mirror of
git://gcc.gnu.org/git/gcc.git
synced 2025-03-27 21:51:07 +08:00
11218 lines
311 KiB
C
11218 lines
311 KiB
C
/* Language-independent node constructors for parse phase of GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
|
||
2011 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains the low level primitives for operating on tree nodes,
|
||
including allocation, list operations, interning of identifiers,
|
||
construction of data type nodes and statement nodes,
|
||
and construction of type conversion nodes. It also contains
|
||
tables index by tree code that describe how to take apart
|
||
nodes of that code.
|
||
|
||
It is intended to be language-independent, but occasionally
|
||
calls language-dependent routines defined (for C) in typecheck.c. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "flags.h"
|
||
#include "tree.h"
|
||
#include "tm_p.h"
|
||
#include "function.h"
|
||
#include "obstack.h"
|
||
#include "toplev.h"
|
||
#include "ggc.h"
|
||
#include "hashtab.h"
|
||
#include "filenames.h"
|
||
#include "output.h"
|
||
#include "target.h"
|
||
#include "langhooks.h"
|
||
#include "tree-inline.h"
|
||
#include "tree-iterator.h"
|
||
#include "basic-block.h"
|
||
#include "tree-flow.h"
|
||
#include "params.h"
|
||
#include "pointer-set.h"
|
||
#include "tree-pass.h"
|
||
#include "langhooks-def.h"
|
||
#include "diagnostic.h"
|
||
#include "tree-diagnostic.h"
|
||
#include "tree-pretty-print.h"
|
||
#include "cgraph.h"
|
||
#include "timevar.h"
|
||
#include "except.h"
|
||
#include "debug.h"
|
||
#include "intl.h"
|
||
|
||
/* Tree code classes. */
|
||
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
|
||
#define END_OF_BASE_TREE_CODES tcc_exceptional,
|
||
|
||
const enum tree_code_class tree_code_type[] = {
|
||
#include "all-tree.def"
|
||
};
|
||
|
||
#undef DEFTREECODE
|
||
#undef END_OF_BASE_TREE_CODES
|
||
|
||
/* Table indexed by tree code giving number of expression
|
||
operands beyond the fixed part of the node structure.
|
||
Not used for types or decls. */
|
||
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
|
||
#define END_OF_BASE_TREE_CODES 0,
|
||
|
||
const unsigned char tree_code_length[] = {
|
||
#include "all-tree.def"
|
||
};
|
||
|
||
#undef DEFTREECODE
|
||
#undef END_OF_BASE_TREE_CODES
|
||
|
||
/* Names of tree components.
|
||
Used for printing out the tree and error messages. */
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
|
||
#define END_OF_BASE_TREE_CODES "@dummy",
|
||
|
||
const char *const tree_code_name[] = {
|
||
#include "all-tree.def"
|
||
};
|
||
|
||
#undef DEFTREECODE
|
||
#undef END_OF_BASE_TREE_CODES
|
||
|
||
/* Each tree code class has an associated string representation.
|
||
These must correspond to the tree_code_class entries. */
|
||
|
||
const char *const tree_code_class_strings[] =
|
||
{
|
||
"exceptional",
|
||
"constant",
|
||
"type",
|
||
"declaration",
|
||
"reference",
|
||
"comparison",
|
||
"unary",
|
||
"binary",
|
||
"statement",
|
||
"vl_exp",
|
||
"expression"
|
||
};
|
||
|
||
/* obstack.[ch] explicitly declined to prototype this. */
|
||
extern int _obstack_allocated_p (struct obstack *h, void *obj);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* Statistics-gathering stuff. */
|
||
|
||
static int tree_code_counts[MAX_TREE_CODES];
|
||
int tree_node_counts[(int) all_kinds];
|
||
int tree_node_sizes[(int) all_kinds];
|
||
|
||
/* Keep in sync with tree.h:enum tree_node_kind. */
|
||
static const char * const tree_node_kind_names[] = {
|
||
"decls",
|
||
"types",
|
||
"blocks",
|
||
"stmts",
|
||
"refs",
|
||
"exprs",
|
||
"constants",
|
||
"identifiers",
|
||
"vecs",
|
||
"binfos",
|
||
"ssa names",
|
||
"constructors",
|
||
"random kinds",
|
||
"lang_decl kinds",
|
||
"lang_type kinds",
|
||
"omp clauses",
|
||
};
|
||
#endif /* GATHER_STATISTICS */
|
||
|
||
/* Unique id for next decl created. */
|
||
static GTY(()) int next_decl_uid;
|
||
/* Unique id for next type created. */
|
||
static GTY(()) int next_type_uid = 1;
|
||
/* Unique id for next debug decl created. Use negative numbers,
|
||
to catch erroneous uses. */
|
||
static GTY(()) int next_debug_decl_uid;
|
||
|
||
/* Since we cannot rehash a type after it is in the table, we have to
|
||
keep the hash code. */
|
||
|
||
struct GTY(()) type_hash {
|
||
unsigned long hash;
|
||
tree type;
|
||
};
|
||
|
||
/* Initial size of the hash table (rounded to next prime). */
|
||
#define TYPE_HASH_INITIAL_SIZE 1000
|
||
|
||
/* Now here is the hash table. When recording a type, it is added to
|
||
the slot whose index is the hash code. Note that the hash table is
|
||
used for several kinds of types (function types, array types and
|
||
array index range types, for now). While all these live in the
|
||
same table, they are completely independent, and the hash code is
|
||
computed differently for each of these. */
|
||
|
||
static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
|
||
htab_t type_hash_table;
|
||
|
||
/* Hash table and temporary node for larger integer const values. */
|
||
static GTY (()) tree int_cst_node;
|
||
static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
|
||
htab_t int_cst_hash_table;
|
||
|
||
/* Hash table for optimization flags and target option flags. Use the same
|
||
hash table for both sets of options. Nodes for building the current
|
||
optimization and target option nodes. The assumption is most of the time
|
||
the options created will already be in the hash table, so we avoid
|
||
allocating and freeing up a node repeatably. */
|
||
static GTY (()) tree cl_optimization_node;
|
||
static GTY (()) tree cl_target_option_node;
|
||
static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
|
||
htab_t cl_option_hash_table;
|
||
|
||
/* General tree->tree mapping structure for use in hash tables. */
|
||
|
||
|
||
static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
|
||
htab_t debug_expr_for_decl;
|
||
|
||
static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
|
||
htab_t value_expr_for_decl;
|
||
|
||
static GTY ((if_marked ("tree_priority_map_marked_p"),
|
||
param_is (struct tree_priority_map)))
|
||
htab_t init_priority_for_decl;
|
||
|
||
static void set_type_quals (tree, int);
|
||
static int type_hash_eq (const void *, const void *);
|
||
static hashval_t type_hash_hash (const void *);
|
||
static hashval_t int_cst_hash_hash (const void *);
|
||
static int int_cst_hash_eq (const void *, const void *);
|
||
static hashval_t cl_option_hash_hash (const void *);
|
||
static int cl_option_hash_eq (const void *, const void *);
|
||
static void print_type_hash_statistics (void);
|
||
static void print_debug_expr_statistics (void);
|
||
static void print_value_expr_statistics (void);
|
||
static int type_hash_marked_p (const void *);
|
||
static unsigned int type_hash_list (const_tree, hashval_t);
|
||
static unsigned int attribute_hash_list (const_tree, hashval_t);
|
||
|
||
tree global_trees[TI_MAX];
|
||
tree integer_types[itk_none];
|
||
|
||
unsigned char tree_contains_struct[MAX_TREE_CODES][64];
|
||
|
||
/* Number of operands for each OpenMP clause. */
|
||
unsigned const char omp_clause_num_ops[] =
|
||
{
|
||
0, /* OMP_CLAUSE_ERROR */
|
||
1, /* OMP_CLAUSE_PRIVATE */
|
||
1, /* OMP_CLAUSE_SHARED */
|
||
1, /* OMP_CLAUSE_FIRSTPRIVATE */
|
||
2, /* OMP_CLAUSE_LASTPRIVATE */
|
||
4, /* OMP_CLAUSE_REDUCTION */
|
||
1, /* OMP_CLAUSE_COPYIN */
|
||
1, /* OMP_CLAUSE_COPYPRIVATE */
|
||
1, /* OMP_CLAUSE_IF */
|
||
1, /* OMP_CLAUSE_NUM_THREADS */
|
||
1, /* OMP_CLAUSE_SCHEDULE */
|
||
0, /* OMP_CLAUSE_NOWAIT */
|
||
0, /* OMP_CLAUSE_ORDERED */
|
||
0, /* OMP_CLAUSE_DEFAULT */
|
||
3, /* OMP_CLAUSE_COLLAPSE */
|
||
0 /* OMP_CLAUSE_UNTIED */
|
||
};
|
||
|
||
const char * const omp_clause_code_name[] =
|
||
{
|
||
"error_clause",
|
||
"private",
|
||
"shared",
|
||
"firstprivate",
|
||
"lastprivate",
|
||
"reduction",
|
||
"copyin",
|
||
"copyprivate",
|
||
"if",
|
||
"num_threads",
|
||
"schedule",
|
||
"nowait",
|
||
"ordered",
|
||
"default",
|
||
"collapse",
|
||
"untied"
|
||
};
|
||
|
||
|
||
/* Return the tree node structure used by tree code CODE. */
|
||
|
||
static inline enum tree_node_structure_enum
|
||
tree_node_structure_for_code (enum tree_code code)
|
||
{
