_.clear();
|
|
n_edges_ = 0;
|
|
}
|
|
|
|
// Allocate new deadlock detector node.
|
|
// If we are out of available nodes first try to recycle some.
|
|
// If there is nothing to recycle, flush the graph and increment the epoch.
|
|
// Associate 'data' (opaque user's object) with the new node.
|
|
uptr newNode(uptr data) {
|
|
if (!available_nodes_.empty())
|
|
return getAvailableNode(data);
|
|
if (!recycled_nodes_.empty()) {
|
|
for (sptr i = n_edges_ - 1; i >= 0; i--) {
|
|
if (recycled_nodes_.getBit(edges_[i].from) ||
|
|
recycled_nodes_.getBit(edges_[i].to)) {
|
|
Swap(edges_[i], edges_[n_edges_ - 1]);
|
|
n_edges_--;
|
|
}
|
|
}
|
|
CHECK(available_nodes_.empty());
|
|
// removeEdgesFrom was called in removeNode.
|
|
g_.removeEdgesTo(recycled_nodes_);
|
|
available_nodes_.setUnion(recycled_nodes_);
|
|
recycled_nodes_.clear();
|
|
return getAvailableNode(data);
|
|
}
|
|
// We are out of vacant nodes. Flush and increment the current_epoch_.
|
|
current_epoch_ += size();
|
|
recycled_nodes_.clear();
|
|
available_nodes_.setAll();
|
|
g_.clear();
|
|
n_edges_ = 0;
|
|
return getAvailableNode(data);
|
|
}
|
|
|
|
// Get data associated with the node created by newNode().
|
|
uptr getData(uptr node) const { return data_[nodeToIndex(node)]; }
|
|
|
|
bool nodeBelongsToCurrentEpoch(uptr node) {
|
|
return node && (node / size() * size()) == current_epoch_;
|
|
}
|
|
|
|
void removeNode(uptr node) {
|
|
uptr idx = nodeToIndex(node);
|
|
CHECK(!available_nodes_.getBit(idx));
|
|
CHECK(recycled_nodes_.setBit(idx));
|
|
g_.removeEdgesFrom(idx);
|
|
}
|
|
|
|
void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) {
|
|
dtls->ensureCurrentEpoch(current_epoch_);
|
|
}
|
|
|
|
// Returns true if there is a cycle in the graph after this lock event.
|
|
// Ideally should be called before the lock is acquired so that we can
|
|
// report a deadlock before a real deadlock happens.
|
|
bool onLockBefore(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
|
|
ensureCurrentEpoch(dtls);
|
|
uptr cur_idx = nodeToIndex(cur_node);
|
|
return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_));
|
|
}
|
|
|
|
u32 findLockContext(DeadlockDetectorTLS<BV> *dtls, uptr node) {
|
|
return dtls->findLockContext(nodeToIndex(node));
|
|
}
|
|
|
|
// Add cur_node to the set of locks held currently by dtls.
|
|
void onLockAfter(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
|
|
ensureCurrentEpoch(dtls);
|
|
uptr cur_idx = nodeToIndex(cur_node);
|
|
dtls->addLock(cur_idx, current_epoch_, stk);
|
|
}
|
|
|
|
// Experimental *racy* fast path function.
|
|
// Returns true if all edges from the currently held locks to cur_node exist.
|
|
bool hasAllEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
|
|
uptr local_epoch = dtls->getEpoch();
|
|
// Read from current_epoch_ is racy.
|
|
if (cur_node && local_epoch == current_epoch_ &&
|
|
local_epoch == nodeToEpoch(cur_node)) {
|
|
uptr cur_idx = nodeToIndexUnchecked(cur_node);
|
|
for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) {
|
|
if (!g_.hasEdge(dtls->getLock(i), cur_idx))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Adds edges from currently held locks to cur_node,
|
|
// returns the number of added edges, and puts the sources of added edges
|
|
// into added_edges[].
|
|
// Should be called before onLockAfter.
|
|
uptr addEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk,
|
|
int unique_tid) {
|
|
ensureCurrentEpoch(dtls);
|
|
uptr cur_idx = nodeToIndex(cur_node);
|
|
uptr added_edges[40];
|
|
uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx,
|
|
added_edges, ARRAY_SIZE(added_edges));
|
|
for (uptr i = 0; i < n_added_edges; i++) {
|
|
if (n_edges_ < ARRAY_SIZE(edges_)) {
|
|
Edge e = {(u16)added_edges[i], (u16)cur_idx,
|
|
dtls->findLockContext(added_edges[i]), stk,
|
|
unique_tid};
|
|
edges_[n_edges_++] = e;
|
|
}
|
|
}
|
|
return n_added_edges;
|
|
}
|
|
|
|
bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to,
|
|
int *unique_tid) {
|
|
uptr from_idx = nodeToIndex(from_node);
|
|
uptr to_idx = nodeToIndex(to_node);
|
|
for (uptr i = 0; i < n_edges_; i++) {
|
|
if (edges_[i].from == from_idx && edges_[i].to == to_idx) {
|
|
*stk_from = edges_[i].stk_from;
|
|
*stk_to = edges_[i].stk_to;
|
|
*unique_tid = edges_[i].unique_tid;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Test-only function. Handles the before/after lock events,
|
|
// returns true if there is a cycle.