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_declaration:
|
||
{
|
||
switch (code)
|
||
{
|
||
case FIELD_DECL:
|
||
return TS_FIELD_DECL;
|
||
case PARM_DECL:
|
||
return TS_PARM_DECL;
|
||
case VAR_DECL:
|
||
return TS_VAR_DECL;
|
||
case LABEL_DECL:
|
||
return TS_LABEL_DECL;
|
||
case RESULT_DECL:
|
||
return TS_RESULT_DECL;
|
||
case DEBUG_EXPR_DECL:
|
||
return TS_DECL_WRTL;
|
||
case CONST_DECL:
|
||
return TS_CONST_DECL;
|
||
case TYPE_DECL:
|
||
return TS_TYPE_DECL;
|
||
case FUNCTION_DECL:
|
||
return TS_FUNCTION_DECL;
|
||
case TRANSLATION_UNIT_DECL:
|
||
return TS_TRANSLATION_UNIT_DECL;
|
||
default:
|
||
return TS_DECL_NON_COMMON;
|
||
}
|
||
}
|
||
case tcc_type:
|
||
return TS_TYPE_NON_COMMON;
|
||
case tcc_reference:
|
||
case tcc_comparison:
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_expression:
|
||
case tcc_statement:
|
||
case tcc_vl_exp:
|
||
return TS_EXP;
|
||
default: /* tcc_constant and tcc_exceptional */
|
||
break;
|
||
}
|
||
switch (code)
|
||
{
|
||
/* tcc_constant cases. */
|
||
case INTEGER_CST: return TS_INT_CST;
|
||
case REAL_CST: return TS_REAL_CST;
|
||
case FIXED_CST: return TS_FIXED_CST;
|
||
case COMPLEX_CST: return TS_COMPLEX;
|
||
case VECTOR_CST: return TS_VECTOR;
|
||
case STRING_CST: return TS_STRING;
|
||
/* tcc_exceptional cases. */
|
||
case ERROR_MARK: return TS_COMMON;
|
||
case IDENTIFIER_NODE: return TS_IDENTIFIER;
|
||
case TREE_LIST: return TS_LIST;
|
||
case TREE_VEC: return TS_VEC;
|
||
case SSA_NAME: return TS_SSA_NAME;
|
||
case PLACEHOLDER_EXPR: return TS_COMMON;
|
||
case STATEMENT_LIST: return TS_STATEMENT_LIST;
|
||
case BLOCK: return TS_BLOCK;
|
||
case CONSTRUCTOR: return TS_CONSTRUCTOR;
|
||
case TREE_BINFO: return TS_BINFO;
|
||
case OMP_CLAUSE: return TS_OMP_CLAUSE;
|
||
case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
|
||
case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
|
||
/* Initialize tree_contains_struct to describe the hierarchy of tree
|
||
nodes. */
|
||
|
||
static void
|
||
initialize_tree_contains_struct (void)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
|
||
{
|
||
enum tree_code code;
|
||
enum tree_node_structure_enum ts_code;
|
||
|
||
code = (enum tree_code) i;
|
||
ts_code = tree_node_structure_for_code (code);
|
||
|
||
/* Mark the TS structure itself. */
|
||
tree_contains_struct[code][ts_code] = 1;
|
||
|
||
/* Mark all the structures that TS is derived from. */
|
||
switch (ts_code)
|
||
{
|
||
case TS_TYPED:
|
||
MARK_TS_BASE (code);
|
||
break;
|
||
|
||
case TS_COMMON:
|
||
case TS_INT_CST:
|
||
case TS_REAL_CST:
|
||
case TS_FIXED_CST:
|
||
case TS_VECTOR:
|
||
case TS_STRING:
|
||
case TS_COMPLEX:
|
||
case TS_SSA_NAME:
|
||
case TS_CONSTRUCTOR:
|
||
MARK_TS_TYPED (code);
|
||
break;
|
||
|
||
case TS_IDENTIFIER:
|
||
case TS_DECL_MINIMAL:
|
||
case TS_TYPE_COMMON:
|
||
case TS_LIST:
|
||
case TS_VEC:
|
||
case TS_EXP:
|
||
case TS_BLOCK:
|
||
case TS_BINFO:
|
||
case TS_STATEMENT_LIST:
|
||
case TS_OMP_CLAUSE:
|
||
case TS_OPTIMIZATION:
|
||
case TS_TARGET_OPTION:
|
||
MARK_TS_COMMON (code);
|
||
break;
|
||
|
||
case TS_TYPE_WITH_LANG_SPECIFIC:
|
||
MARK_TS_TYPE_COMMON (code);
|
||
break;
|
||
|
||
case TS_TYPE_NON_COMMON:
|
||
MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
|
||
break;
|
||
|
||
case TS_DECL_COMMON:
|
||
MARK_TS_DECL_MINIMAL (code);
|
||
break;
|
||
|
||
case TS_DECL_WRTL:
|
||
case TS_CONST_DECL:
|
||
MARK_TS_DECL_COMMON (code);
|
||
break;
|
||
|
||
case TS_DECL_NON_COMMON:
|
||
MARK_TS_DECL_WITH_VIS (code);
|
||
break;
|
||
|
||
case TS_DECL_WITH_VIS:
|
||
case TS_PARM_DECL:
|
||
case TS_LABEL_DECL:
|
||
case TS_RESULT_DECL:
|
||
MARK_TS_DECL_WRTL (code);
|
||
break;
|
||
|
||
case TS_FIELD_DECL:
|
||
MARK_TS_DECL_COMMON (code);
|
||
break;
|
||
|
||
case TS_VAR_DECL:
|
||
MARK_TS_DECL_WITH_VIS (code);
|
||
break;
|
||
|
||
case TS_TYPE_DECL:
|
||
case TS_FUNCTION_DECL:
|
||
MARK_TS_DECL_NON_COMMON (code);
|
||
break;
|
||
|
||
case TS_TRANSLATION_UNIT_DECL:
|
||
MARK_TS_DECL_COMMON (code);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Basic consistency checks for attributes used in fold. */
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
|
||
gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
|
||
gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
|
||
gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
|
||
gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
|
||
gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
|
||
gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
|
||
gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
|
||
}
|
||
|
||
|
||
/* Init tree.c. */
|
||
|
||
void
|
||
init_ttree (void)
|
||
{
|
||
/* Initialize the hash table of types. */
|
||
type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
|
||
type_hash_eq, 0);
|
||
|
||
debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
|
||
tree_decl_map_eq, 0);
|
||
|
||
value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
|
||
tree_decl_map_eq, 0);
|
||
init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
|
||
tree_priority_map_eq, 0);
|
||
|
||
int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
|
||
int_cst_hash_eq, NULL);
|
||
|
||
int_cst_node = make_node (INTEGER_CST);
|
||
|
||
cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
|
||
cl_option_hash_eq, NULL);
|
||
|
||
cl_optimization_node = make_node (OPTIMIZATION_NODE);
|
||
cl_target_option_node = make_node (TARGET_OPTION_NODE);
|
||
|
||
/* Initialize the tree_contains_struct array. */
|
||
initialize_tree_contains_struct ();
|
||
lang_hooks.init_ts ();
|
||
}
|
||
|
||
|
||
/* The name of the object as the assembler will see it (but before any
|
||
translations made by ASM_OUTPUT_LABELREF). Often this is the same
|
||
as DECL_NAME. It is an IDENTIFIER_NODE. */
|
||
tree
|
||
decl_assembler_name (tree decl)
|
||
{
|
||
if (!DECL_ASSEMBLER_NAME_SET_P (decl))
|
||
lang_hooks.set_decl_assembler_name (decl);
|
||
return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
|
||
}
|
||
|
||
/* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
|
||
|
||
bool
|
||
decl_assembler_name_equal (tree decl, const_tree asmname)
|
||
{
|
||
tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
|
||
const char *decl_str;
|
||
const char *asmname_str;
|
||
bool test = false;
|
||
|
||
if (decl_asmname == asmname)
|
||
return true;
|
||
|
||
decl_str = IDENTIFIER_POINTER (decl_asmname);
|
||
asmname_str = IDENTIFIER_POINTER (asmname);
|
||
|
||
|
||
/* If the target assembler name was set by the user, things are trickier.
|
||
We have a leading '*' to begin with. After that, it's arguable what
|
||
is the correct thing to do with -fleading-underscore. Arguably, we've
|
||
historically been doing the wrong thing in assemble_alias by always
|
||
printing the leading underscore. Since we're not changing that, make
|
||
sure user_label_prefix follows the '*' before matching. */
|
||
if (decl_str[0] == '*')
|
||
{
|
||
size_t ulp_len = strlen (user_label_prefix);
|
||
|
||
decl_str ++;
|
||
|
||
if (ulp_len == 0)
|
||
test = true;
|
||
else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
|
||
decl_str += ulp_len, test=true;
|
||
else
|
||
decl_str --;
|
||
}
|
||
if (asmname_str[0] == '*')
|
||
{
|
||
size_t ulp_len = strlen (user_label_prefix);
|
||
|
||
asmname_str ++;
|
||
|
||
if (ulp_len == 0)
|
||
test = true;
|
||
else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
|
||
asmname_str += ulp_len, test=true;
|
||
else
|
||
asmname_str --;
|
||
}
|
||
|
||
if (!test)
|
||
return false;
|
||
return strcmp (decl_str, asmname_str) == 0;
|
||
}
|
||
|
||
/* Hash asmnames ignoring the user specified marks. */
|
||
|
||
hashval_t
|
||
decl_assembler_name_hash (const_tree asmname)
|
||
{
|
||
if (IDENTIFIER_POINTER (asmname)[0] == '*')
|
||
{
|
||
const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
|
||
size_t ulp_len = strlen (user_label_prefix);
|
||
|
||
if (ulp_len == 0)
|
||
;
|
||
else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
|
||
decl_str += ulp_len;
|
||
|
||
return htab_hash_string (decl_str);
|
||
}
|
||
|
||
return htab_hash_string (IDENTIFIER_POINTER (asmname));
|
||
}
|
||
|
||
/* Compute the number of bytes occupied by a tree with code CODE.
|
||
This function cannot be used for nodes that have variable sizes,
|
||
including TREE_VEC, STRING_CST, and CALL_EXPR. */
|
||
size_t
|
||
tree_code_size (enum tree_code code)
|
||
{
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_declaration: /* A decl node */
|
||
{
|
||
switch (code)
|
||
{
|
||
case FIELD_DECL:
|
||
return sizeof (struct tree_field_decl);
|
||
case PARM_DECL:
|
||
return sizeof (struct tree_parm_decl);
|
||
case VAR_DECL:
|
||
return sizeof (struct tree_var_decl);
|
||
case LABEL_DECL:
|
||
return sizeof (struct tree_label_decl);
|
||
case RESULT_DECL:
|
||
return sizeof (struct tree_result_decl);
|
||
case CONST_DECL:
|
||
return sizeof (struct tree_const_decl);
|
||
case TYPE_DECL:
|
||
return sizeof (struct tree_type_decl);
|
||
case FUNCTION_DECL:
|
||
return sizeof (struct tree_function_decl);
|
||
case DEBUG_EXPR_DECL:
|
||
return sizeof (struct tree_decl_with_rtl);
|
||
default:
|
||
return sizeof (struct tree_decl_non_common);
|
||
}
|
||
}
|
||
|
||
case tcc_type: /* a type node */
|
||
return sizeof (struct tree_type_non_common);
|
||
|
||
case tcc_reference: /* a reference */
|
||
case tcc_expression: /* an expression */
|
||
case tcc_statement: /* an expression with side effects */
|
||
case tcc_comparison: /* a comparison expression */
|
||
case tcc_unary: /* a unary arithmetic expression */
|
||
case tcc_binary: /* a binary arithmetic expression */
|
||
return (sizeof (struct tree_exp)
|
||
+ (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
|
||
|
||
case tcc_constant: /* a constant */
|
||
switch (code)
|
||
{
|
||
case INTEGER_CST: return sizeof (struct tree_int_cst);
|
||
case REAL_CST: return sizeof (struct tree_real_cst);
|
||
case FIXED_CST: return sizeof (struct tree_fixed_cst);
|
||
case COMPLEX_CST: return sizeof (struct tree_complex);
|
||
case VECTOR_CST: return sizeof (struct tree_vector);
|
||
case STRING_CST: gcc_unreachable ();
|
||
default:
|
||
return lang_hooks.tree_size (code);
|
||
}
|
||
|
||
case tcc_exceptional: /* something random, like an identifier. */
|
||
switch (code)
|
||
{
|
||
case IDENTIFIER_NODE: return lang_hooks.identifier_size;
|
||
case TREE_LIST: return sizeof (struct tree_list);
|
||
|
||
case ERROR_MARK:
|
||
case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
|
||
|
||
case TREE_VEC:
|
||
case OMP_CLAUSE: gcc_unreachable ();
|
||
|
||
case SSA_NAME: return sizeof (struct tree_ssa_name);
|
||
|
||
case STATEMENT_LIST: return sizeof (struct tree_statement_list);
|
||
case BLOCK: return sizeof (struct tree_block);
|
||
case CONSTRUCTOR: return sizeof (struct tree_constructor);
|
||
case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
|
||
case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
|
||
|
||
default:
|
||
return lang_hooks.tree_size (code);
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Compute the number of bytes occupied by NODE. This routine only
|
||
looks at TREE_CODE, except for those nodes that have variable sizes. */
|
||
size_t
|
||
tree_size (const_tree node)
|
||
{
|
||
const enum tree_code code = TREE_CODE (node);
|
||
switch (code)
|
||
{
|
||
case TREE_BINFO:
|
||
return (offsetof (struct tree_binfo, base_binfos)
|
||
+ VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
|
||
|
||
case TREE_VEC:
|
||
return (sizeof (struct tree_vec)
|
||
+ (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
|
||
|
||
case STRING_CST:
|
||
return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
|
||
|
||
case OMP_CLAUSE:
|
||
return (sizeof (struct tree_omp_clause)
|
||
+ (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
|
||
* sizeof (tree));
|
||
|
||
default:
|
||
if (TREE_CODE_CLASS (code) == tcc_vl_exp)
|
||
return (sizeof (struct tree_exp)
|
||
+ (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
|
||
else
|
||
return tree_code_size (code);
|
||
}
|
||
}
|
||
|
||
/* Record interesting allocation statistics for a tree node with CODE
|
||
and LENGTH. */
|
||
|
||
static void
|
||
record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
|
||
size_t length ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
enum tree_code_class type = TREE_CODE_CLASS (code);
|
||
tree_node_kind kind;
|
||
|
||
switch (type)
|
||
{
|
||
case tcc_declaration: /* A decl node */
|
||
kind = d_kind;
|
||
break;
|
||
|
||
case tcc_type: /* a type node */
|
||
kind = t_kind;
|
||
break;
|
||
|
||
case tcc_statement: /* an expression with side effects */
|
||
kind = s_kind;
|
||
break;
|
||
|
||
case tcc_reference: /* a reference */
|
||
kind = r_kind;
|
||
break;
|
||
|
||
case tcc_expression: /* an expression */
|
||
case tcc_comparison: /* a comparison expression */
|
||
case tcc_unary: /* a unary arithmetic expression */
|
||
case tcc_binary: /* a binary arithmetic expression */
|
||
kind = e_kind;
|
||
break;
|
||
|
||
case tcc_constant: /* a constant */
|
||
kind = c_kind;
|
||
break;
|
||
|
||
case tcc_exceptional: /* something random, like an identifier. */
|
||
switch (code)
|
||
{
|
||
case IDENTIFIER_NODE:
|
||
kind = id_kind;
|
||
break;
|
||
|
||
case TREE_VEC:
|
||
kind = vec_kind;
|
||
break;
|
||
|
||
case TREE_BINFO:
|
||
kind = binfo_kind;
|
||
break;
|
||
|
||
case SSA_NAME:
|
||
kind = ssa_name_kind;
|
||
break;
|
||
|
||
case BLOCK:
|
||
kind = b_kind;
|
||
break;
|
||
|
||
case CONSTRUCTOR:
|
||
kind = constr_kind;
|
||
break;
|
||
|
||
case OMP_CLAUSE:
|
||
kind = omp_clause_kind;
|
||
break;
|
||
|
||
default:
|
||
kind = x_kind;
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case tcc_vl_exp:
|
||
kind = e_kind;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
tree_code_counts[(int) code]++;
|
||
tree_node_counts[(int) kind]++;
|
||
tree_node_sizes[(int) kind] += length;
|
||
#endif
|
||
}
|
||
|
||
/* Allocate and return a new UID from the DECL_UID namespace. */
|
||
|
||
int
|
||
allocate_decl_uid (void)
|
||
{
|
||
return next_decl_uid++;
|
||
}
|
||
|
||
/* Return a newly allocated node of code CODE. For decl and type
|
||
nodes, some other fields are initialized. The rest of the node is
|
||
initialized to zero. This function cannot be used for TREE_VEC or
|
||
OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
|
||
|
||
Achoo! I got a code in the node. */
|
||
|
||
tree
|
||
make_node_stat (enum tree_code code MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
enum tree_code_class type = TREE_CODE_CLASS (code);
|
||
size_t length = tree_code_size (code);
|
||
|
||
record_node_allocation_statistics (code, length);
|
||
|
||
t = ggc_alloc_zone_cleared_tree_node_stat (
|
||
(code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
|
||
length PASS_MEM_STAT);
|
||
TREE_SET_CODE (t, code);
|
||
|
||
switch (type)
|
||
{
|
||
case tcc_statement:
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
break;
|
||
|
||
case tcc_declaration:
|
||
if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
|
||
{
|
||
if (code == FUNCTION_DECL)
|
||
{
|
||
DECL_ALIGN (t) = FUNCTION_BOUNDARY;
|
||
DECL_MODE (t) = FUNCTION_MODE;
|
||
}
|
||
else
|
||
DECL_ALIGN (t) = 1;
|
||
}
|
||
DECL_SOURCE_LOCATION (t) = input_location;
|
||
if (TREE_CODE (t) == DEBUG_EXPR_DECL)
|
||
DECL_UID (t) = --next_debug_decl_uid;
|
||
else
|
||
{
|
||
DECL_UID (t) = allocate_decl_uid ();
|
||
SET_DECL_PT_UID (t, -1);
|
||
}
|
||
if (TREE_CODE (t) == LABEL_DECL)
|
||
LABEL_DECL_UID (t) = -1;
|
||
|
||
break;
|
||
|
||
case tcc_type:
|
||
TYPE_UID (t) = next_type_uid++;
|
||
TYPE_ALIGN (t) = BITS_PER_UNIT;
|
||
TYPE_USER_ALIGN (t) = 0;
|
||
TYPE_MAIN_VARIANT (t) = t;
|
||
TYPE_CANONICAL (t) = t;
|
||
|
||
/* Default to no attributes for type, but let target change that. */
|
||
TYPE_ATTRIBUTES (t) = NULL_TREE;
|
||
targetm.set_default_type_attributes (t);
|
||
|
||
/* We have not yet computed the alias set for this type. */
|
||
TYPE_ALIAS_SET (t) = -1;
|
||
break;
|
||
|
||
case tcc_constant:
|
||
TREE_CONSTANT (t) = 1;
|
||
break;
|
||
|
||
case tcc_expression:
|
||
switch (code)
|
||
{
|
||
case INIT_EXPR:
|
||
case MODIFY_EXPR:
|
||
case VA_ARG_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
/* All of these have side-effects, no matter what their
|
||
operands are. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* Other classes need no special treatment. */
|
||
break;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a new node with the same contents as NODE except that its
|
||
TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
|
||
|
||
tree
|
||
copy_node_stat (tree node MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
enum tree_code code = TREE_CODE (node);
|
||
size_t length;
|
||
|
||
gcc_assert (code != STATEMENT_LIST);
|
||
|
||
length = tree_size (node);
|
||
record_node_allocation_statistics (code, length);
|
||
t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
|
||
memcpy (t, node, length);
|
||
|
||
if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
|
||
TREE_CHAIN (t) = 0;
|
||
TREE_ASM_WRITTEN (t) = 0;
|
||
TREE_VISITED (t) = 0;
|
||
if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
|
||
*DECL_VAR_ANN_PTR (t) = 0;
|
||
|
||
if (TREE_CODE_CLASS (code) == tcc_declaration)
|
||
{
|
||
if (code == DEBUG_EXPR_DECL)
|
||
DECL_UID (t) = --next_debug_decl_uid;
|
||
else
|
||
{
|
||
DECL_UID (t) = allocate_decl_uid ();
|
||
if (DECL_PT_UID_SET_P (node))
|
||
SET_DECL_PT_UID (t, DECL_PT_UID (node));
|
||
}
|
||
if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
|
||
&& DECL_HAS_VALUE_EXPR_P (node))
|
||
{
|
||
SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
|
||
DECL_HAS_VALUE_EXPR_P (t) = 1;
|
||
}
|
||
if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
|
||
{
|
||
SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
|
||
DECL_HAS_INIT_PRIORITY_P (t) = 1;
|
||
}
|
||
}
|
||
else if (TREE_CODE_CLASS (code) == tcc_type)
|
||
{
|
||
TYPE_UID (t) = next_type_uid++;
|
||
/* The following is so that the debug code for
|
||
the copy is different from the original type.