|
|
bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
|
|
ensureCurrentEpoch(dtls);
|
|
bool is_reachable = !isHeld(dtls, cur_node) && onLockBefore(dtls, cur_node);
|
|
addEdges(dtls, cur_node, stk, 0);
|
|
onLockAfter(dtls, cur_node, stk);
|
|
return is_reachable;
|
|
}
|
|
|
|
// Handles the try_lock event, returns false.
|
|
// When a try_lock event happens (i.e. a try_lock call succeeds) we need
|
|
// to add this lock to the currently held locks, but we should not try to
|
|
// change the lock graph or to detect a cycle. We may want to investigate
|
|
// whether a more aggressive strategy is possible for try_lock.
|
|
bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
|
|
ensureCurrentEpoch(dtls);
|
|
uptr cur_idx = nodeToIndex(cur_node);
|
|
dtls->addLock(cur_idx, current_epoch_, stk);
|
|
return false;
|
|
}
|
|
|
|
// Returns true iff dtls is empty (no locks are currently held) and we can
|
|
// add the node to the currently held locks w/o changing the global state.
|
|
// This operation is thread-safe as it only touches the dtls.
|
|
bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
|
|
if (!dtls->empty()) return false;
|
|
if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) {
|
|
dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Finds a path between the lock 'cur_node' (currently not held in dtls)
|
|
// and some currently held lock, returns the length of the path
|
|
// or 0 on failure.
|
|
uptr findPathToLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, uptr *path,
|
|
uptr path_size) {
|
|
tmp_bv_.copyFrom(dtls->getLocks(current_epoch_));
|
|
uptr idx = nodeToIndex(cur_node);
|
|
CHECK(!tmp_bv_.getBit(idx));
|
|
uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size);
|
|
for (uptr i = 0; i < res; i++)
|
|
path[i] = indexToNode(path[i]);
|
|
if (res)
|
|
CHECK_EQ(path[0], cur_node);
|
|
return res;
|
|
}
|
|
|
|
// Handle the unlock event.
|
|
// This operation is thread-safe as it only touches the dtls.
|
|
void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
|
|
if (dtls->getEpoch() == nodeToEpoch(node))
|
|
dtls->removeLock(nodeToIndexUnchecked(node));
|
|
}
|
|
|
|
// Tries to handle the lock event w/o writing to global state.
|
|
// Returns true on success.
|
|
// This operation is thread-safe as it only touches the dtls
|
|
// (modulo racy nature of hasAllEdges).
|
|
bool onLockFast(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
|
|
if (hasAllEdges(dtls, node)) {
|
|
dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const {
|
|
return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node));
|
|
}
|
|
|
|
uptr testOnlyGetEpoch() const { return current_epoch_; }
|
|
bool testOnlyHasEdge(uptr l1, uptr l2) {
|
|
return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2));
|
|
}
|
|
// idx1 and idx2 are raw indices to g_, not lock IDs.
|
|
bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) {
|
|
return g_.hasEdge(idx1, idx2);
|
|
}
|
|
|
|
void Print() {
|
|
for (uptr from = 0; from < size(); from++)
|
|
for (uptr to = 0; to < size(); to++)
|
|
if (g_.hasEdge(from, to))
|
|
Printf(" %zx => %zx\n", from, to);
|
|
}
|
|
|
|
private:
|
|
void check_idx(uptr idx) const { CHECK_LT(idx, size()); }
|
|
|
|
void check_node(uptr node) const {
|
|
CHECK_GE(node, size());
|
|
CHECK_EQ(current_epoch_, nodeToEpoch(node));
|
|
}
|
|
|
|
uptr indexToNode(uptr idx) const {
|
|
check_idx(idx);
|
|
return idx + current_epoch_;
|
|
}
|
|
|
|
uptr nodeToIndexUnchecked(uptr node) const { return node % size(); }
|
|
|
|
uptr nodeToIndex(uptr node) const {
|
|
check_node(node);
|
|
return nodeToIndexUnchecked(node);
|
|
}
|
|
|
|
uptr nodeToEpoch(uptr node) const { return node / size() * size(); }
|
|
|
|
uptr getAvailableNode(uptr data) {
|
|
uptr idx = available_nodes_.getAndClearFirstOne();
|
|
data_[idx] = data;
|
|
return indexToNode(idx);
|
|
}
|
|
|
|
struct Edge {
|
|
u16 from;
|
|
u16 to;
|
|
u32 stk_from;
|
|
u32 stk_to;
|
|
int unique_tid;
|
|
};
|
|
|
|
uptr current_epoch_;
|
|
BV available_nodes_;
|
|
BV recycled_nodes_;
|
|
BV tmp_bv_;
|
|
BVGraph<BV> g_;
|
|
uptr data_[BV::kSize];
|
|
Edge edges_[BV::kSize * 32];
|
|
uptr n_edges_;
|
|
};
|
|
|
|
} // namespace __sanitizer
|
|
|
|
#endif // SANITIZER_DEADLOCK_DETECTOR_H
|