|
||
The two statements usually duplicate each other
|
||
(because they clear fields of the same union),
|
||
but the optimizer should catch that. */
|
||
TYPE_SYMTAB_POINTER (t) = 0;
|
||
TYPE_SYMTAB_ADDRESS (t) = 0;
|
||
|
||
/* Do not copy the values cache. */
|
||
if (TYPE_CACHED_VALUES_P(t))
|
||
{
|
||
TYPE_CACHED_VALUES_P (t) = 0;
|
||
TYPE_CACHED_VALUES (t) = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
|
||
For example, this can copy a list made of TREE_LIST nodes. */
|
||
|
||
tree
|
||
copy_list (tree list)
|
||
{
|
||
tree head;
|
||
tree prev, next;
|
||
|
||
if (list == 0)
|
||
return 0;
|
||
|
||
head = prev = copy_node (list);
|
||
next = TREE_CHAIN (list);
|
||
while (next)
|
||
{
|
||
TREE_CHAIN (prev) = copy_node (next);
|
||
prev = TREE_CHAIN (prev);
|
||
next = TREE_CHAIN (next);
|
||
}
|
||
return head;
|
||
}
|
||
|
||
|
||
/* Create an INT_CST node with a LOW value sign extended to TYPE. */
|
||
|
||
tree
|
||
build_int_cst (tree type, HOST_WIDE_INT low)
|
||
{
|
||
/* Support legacy code. */
|
||
if (!type)
|
||
type = integer_type_node;
|
||
|
||
return double_int_to_tree (type, shwi_to_double_int (low));
|
||
}
|
||
|
||
/* Create an INT_CST node with a LOW value sign extended to TYPE. */
|
||
|
||
tree
|
||
build_int_cst_type (tree type, HOST_WIDE_INT low)
|
||
{
|
||
gcc_assert (type);
|
||
|
||
return double_int_to_tree (type, shwi_to_double_int (low));
|
||
}
|
||
|
||
/* Constructs tree in type TYPE from with value given by CST. Signedness
|
||
of CST is assumed to be the same as the signedness of TYPE. */
|
||
|
||
tree
|
||
double_int_to_tree (tree type, double_int cst)
|
||
{
|
||
/* Size types *are* sign extended. */
|
||
bool sign_extended_type = (!TYPE_UNSIGNED (type)
|
||
|| (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TYPE_IS_SIZETYPE (type)));
|
||
|
||
cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
|
||
|
||
return build_int_cst_wide (type, cst.low, cst.high);
|
||
}
|
||
|
||
/* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
|
||
to be the same as the signedness of TYPE. */
|
||
|
||
bool
|
||
double_int_fits_to_tree_p (const_tree type, double_int cst)
|
||
{
|
||
/* Size types *are* sign extended. */
|
||
bool sign_extended_type = (!TYPE_UNSIGNED (type)
|
||
|| (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TYPE_IS_SIZETYPE (type)));
|
||
|
||
double_int ext
|
||
= double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
|
||
|
||
return double_int_equal_p (cst, ext);
|
||
}
|
||
|
||
/* We force the double_int CST to the range of the type TYPE by sign or
|
||
zero extending it. OVERFLOWABLE indicates if we are interested in
|
||
overflow of the value, when >0 we are only interested in signed
|
||
overflow, for <0 we are interested in any overflow. OVERFLOWED
|
||
indicates whether overflow has already occurred. CONST_OVERFLOWED
|
||
indicates whether constant overflow has already occurred. We force
|
||
T's value to be within range of T's type (by setting to 0 or 1 all
|
||
the bits outside the type's range). We set TREE_OVERFLOWED if,
|
||
OVERFLOWED is nonzero,
|
||
or OVERFLOWABLE is >0 and signed overflow occurs
|
||
or OVERFLOWABLE is <0 and any overflow occurs
|
||
We return a new tree node for the extended double_int. The node
|
||
is shared if no overflow flags are set. */
|
||
|
||
|
||
tree
|
||
force_fit_type_double (tree type, double_int cst, int overflowable,
|
||
bool overflowed)
|
||
{
|
||
bool sign_extended_type;
|
||
|
||
/* Size types *are* sign extended. */
|
||
sign_extended_type = (!TYPE_UNSIGNED (type)
|
||
|| (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TYPE_IS_SIZETYPE (type)));
|
||
|
||
/* If we need to set overflow flags, return a new unshared node. */
|
||
if (overflowed || !double_int_fits_to_tree_p(type, cst))
|
||
{
|
||
if (overflowed
|
||
|| overflowable < 0
|
||
|| (overflowable > 0 && sign_extended_type))
|
||
{
|
||
tree t = make_node (INTEGER_CST);
|
||
TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
|
||
!sign_extended_type);
|
||
TREE_TYPE (t) = type;
|
||
TREE_OVERFLOW (t) = 1;
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* Else build a shared node. */
|
||
return double_int_to_tree (type, cst);
|
||
}
|
||
|
||
/* These are the hash table functions for the hash table of INTEGER_CST
|
||
nodes of a sizetype. */
|
||
|
||
/* Return the hash code code X, an INTEGER_CST. */
|
||
|
||
static hashval_t
|
||
int_cst_hash_hash (const void *x)
|
||
{
|
||
const_tree const t = (const_tree) x;
|
||
|
||
return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
|
||
^ htab_hash_pointer (TREE_TYPE (t)));
|
||
}
|
||
|
||
/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
|
||
is the same as that given by *Y, which is the same. */
|
||
|
||
static int
|
||
int_cst_hash_eq (const void *x, const void *y)
|
||
{
|
||
const_tree const xt = (const_tree) x;
|
||
const_tree const yt = (const_tree) y;
|
||
|
||
return (TREE_TYPE (xt) == TREE_TYPE (yt)
|
||
&& TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
|
||
&& TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
|
||
}
|
||
|
||
/* Create an INT_CST node of TYPE and value HI:LOW.
|
||
The returned node is always shared. For small integers we use a
|
||
per-type vector cache, for larger ones we use a single hash table. */
|
||
|
||
tree
|
||
build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
|
||
{
|
||
tree t;
|
||
int ix = -1;
|
||
int limit = 0;
|
||
|
||
gcc_assert (type);
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case NULLPTR_TYPE:
|
||
gcc_assert (hi == 0 && low == 0);
|
||
/* Fallthru. */
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
/* Cache NULL pointer. */
|
||
if (!hi && !low)
|
||
{
|
||
limit = 1;
|
||
ix = 0;
|
||
}
|
||
break;
|
||
|
||
case BOOLEAN_TYPE:
|
||
/* Cache false or true. */
|
||
limit = 2;
|
||
if (!hi && low < 2)
|
||
ix = low;
|
||
break;
|
||
|
||
case INTEGER_TYPE:
|
||
case OFFSET_TYPE:
|
||
if (TYPE_UNSIGNED (type))
|
||
{
|
||
/* Cache 0..N */
|
||
limit = INTEGER_SHARE_LIMIT;
|
||
if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
|
||
ix = low;
|
||
}
|
||
else
|
||
{
|
||
/* Cache -1..N */
|
||
limit = INTEGER_SHARE_LIMIT + 1;
|
||
if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
|
||
ix = low + 1;
|
||
else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
|
||
ix = 0;
|
||
}
|
||
break;
|
||
|
||
case ENUMERAL_TYPE:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (ix >= 0)
|
||
{
|
||
/* Look for it in the type's vector of small shared ints. */
|
||
if (!TYPE_CACHED_VALUES_P (type))
|
||
{
|
||
TYPE_CACHED_VALUES_P (type) = 1;
|
||
TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
|
||
}
|
||
|
||
t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
|
||
if (t)
|
||
{
|
||
/* Make sure no one is clobbering the shared constant. */
|
||
gcc_assert (TREE_TYPE (t) == type);
|
||
gcc_assert (TREE_INT_CST_LOW (t) == low);
|
||
gcc_assert (TREE_INT_CST_HIGH (t) == hi);
|
||
}
|
||
else
|
||
{
|
||
/* Create a new shared int. */
|
||
t = make_node (INTEGER_CST);
|
||
|
||
TREE_INT_CST_LOW (t) = low;
|
||
TREE_INT_CST_HIGH (t) = hi;
|
||
TREE_TYPE (t) = type;
|
||
|
||
TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Use the cache of larger shared ints. */
|
||
void **slot;
|
||
|
||
TREE_INT_CST_LOW (int_cst_node) = low;
|
||
TREE_INT_CST_HIGH (int_cst_node) = hi;
|
||
TREE_TYPE (int_cst_node) = type;
|
||
|
||
slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
|
||
t = (tree) *slot;
|
||
if (!t)
|
||
{
|
||
/* Insert this one into the hash table. */
|
||
t = int_cst_node;
|
||
*slot = t;
|
||
/* Make a new node for next time round. */
|
||
int_cst_node = make_node (INTEGER_CST);
|
||
}
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Builds an integer constant in TYPE such that lowest BITS bits are ones
|
||
and the rest are zeros. */
|
||
|
||
tree
|
||
build_low_bits_mask (tree type, unsigned bits)
|
||
{
|
||
double_int mask;
|
||
|
||
gcc_assert (bits <= TYPE_PRECISION (type));
|
||
|
||
if (bits == TYPE_PRECISION (type)
|
||
&& !TYPE_UNSIGNED (type))
|
||
/* Sign extended all-ones mask. */
|
||
mask = double_int_minus_one;
|
||
else
|
||
mask = double_int_mask (bits);
|
||
|
||
return build_int_cst_wide (type, mask.low, mask.high);
|
||
}
|
||
|
||
/* Checks that X is integer constant that can be expressed in (unsigned)
|
||
HOST_WIDE_INT without loss of precision. */
|
||
|
||
bool
|
||
cst_and_fits_in_hwi (const_tree x)
|
||
{
|
||
if (TREE_CODE (x) != INTEGER_CST)
|
||
return false;
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
|
||
return false;
|
||
|
||
return (TREE_INT_CST_HIGH (x) == 0
|
||
|| TREE_INT_CST_HIGH (x) == -1);
|
||
}
|
||
|
||
/* Return a new VECTOR_CST node whose type is TYPE and whose values
|
||
are in a list pointed to by VALS. */
|
||
|
||
tree
|
||
build_vector (tree type, tree vals)
|
||
{
|
||
tree v = make_node (VECTOR_CST);
|
||
int over = 0;
|
||
tree link;
|
||
unsigned cnt = 0;
|
||
|
||
TREE_VECTOR_CST_ELTS (v) = vals;
|
||
TREE_TYPE (v) = type;
|
||
|
||
/* Iterate through elements and check for overflow. */
|
||
for (link = vals; link; link = TREE_CHAIN (link))
|
||
{
|
||
tree value = TREE_VALUE (link);
|
||
cnt++;
|
||
|
||
/* Don't crash if we get an address constant. */
|
||
if (!CONSTANT_CLASS_P (value))
|
||
continue;
|
||
|
||
over |= TREE_OVERFLOW (value);
|
||
}
|
||
|
||
gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
|
||
|
||
TREE_OVERFLOW (v) = over;
|
||
return v;
|
||
}
|
||
|
||
/* Return a new VECTOR_CST node whose type is TYPE and whose values
|
||
are extracted from V, a vector of CONSTRUCTOR_ELT. */
|
||
|
||
tree
|
||
build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
|
||
{
|
||
tree list = NULL_TREE;
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree value;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
|
||
list = tree_cons (NULL_TREE, value, list);
|
||
for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
|
||
list = tree_cons (NULL_TREE,
|
||
build_zero_cst (TREE_TYPE (type)), list);
|
||
return build_vector (type, nreverse (list));
|
||
}
|
||
|
||
/* Build a vector of type VECTYPE where all the elements are SCs. */
|
||
tree
|
||
build_vector_from_val (tree vectype, tree sc)
|
||
{
|
||
int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
||
VEC(constructor_elt, gc) *v = NULL;
|
||
|
||
if (sc == error_mark_node)
|
||
return sc;
|
||
|
||
/* Verify that the vector type is suitable for SC. Note that there
|
||
is some inconsistency in the type-system with respect to restrict
|
||
qualifications of pointers. Vector types always have a main-variant
|
||
element type and the qualification is applied to the vector-type.
|
||
So TREE_TYPE (vector-type) does not return a properly qualified
|
||
vector element-type. */
|
||
gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
|
||
TREE_TYPE (vectype)));
|
||
|
||
v = VEC_alloc (constructor_elt, gc, nunits);
|
||
for (i = 0; i < nunits; ++i)
|
||
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
|
||
|
||
if (CONSTANT_CLASS_P (sc))
|
||
return build_vector_from_ctor (vectype, v);
|
||
else
|
||
return build_constructor (vectype, v);
|
||
}
|
||
|
||
/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
|
||
are in the VEC pointed to by VALS. */
|
||
tree
|
||
build_constructor (tree type, VEC(constructor_elt,gc) *vals)
|
||
{
|
||
tree c = make_node (CONSTRUCTOR);
|
||
unsigned int i;
|
||
constructor_elt *elt;
|
||
bool constant_p = true;
|
||
|
||
TREE_TYPE (c) = type;
|
||
CONSTRUCTOR_ELTS (c) = vals;
|
||
|
||
FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
|
||
if (!TREE_CONSTANT (elt->value))
|
||
{
|
||
constant_p = false;
|
||
break;
|
||
}
|
||
|
||
TREE_CONSTANT (c) = constant_p;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* Build a CONSTRUCTOR node made of a single initializer, with the specified
|
||
INDEX and VALUE. */
|
||
tree
|
||
build_constructor_single (tree type, tree index, tree value)
|
||
{
|
||
VEC(constructor_elt,gc) *v;
|
||
constructor_elt *elt;
|
||
|
||
v = VEC_alloc (constructor_elt, gc, 1);
|
||
elt = VEC_quick_push (constructor_elt, v, NULL);
|
||
elt->index = index;
|
||
elt->value = value;
|
||
|
||
return build_constructor (type, v);
|
||
}
|
||
|
||
|
||
/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
|
||
are in a list pointed to by VALS. */
|
||
tree
|
||
build_constructor_from_list (tree type, tree vals)
|
||
{
|
||
tree t;
|
||
VEC(constructor_elt,gc) *v = NULL;
|
||
|
||
if (vals)
|
||
{
|
||
v = VEC_alloc (constructor_elt, gc, list_length (vals));
|
||
for (t = vals; t; t = TREE_CHAIN (t))
|
||
CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
|
||
}
|
||
|
||
return build_constructor (type, v);
|
||
}
|
||
|
||
/* Return a new FIXED_CST node whose type is TYPE and value is F. */
|
||
|
||
tree
|
||
build_fixed (tree type, FIXED_VALUE_TYPE f)
|
||
{
|
||
tree v;
|
||
FIXED_VALUE_TYPE *fp;
|
||
|
||
v = make_node (FIXED_CST);
|
||
fp = ggc_alloc_fixed_value ();
|
||
memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
|
||
|
||
TREE_TYPE (v) = type;
|
||
TREE_FIXED_CST_PTR (v) = fp;
|
||
return v;
|
||
}
|
||
|
||
/* Return a new REAL_CST node whose type is TYPE and value is D. */
|
||
|
||
tree
|
||
build_real (tree type, REAL_VALUE_TYPE d)
|
||
{
|
||
tree v;
|
||
REAL_VALUE_TYPE *dp;
|
||
int overflow = 0;
|
||
|
||
/* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
|
||
Consider doing it via real_convert now. */
|
||
|
||
v = make_node (REAL_CST);
|
||
dp = ggc_alloc_real_value ();
|
||
memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
|
||
|
||
TREE_TYPE (v) = type;
|
||
TREE_REAL_CST_PTR (v) = dp;
|
||
TREE_OVERFLOW (v) = overflow;
|
||
return v;
|
||
}
|
||
|
||
/* Return a new REAL_CST node whose type is TYPE
|
||
and whose value is the integer value of the INTEGER_CST node I. */
|
||
|
||
REAL_VALUE_TYPE
|
||
real_value_from_int_cst (const_tree type, const_tree i)
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
/* Clear all bits of the real value type so that we can later do
|
||
bitwise comparisons to see if two values are the same. */
|
||
memset (&d, 0, sizeof d);
|
||
|
||
real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
|
||
TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
|
||
TYPE_UNSIGNED (TREE_TYPE (i)));
|
||
return d;
|
||
}
|
||
|
||
/* Given a tree representing an integer constant I, return a tree
|
||
representing the same value as a floating-point constant of type TYPE. */
|
||
|
||
tree
|
||
build_real_from_int_cst (tree type, const_tree i)
|
||
{
|
||
tree v;
|
||
int overflow = TREE_OVERFLOW (i);
|
||
|
||
v = build_real (type, real_value_from_int_cst (type, i));
|
||
|
||
TREE_OVERFLOW (v) |= overflow;
|
||
return v;
|
||
}
|
||
|
||
/* Return a newly constructed STRING_CST node whose value is
|
||
the LEN characters at STR.
|
||
The TREE_TYPE is not initialized. */
|
||
|
||
tree
|
||
build_string (int len, const char *str)
|
||
{
|
||
tree s;
|
||
size_t length;
|
||
|
||
/* Do not waste bytes provided by padding of struct tree_string. */
|
||
length = len + offsetof (struct tree_string, str) + 1;
|
||
|
||
record_node_allocation_statistics (STRING_CST, length);
|
||
|
||
s = ggc_alloc_tree_node (length);
|
||
|
||
memset (s, 0, sizeof (struct tree_typed));
|
||
TREE_SET_CODE (s, STRING_CST);
|
||
TREE_CONSTANT (s) = 1;
|
||
TREE_STRING_LENGTH (s) = len;
|
||
memcpy (s->string.str, str, len);
|
||
s->string.str[len] = '\0';
|
||
|
||
return s;
|
||
}
|
||
|
||
/* Return a newly constructed COMPLEX_CST node whose value is
|
||
specified by the real and imaginary parts REAL and IMAG.
|
||
Both REAL and IMAG should be constant nodes. TYPE, if specified,
|
||
will be the type of the COMPLEX_CST; otherwise a new type will be made. */
|
||
|
||
tree
|
||
build_complex (tree type, tree real, tree imag)
|
||
{
|
||
tree t = make_node (COMPLEX_CST);
|
||
|
||
TREE_REALPART (t) = real;
|
||
TREE_IMAGPART (t) = imag;
|
||
TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
|
||
TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
|
||
return t;
|
||
}
|
||
|
||
/* Return a constant of arithmetic type TYPE which is the
|
||
multiplicative identity of the set TYPE. */
|
||
|
||
tree
|
||
build_one_cst (tree type)
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
|
||
case POINTER_TYPE: case REFERENCE_TYPE:
|
||
case OFFSET_TYPE:
|
||
return build_int_cst (type, 1);
|
||
|
||
case REAL_TYPE:
|
||
return build_real (type, dconst1);
|
||
|
||
case FIXED_POINT_TYPE:
|
||
/* We can only generate 1 for accum types. */
|
||
gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
|
||
return build_fixed (type, FCONST1(TYPE_MODE (type)));
|
||
|
||
case VECTOR_TYPE:
|
||
{
|
||
tree scalar = build_one_cst (TREE_TYPE (type));
|
||
|
||
return build_vector_from_val (type, scalar);
|
||
}
|
||
|
||
case COMPLEX_TYPE:
|
||
return build_complex (type,
|
||
build_one_cst (TREE_TYPE (type)),
|
||
build_zero_cst (TREE_TYPE (type)));
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Build 0 constant of type TYPE. This is used by constructor folding
|
||
and thus the constant should be represented in memory by
|
||
zero(es). */
|
||
|
||
tree
|
||
build_zero_cst (tree type)
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
|
||
case POINTER_TYPE: case REFERENCE_TYPE:
|
||
case OFFSET_TYPE:
|
||
return build_int_cst (type, 0);
|
||
|
||
case REAL_TYPE:
|
||
return build_real (type, dconst0);
|
||
|
||
case FIXED_POINT_TYPE:
|
||
return build_fixed (type, FCONST0 (TYPE_MODE (type)));
|
||
|
||
case VECTOR_TYPE:
|
||
{
|
||
tree scalar = build_zero_cst (TREE_TYPE (type));
|
||
|
||
return build_vector_from_val (type, scalar);
|
||
}
|
||
|
||
case COMPLEX_TYPE:
|
||
{
|
||
tree zero = build_zero_cst (TREE_TYPE (type));
|
||
|
||
return build_complex (type, zero, zero);
|
||
}
|
||
|
||
default:
|
||
if (!AGGREGATE_TYPE_P (type))
|
||
return fold_convert (type, integer_zero_node);
|
||
return build_constructor (type, NULL);
|
||
}
|
||
}
|
||
|
||
|
||
/* Build a BINFO with LEN language slots. */
|
||
|
||
tree
|
||
make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
size_t length = (offsetof (struct tree_binfo, base_binfos)
|
||
+ VEC_embedded_size (tree, base_binfos));
|
||
|
||
record_node_allocation_statistics (TREE_BINFO, length);
|
||
|
||
t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
|
||
|
||
memset (t, 0, offsetof (struct tree_binfo, base_binfos));
|
||
|
||
TREE_SET_CODE (t, TREE_BINFO);
|
||
|
||
VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a CASE_LABEL_EXPR tree node and return it. */
|
||
|
||
tree
|
||
build_case_label (tree low_value, tree high_value, tree label_decl)
|
||
{
|
||
tree t = make_node (CASE_LABEL_EXPR);
|
||
|
||
TREE_TYPE (t) = void_type_node;
|
||
SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
|
||
|
||
CASE_LOW (t) = low_value;
|
||
CASE_HIGH (t) = high_value;
|
||
CASE_LABEL (t) = label_decl;
|
||
CASE_CHAIN (t) = NULL_TREE;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a newly constructed TREE_VEC node of length LEN. */
|
||
|
||
tree
|
||
make_tree_vec_stat (int len MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
|
||
|
||
record_node_allocation_statistics (TREE_VEC, length);
|
||
|
||
t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
|
||
|
||
TREE_SET_CODE (t, TREE_VEC);
|
||
TREE_VEC_LENGTH (t) = len;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant zero or a complex constant
|
||
of zero. */
|
||
|
||
int
|
||
integer_zerop (const_tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == INTEGER_CST
|
||
&& TREE_INT_CST_LOW (expr) == 0
|
||
&& TREE_INT_CST_HIGH (expr) == 0)
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_zerop (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant one or the corresponding
|
||
complex constant. */
|
||
|
||
int
|
||
integer_onep (const_tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == INTEGER_CST
|
||
&& TREE_INT_CST_LOW (expr) == 1
|
||
&& TREE_INT_CST_HIGH (expr) == 0)
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_onep (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer containing all 1's in as much precision as
|
||
it contains. Likewise for the corresponding complex constant. */
|
||
|
||
int
|
||
integer_all_onesp (const_tree expr)
|
||
{
|
||
int prec;
|
||
int uns;
|
||
|
||
STRIP_NOPS (expr);
|
||
|
||
if (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_all_onesp (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr)))
|
||
return 1;
|
||
|
||
else if (TREE_CODE (expr) != INTEGER_CST)
|
||
return 0;
|
||
|
||
uns = TYPE_UNSIGNED (TREE_TYPE (expr));
|
||
if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
|
||
&& TREE_INT_CST_HIGH (expr) == -1)
|
||
return 1;
|
||
if (!uns)
|
||
return 0;
|
||
|
||
/* Note that using TYPE_PRECISION here is wrong. We care about the
|
||
actual bits, not the (arbitrary) range of the type. */
|
||
prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
|
||
if (prec >= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
HOST_WIDE_INT high_value;
|
||
int shift_amount;
|
||
|
||
shift_amount = prec - HOST_BITS_PER_WIDE_INT;
|
||
|
||
/* Can not handle precisions greater than twice the host int size. */
|
||
gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
|
||
if (shift_amount == HOST_BITS_PER_WIDE_INT)
|
||
/* Shifting by the host word size is undefined according to the ANSI
|
||
standard, so we must handle this as a special case. */
|
||
high_value = -1;
|
||
else
|
||
high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
|
||
|
||
return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
|
||
&& TREE_INT_CST_HIGH (expr) == high_value);
|
||
}
|
||
else
|
||
return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
|
||
one bit on). */
|
||
|
||
int
|
||
integer_pow2p (const_tree expr)
|
||
{
|
||
int prec;
|
||
HOST_WIDE_INT high, low;
|
||
|
||
STRIP_NOPS (expr);
|
||
|
||
if (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_pow2p (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr)))
|
||
return 1;
|
||
|
||
if (TREE_CODE (expr) != INTEGER_CST)
|
||
return 0;
|
||
|
||
prec = TYPE_PRECISION (TREE_TYPE (expr));
|
||
high = TREE_INT_CST_HIGH (expr);
|
||
low = TREE_INT_CST_LOW (expr);
|
||
|
||
/* First clear all bits that are beyond the type's precision in case
|
||
we've been sign extended. */
|
||
|
||
if (prec == 2 * HOST_BITS_PER_WIDE_INT)
|
||
;
|
||
else if (prec > HOST_BITS_PER_WIDE_INT)
|
||
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
|
||
else
|
||
{
|
||
high = 0;
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
low &= ~((HOST_WIDE_INT) (-1) << prec);
|
||
}
|
||
|
||
if (high == 0 && low == 0)
|
||
return 0;
|
||
|
||
return ((high == 0 && (low & (low - 1)) == 0)
|
||
|| (low == 0 && (high & (high - 1)) == 0));
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer constant other than zero or a
|
||
complex constant other than zero. */
|
||
|
||
int
|
||
integer_nonzerop (const_tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == INTEGER_CST
|
||
&& (TREE_INT_CST_LOW (expr) != 0
|
||
|| TREE_INT_CST_HIGH (expr) != 0))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& (integer_nonzerop (TREE_REALPART (expr))
|
||
|| integer_nonzerop (TREE_IMAGPART (expr)))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the fixed-point constant zero. */
|
||
|
||
int
|
||
fixed_zerop (const_tree expr)
|
||
{
|
||
return (TREE_CODE (expr) == FIXED_CST
|
||
&& double_int_zero_p (TREE_FIXED_CST (expr).data));
|
||
}
|
||
|
||
/* Return the power of two represented by a tree node known to be a
|
||
power of two. */
|
||
|
||
int
|
||
tree_log2 (const_tree expr)
|
||
{
|
||
int prec;
|
||
HOST_WIDE_INT high, low;
|
||
|
||
STRIP_NOPS (expr);
|
||
|
||
if (TREE_CODE (expr) == COMPLEX_CST)
|
||
return tree_log2 (TREE_REALPART (expr));
|
||
|
||
prec = TYPE_PRECISION (TREE_TYPE (expr));
|
||
high = TREE_INT_CST_HIGH (expr);
|
||
low = TREE_INT_CST_LOW (expr);
|
||
|
||
/* First clear all bits that are beyond the type's precision in case
|
||
we've been sign extended. */
|
||
|
||
if (prec == 2 * HOST_BITS_PER_WIDE_INT)
|
||
;
|
||
else if (prec > HOST_BITS_PER_WIDE_INT)
|
||
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
|
||
else
|
||
{
|
||
high = 0;
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
low &= ~((HOST_WIDE_INT) (-1) << prec);
|
||
}
|
||
|
||
return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
|
||
: exact_log2 (low));
|
||
}
|
||
|
||
/* Similar, but return the largest integer Y such that 2 ** Y is less
|
||
than or equal to EXPR. */
|
||
|
||
int
|
||
tree_floor_log2 (const_tree expr)
|
||
{
|
||
int prec;
|
||
HOST_WIDE_INT high, low;
|
||
|
||
STRIP_NOPS (expr);
|
||
|
||
if (TREE_CODE (expr) == COMPLEX_CST)
|
||
return tree_log2 (TREE_REALPART (expr));
|
||
|
||
prec = TYPE_PRECISION (TREE_TYPE (expr));
|
||
high = TREE_INT_CST_HIGH (expr);
|
||
low = TREE_INT_CST_LOW (expr);
|
||
|
||
/* First clear all bits that are beyond the type's precision in case
|
||
we've been sign extended. Ignore if type's precision hasn't been set
|
||
since what we are doing is setting it. */
|
||
|
||
if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
|
||
;
|
||
else if (prec > HOST_BITS_PER_WIDE_INT)
|
||
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
|
||
else
|
||
{
|
||
high = 0;
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
low &= ~((HOST_WIDE_INT) (-1) << prec);
|
||
}
|
||
|
||
return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
|
||
: floor_log2 (low));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
|
||
decimal float constants, so don't return 1 for them. */
|
||
|
||
int
|
||
real_zerop (const_tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == REAL_CST
|
||
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
|
||
&& !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& real_zerop (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant one in real or complex form.
|
||
Trailing zeroes matter for decimal float constants, so don't return
|
||
1 for them. */
|
||
|
||
int
|
||
real_onep (const_tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == REAL_CST
|
||
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
|
||
&& !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& real_onep (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant two. Trailing zeroes matter
|
||
for decimal float constants, so don't return 1 for them. */
|
||
|
||
int
|
||
real_twop (const_tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == REAL_CST
|
||
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
|
||
&& !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& real_twop (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant minus one. Trailing zeroes
|
||
matter for decimal float constants, so don't return 1 for them. */
|
||
|
||
int
|
||
real_minus_onep (const_tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == REAL_CST
|
||
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
|
||
&& !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& real_minus_onep (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Nonzero if EXP is a constant or a cast of a constant. */
|
||
|
||
int
|
||
really_constant_p (const_tree exp)
|
||
{
|
||
/* This is not quite the same as STRIP_NOPS. It does more. */
|
||
while (CONVERT_EXPR_P (exp)
|
||
|| TREE_CODE (exp) == NON_LVALUE_EXPR)
|
||
exp = TREE_OPERAND (exp, 0);
|
||
return TREE_CONSTANT (exp);
|
||
}
|
||
|
||
/* Return first list element whose TREE_VALUE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
|
||
tree
|
||
value_member (tree elem, tree list)
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == TREE_VALUE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return first list element whose TREE_PURPOSE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
|
||
tree
|
||
purpose_member (const_tree elem, tree list)
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == TREE_PURPOSE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return true if ELEM is in V. */
|
||
|
||
bool
|
||
vec_member (const_tree elem, VEC(tree,gc) *v)
|
||
{
|
||
unsigned ix;
|
||
tree t;
|
||
FOR_EACH_VEC_ELT (tree, v, ix, t)
|
||
if (elem == t)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Returns element number IDX (zero-origin) of chain CHAIN, or
|
||
NULL_TREE. */
|
||
|
||
tree
|
||
chain_index (int idx, tree chain)
|
||
{
|
||
for (; chain && idx > 0; --idx)
|
||
chain = TREE_CHAIN (chain);
|
||
return chain;
|
||
}
|
||
|
||
/* Return nonzero if ELEM is part of the chain CHAIN. */
|
||
|
||
int
|
||
chain_member (const_tree elem, const_tree chain)
|
||
{
|
||
while (chain)
|
||
{
|
||
if (elem == chain)
|
||
return 1;
|
||
chain = DECL_CHAIN (chain);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the length of a chain of nodes chained through TREE_CHAIN.
|
||
We expect a null pointer to mark the end of the chain.
|
||
This is the Lisp primitive `length'. */
|
||
|
||
int
|
||
list_length (const_tree t)
|
||
{
|
||
const_tree p = t;
|
||
#ifdef ENABLE_TREE_CHECKING
|
||
const_tree q = t;
|
||
#endif
|
||
int len = 0;
|
||
|
||
while (p)
|
||
{
|
||
p = TREE_CHAIN (p);
|
||
#ifdef ENABLE_TREE_CHECKING
|
||
if (len % 2)
|
||
q = TREE_CHAIN (q);
|
||
gcc_assert (p != q);
|
||
#endif
|
||
len++;
|
||
}
|
||
|
||
return len;
|
||
}
|
||
|
||
/* Returns the number of FIELD_DECLs in TYPE. */
|
||
|
||
int
|
||
fields_length (const_tree type)
|
||
{
|
||
tree t = TYPE_FIELDS (type);
|
||
int count = 0;
|
||
|
||
for (; t; t = DECL_CHAIN (t))
|
||
if (TREE_CODE (t) == FIELD_DECL)
|
||
++count;
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
|
||
UNION_TYPE TYPE, or NULL_TREE if none. */
|
||
|
||
tree
|
||
first_field (const_tree type)
|
||
{
|
||
tree t = TYPE_FIELDS (type);
|
||
while (t && TREE_CODE (t) != FIELD_DECL)
|
||
t = TREE_CHAIN (t);
|
||
return t;
|
||
}
|
||
|
||
/* Concatenate two chains of nodes (chained through TREE_CHAIN)
|
||
by modifying the last node in chain 1 to point to chain 2.
|
||
This is the Lisp primitive `nconc'. */
|
||
|
||
tree
|
||
chainon (tree op1, tree op2)
|
||
{
|
||
tree t1;
|
||
|
||
if (!op1)
|
||
return op2;
|
||
if (!op2)
|
||
return op1;
|
||
|
||
for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
|
||
continue;
|
||
TREE_CHAIN (t1) = op2;
|
||
|
||
#ifdef ENABLE_TREE_CHECKING
|
||
{
|
||
tree t2;
|
||
for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
|
||
gcc_assert (t2 != t1);
|
||
}
|
||
#endif
|
||
|
||
return op1;
|
||
}
|
||
|
||
/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
|
||
|
||
tree
|
||
tree_last (tree chain)
|
||
{
|
||
tree next;
|
||
if (chain)
|
||
while ((next = TREE_CHAIN (chain)))
|
||
chain = next;
|
||
return chain;
|
||
}
|
||
|
||
/* Reverse the order of elements in the chain T,
|
||
and return the new head of the chain (old last element). */
|
||
|
||
tree
|
||
nreverse (tree t)
|
||
{
|
||
tree prev = 0, decl, next;
|
||
for (decl = t; decl; decl = next)
|
||
{
|
||
/* We shouldn't be using this function to reverse BLOCK chains; we
|
||
have blocks_nreverse for that. */
|
||
gcc_checking_assert (TREE_CODE (decl) != BLOCK);
|
||
next = TREE_CHAIN (decl);
|
||
TREE_CHAIN (decl) = prev;
|
||
prev = decl;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
/* Return a newly created TREE_LIST node whose
|
||
purpose and value fields are PARM and VALUE. */
|
||
|
||
tree
|
||
build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
|
||
{
|
||
tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
|
||
TREE_PURPOSE (t) = parm;
|
||
TREE_VALUE (t) = value;
|
||
return t;
|
||
}
|
||
|
||
/* Build a chain of TREE_LIST nodes from a vector. */
|
||
|
||
tree
|
||
build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
|
||
{
|
||
tree ret = NULL_TREE;
|
||
tree *pp = &ret;
|
||
unsigned int i;
|
||
tree t;
|
||
FOR_EACH_VEC_ELT (tree, vec, i, t)
|
||
{
|
||
*pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
|
||
pp = &TREE_CHAIN (*pp);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Return a newly created TREE_LIST node whose
|
||
purpose and value fields are PURPOSE and VALUE
|
||
and whose TREE_CHAIN is CHAIN. */
|
||
|
||
tree
|
||
tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
|
||
{
|
||
tree node;
|
||
|
||
node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
|
||
PASS_MEM_STAT);
|
||
memset (node, 0, sizeof (struct tree_common));
|
||
|
||
record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
|
||
|
||
TREE_SET_CODE (node, TREE_LIST);
|
||
TREE_CHAIN (node) = chain;
|
||
TREE_PURPOSE (node) = purpose;
|
||
TREE_VALUE (node) = value;
|
||
return node;
|
||
}
|
||
|
||
/* Return the values of the elements of a CONSTRUCTOR as a vector of
|
||
trees. */
|
||
|
||
VEC(tree,gc) *
|
||
ctor_to_vec (tree ctor)
|
||
{
|
||
VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
|
||
unsigned int ix;
|
||
tree val;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
|
||
VEC_quick_push (tree, vec, val);
|
||
|
||
return vec;
|
||
}
|
||
|
||
/* Return the size nominally occupied by an object of type TYPE
|
||
when it resides in memory. The value is measured in units of bytes,
|
||
and its data type is that normally used for type sizes
|
||
(which is the first type created by make_signed_type or
|
||
make_unsigned_type). */
|
||
|
||
tree
|
||
size_in_bytes (const_tree type)
|
||
{
|
||
tree t;
|
||
|
||
if (type == error_mark_node)
|
||
return integer_zero_node;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
t = TYPE_SIZE_UNIT (type);
|
||
|
||
if (t == 0)
|
||
{
|
||
lang_hooks.types.incomplete_type_error (NULL_TREE, type);
|
||
return size_zero_node;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return the size of TYPE (in bytes) as a wide integer
|
||
or return -1 if the size can vary or is larger than an integer. */
|
||
|
||
HOST_WIDE_INT
|
||
int_size_in_bytes (const_tree type)
|
||
{
|
||
tree t;
|
||
|
||
if (type == error_mark_node)
|
||
return 0;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
t = TYPE_SIZE_UNIT (type);
|
||
if (t == 0
|
||
|| TREE_CODE (t) != INTEGER_CST
|
||
|| TREE_INT_CST_HIGH (t) != 0
|
||
/* If the result would appear negative, it's too big to represent. */
|
||
|| (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
|
||
return -1;
|
||
|
||
return TREE_INT_CST_LOW (t);
|
||
}
|
||
|
||
/* Return the maximum size of TYPE (in bytes) as a wide integer
|
||
or return -1 if the size can vary or is larger than an integer. */
|
||
|
||
HOST_WIDE_INT
|
||
max_int_size_in_bytes (const_tree type)
|
||
{
|
||
HOST_WIDE_INT size = -1;
|
||
tree size_tree;
|
||
|
||
/* If this is an array type, check for a possible MAX_SIZE attached. */
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
size_tree = TYPE_ARRAY_MAX_SIZE (type);
|
||
|
||
if (size_tree && host_integerp (size_tree, 1))
|
||
size = tree_low_cst (size_tree, 1);
|
||
}
|
||
|
||
/* If we still haven't been able to get a size, see if the language
|
||
can compute a maximum size. */
|
||
|
||
if (size == -1)
|
||
{
|
||
size_tree = lang_hooks.types.max_size (type);
|
||
|
||
if (size_tree && host_integerp (size_tree, 1))
|
||
size = tree_low_cst (size_tree, 1);
|
||
}
|
||
|
||
return size;
|
||
}
|
||
|
||
/* Returns a tree for the size of EXP in bytes. */
|
||
|
||
tree
|
||
tree_expr_size (const_tree exp)
|
||
{
|
||
if (DECL_P (exp)
|
||
&& DECL_SIZE_UNIT (exp) != 0)
|
||
return DECL_SIZE_UNIT (exp);
|
||
else
|
||
return size_in_bytes (TREE_TYPE (exp));
|
||
}
|
||
|
||
/* Return the bit position of FIELD, in bits from the start of the record.
|
||
This is a tree of type bitsizetype. */
|
||
|
||
tree
|
||
bit_position (const_tree field)
|
||
{
|
||
return bit_from_pos (DECL_FIELD_OFFSET (field),
|
||
DECL_FIELD_BIT_OFFSET (field));
|
||
}
|
||
|
||
/* Likewise, but return as an integer. It must be representable in
|
||
that way (since it could be a signed value, we don't have the
|
||
option of returning -1 like int_size_in_byte can. */
|
||
|
||
HOST_WIDE_INT
|
||
int_bit_position (const_tree field)
|
||
{
|
||
return tree_low_cst (bit_position (field), 0);
|
||
}
|
||
|
||
/* Return the byte position of FIELD, in bytes from the start of the record.
|
||
This is a tree of type sizetype. */
|
||
|
||
tree
|
||
byte_position (const_tree field)
|
||
{
|
||
return byte_from_pos (DECL_FIELD_OFFSET (field),
|
||
DECL_FIELD_BIT_OFFSET (field));
|
||
}
|
||
|
||
/* Likewise, but return as an integer. It must be representable in
|
||
that way (since it could be a signed value, we don't have the
|
||
option of returning -1 like int_size_in_byte can. */
|
||
|
||
HOST_WIDE_INT
|
||
int_byte_position (const_tree field)
|
||
{
|
||
return tree_low_cst (byte_position (field), 0);
|
||
}
|
||
|
||
/* Return the strictest alignment, in bits, that T is known to have. */
|
||
|
||
unsigned int
|
||
expr_align (const_tree t)
|
||
{
|
||
unsigned int align0, align1;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
CASE_CONVERT: case NON_LVALUE_EXPR:
|
||
/* If we have conversions, we know that the alignment of the
|
||
object must meet each of the alignments of the types. */
|
||
align0 = expr_align (TREE_OPERAND (t, 0));
|
||
align1 = TYPE_ALIGN (TREE_TYPE (t));
|
||
return MAX (align0, align1);
|
||
|
||
case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
|
||
case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
|
||
case CLEANUP_POINT_EXPR:
|
||
/* These don't change the alignment of an object. */
|
||
return expr_align (TREE_OPERAND (t, 0));
|
||
|
||
case COND_EXPR:
|
||
/* The best we can do is say that the alignment is the least aligned
|
||
of the two arms. */
|
||
align0 = expr_align (TREE_OPERAND (t, 1));
|
||
align1 = expr_align (TREE_OPERAND (t, 2));
|
||
return MIN (align0, align1);
|
||
|
||
/* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
|
||
meaningfully, it's always 1. */
|
||
case LABEL_DECL: case CONST_DECL:
|
||
case VAR_DECL: case PARM_DECL: case RESULT_DECL:
|
||
case FUNCTION_DECL:
|
||
gcc_assert (DECL_ALIGN (t) != 0);
|
||
return DECL_ALIGN (t);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Otherwise take the alignment from that of the type. */
|
||
return TYPE_ALIGN (TREE_TYPE (t));
|
||
}
|
||
|
||
/* Return, as a tree node, the number of elements for TYPE (which is an
|
||
ARRAY_TYPE) minus one. This counts only elements of the top array. */
|
||
|
||
tree
|
||
array_type_nelts (const_tree type)
|
||
{
|
||
tree index_type, min, max;
|
||
|
||
/* If they did it with unspecified bounds, then we should have already
|
||
given an error about it before we got here. */
|
||
if (! TYPE_DOMAIN (type))
|
||
return error_mark_node;
|
||
|
||
index_type = TYPE_DOMAIN (type);
|
||
min = TYPE_MIN_VALUE (index_type);
|
||
max = TYPE_MAX_VALUE (index_type);
|
||
|
||
/* TYPE_MAX_VALUE may not be set if the array has unknown length. */
|
||
if (!max)
|
||
return error_mark_node;
|
||
|
||
return (integer_zerop (min)
|
||
? max
|
||
: fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
|
||
}
|
||
|
||
/* If arg is static -- a reference to an object in static storage -- then
|
||
return the object. This is not the same as the C meaning of `static'.
|
||
If arg isn't static, return NULL. */
|
||
|
||
tree
|
||
staticp (tree arg)
|
||
{
|
||
switch (TREE_CODE (arg))
|
||
{
|
||
case FUNCTION_DECL:
|
||
/* Nested functions are static, even though taking their address will
|
||
involve a trampoline as we unnest the nested function and create
|
||
the trampoline on the tree level. */
|
||
return arg;
|
||
|
||
case VAR_DECL:
|
||
return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
|
||
&& ! DECL_THREAD_LOCAL_P (arg)
|
||
&& ! DECL_DLLIMPORT_P (arg)
|
||
? arg : NULL);
|
||
|
||
case CONST_DECL:
|
||
return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
|
||
? arg : NULL);
|
||
|
||
case CONSTRUCTOR:
|
||
return TREE_STATIC (arg) ? arg : NULL;
|
||
|
||
case LABEL_DECL:
|
||
case STRING_CST:
|
||
return arg;
|
||
|
||
case COMPONENT_REF:
|
||
/* If the thing being referenced is not a field, then it is
|
||
something language specific. */
|
||
gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
|
||
|
||
/* If we are referencing a bitfield, we can't evaluate an
|
||
ADDR_EXPR at compile time and so it isn't a constant. */
|
||
if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
|
||
return NULL;
|
||
|
||
return staticp (TREE_OPERAND (arg, 0));
|
||
|
||
case BIT_FIELD_REF:
|
||
return NULL;
|
||
|
||
case INDIRECT_REF:
|
||
return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
|
||
&& TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
|
||
return staticp (TREE_OPERAND (arg, 0));
|
||
else
|
||
return NULL;
|
||
|
||
case COMPOUND_LITERAL_EXPR:
|
||
return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
|
||
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Return whether OP is a DECL whose address is function-invariant. */
|
||
|
||
bool
|
||
decl_address_invariant_p (const_tree op)
|
||
{
|
||
/* The conditions below are slightly less strict than the one in
|
||
staticp. */
|
||
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
case LABEL_DECL:
|
||
case FUNCTION_DECL:
|
||
return true;
|
||
|
||
case VAR_DECL:
|
||
if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
|
||
|| DECL_THREAD_LOCAL_P (op)
|
||
|| DECL_CONTEXT (op) == current_function_decl
|
||
|| decl_function_context (op) == current_function_decl)
|
||
return true;
|
||
break;
|
||
|
||
case CONST_DECL:
|
||
if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
|
||
|| decl_function_context (op) == current_function_decl)
|
||
return true;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return whether OP is a DECL whose address is interprocedural-invariant. */
|
||
|
||
bool
|
||
decl_address_ip_invariant_p (const_tree op)
|
||
{
|
||
/* The conditions below are slightly less strict than the one in
|
||
staticp. */
|
||
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case LABEL_DECL:
|
||
case FUNCTION_DECL:
|
||
case STRING_CST:
|
||
return true;
|
||
|
||
case VAR_DECL:
|
||
if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
|
||
&& !DECL_DLLIMPORT_P (op))
|
||
|| DECL_THREAD_LOCAL_P (op))
|
||
return true;
|
||
break;
|
||
|
||
case CONST_DECL:
|
||
if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
|
||
return true;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if T is function-invariant (internal function, does
|
||
not handle arithmetic; that's handled in skip_simple_arithmetic and
|
||
tree_invariant_p). */
|
||
|
||
static bool tree_invariant_p (tree t);
|
||
|
||
static bool
|
||
tree_invariant_p_1 (tree t)
|
||
{
|
||
tree op;
|
||
|
||
if (TREE_CONSTANT (t)
|
||
|| (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
|
||
return true;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case SAVE_EXPR:
|
||
return true;
|
||
|
||
case ADDR_EXPR:
|
||
op = TREE_OPERAND (t, 0);
|
||
while (handled_component_p (op))
|
||
{
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
if (!tree_invariant_p (TREE_OPERAND (op, 1))
|
||
|| TREE_OPERAND (op, 2) != NULL_TREE
|
||
|| TREE_OPERAND (op, 3) != NULL_TREE)
|
||
return false;
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (op, 2) != NULL_TREE)
|
||
return false;
|
||
break;
|
||
|
||
default:;
|
||
}
|
||
op = TREE_OPERAND (op, 0);
|
||
}
|
||
|
||
return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if T is function-invariant. */
|
||
|
||
static bool
|
||
tree_invariant_p (tree t)
|
||
{
|
||
tree inner = skip_simple_arithmetic (t);
|
||
return tree_invariant_p_1 (inner);
|
||
}
|
||
|
||
/* Wrap a SAVE_EXPR around EXPR, if appropriate.
|
||
Do this to any expression which may be used in more than one place,
|
||
but must be evaluated only once.
|
||
|
||
Normally, expand_expr would reevaluate the expression each time.
|
||
Calling save_expr produces something that is evaluated and recorded
|
||
the first time expand_expr is called on it. Subsequent calls to
|
||
expand_expr just reuse the recorded value.
|
||
|
||
The call to expand_expr that generates code that actually computes
|
||
the value is the first call *at compile time*. Subsequent calls
|
||
*at compile time* generate code to use the saved value.
|
||
This produces correct result provided that *at run time* control
|
||
always flows through the insns made by the first expand_expr
|
||
before reaching the other places where the save_expr was evaluated.
|
||
You, the caller of save_expr, must make sure this is so.
|
||
|
||
Constants, and certain read-only nodes, are returned with no
|
||
SAVE_EXPR because that is safe. Expressions containing placeholders
|
||
are not touched; see tree.def for an explanation of what these
|
||
are used for. */
|
||
|
||
tree
|
||
save_expr (tree expr)
|
||
{
|
||
tree t = fold (expr);
|
||
tree inner;
|
||
|
||
/* If the tree evaluates to a constant, then we don't want to hide that
|
||
fact (i.e. this allows further folding, and direct checks for constants).
|
||
However, a read-only object that has side effects cannot be bypassed.
|
||
Since it is no problem to reevaluate literals, we just return the
|
||
literal node. */
|
||
inner = skip_simple_arithmetic (t);
|
||
if (TREE_CODE (inner) == ERROR_MARK)
|
||
return inner;
|
||
|
||
if (tree_invariant_p_1 (inner))
|
||
return t;
|
||
|
||
/* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
|
||
it means that the size or offset of some field of an object depends on
|
||
the value within another field.
|
||
|
||
Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
|
||
and some variable since it would then need to be both evaluated once and
|
||
evaluated more than once. Front-ends must assure this case cannot
|
||
happen by surrounding any such subexpressions in their own SAVE_EXPR
|
||
and forcing evaluation at the proper time. */
|
||
if (contains_placeholder_p (inner))
|
||
return t;
|
||
|
||
t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
|
||
SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
|
||
|
||
/* This expression might be placed ahead of a jump to ensure that the
|
||
value was computed on both sides of the jump. So make sure it isn't
|
||
eliminated as dead. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
return t;
|
||
}
|
||
|
||
/* Look inside EXPR and into any simple arithmetic operations. Return
|
||
the innermost non-arithmetic node. */
|
||
|
||
tree
|
||
skip_simple_arithmetic (tree expr)
|
||
{
|
||
tree inner;
|
||
|
||
/* We don't care about whether this can be used as an lvalue in this
|
||
context. */
|
||
while (TREE_CODE (expr) == NON_LVALUE_EXPR)
|
||
expr = TREE_OPERAND (expr, 0);
|
||
|
||
/* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
|
||
a constant, it will be more efficient to not make another SAVE_EXPR since
|
||
it will allow better simplification and GCSE will be able to merge the
|
||
computations if they actually occur. */
|
||
inner = expr;
|
||
while (1)
|
||
{
|
||
if (UNARY_CLASS_P (inner))
|
||
inner = TREE_OPERAND (inner, 0);
|
||
else if (BINARY_CLASS_P (inner))
|
||
{
|
||
if (tree_invariant_p (TREE_OPERAND (inner, 1)))
|
||
inner = TREE_OPERAND (inner, 0);
|
||
else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
|
||
inner = TREE_OPERAND (inner, 1);
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
return inner;
|
||
}
|
||
|
||
|
||
/* Return which tree structure is used by T. */
|
||
|
||
enum tree_node_structure_enum
|
||
tree_node_structure (const_tree t)
|
||
{
|
||
const enum tree_code code = TREE_CODE (t);
|
||
return tree_node_structure_for_code (code);
|
||
}
|
||
|
||
/* Set various status flags when building a CALL_EXPR object T. */
|
||
|
||
static void
|
||
process_call_operands (tree t)
|
||
{
|
||
bool side_effects = TREE_SIDE_EFFECTS (t);
|
||
bool read_only = false;
|
||
int i = call_expr_flags (t);
|
||
|
||
/* Calls have side-effects, except those to const or pure functions. */
|
||
if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
|
||
side_effects = true;
|
||
/* Propagate TREE_READONLY of arguments for const functions. */
|
||
if (i & ECF_CONST)
|
||
read_only = true;
|
||
|
||
if (!side_effects || read_only)
|
||
for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
|
||
{
|
||
tree op = TREE_OPERAND (t, i);
|
||
if (op && TREE_SIDE_EFFECTS (op))
|
||
side_effects = true;
|
||
if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
|
||
read_only = false;
|
||
}
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_READONLY (t) = read_only;
|
||
}
|
||
|
||
/* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
|
||
size or offset that depends on a field within a record. */
|
||
|
||
bool
|
||
contains_placeholder_p (const_tree exp)
|
||
{
|
||
enum tree_code code;
|
||
|
||
if (!exp)
|
||
return 0;
|
||
|
||
code = TREE_CODE (exp);
|
||
if (code == PLACEHOLDER_EXPR)
|
||
return 1;
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_reference:
|
||
/* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
|
||
position computations since they will be converted into a
|
||
WITH_RECORD_EXPR involving the reference, which will assume
|
||
here will be valid. */
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
|
||
|
||
case tcc_exceptional:
|
||
if (code == TREE_LIST)
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
|
||
break;
|
||
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_expression:
|
||
switch (code)
|
||
{
|
||
case COMPOUND_EXPR:
|
||
/* Ignoring the first operand isn't quite right, but works best. */
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
|
||
|
||
case COND_EXPR:
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
|
||
|
||
case SAVE_EXPR:
|
||
/* The save_expr function never wraps anything containing
|
||
a PLACEHOLDER_EXPR. */
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (TREE_CODE_LENGTH (code))
|
||
{
|
||
case 1:
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
|
||
case 2:
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
case tcc_vl_exp:
|
||
switch (code)
|
||
{
|
||
case CALL_EXPR:
|
||
{
|
||
const_tree arg;
|
||
const_call_expr_arg_iterator iter;
|
||
FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
|
||
if (CONTAINS_PLACEHOLDER_P (arg))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
|
||
directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
|
||
field positions. */
|
||
|
||
static bool
|
||
type_contains_placeholder_1 (const_tree type)
|
||
{
|
||
/* If the size contains a placeholder or the parent type (component type in
|
||
the case of arrays) type involves a placeholder, this type does. */
|
||
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
|
||
|| CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
|
||
|| (!POINTER_TYPE_P (type)
|
||
&& TREE_TYPE (type)
|
||
&& type_contains_placeholder_p (TREE_TYPE (type))))
|
||
return true;
|
||
|
||
/* Now do type-specific checks. Note that the last part of the check above
|
||
greatly limits what we have to do below. */
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case VOID_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case POINTER_TYPE:
|
||
case OFFSET_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case METHOD_TYPE:
|
||
case FUNCTION_TYPE:
|
||
case VECTOR_TYPE:
|
||
return false;
|
||
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case FIXED_POINT_TYPE:
|
||
/* Here we just check the bounds. */
|
||
return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
|
||
|| CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
|
||
|
||
case ARRAY_TYPE:
|
||
/* We have already checked the component type above, so just check the
|
||
domain type. */
|
||
return type_contains_placeholder_p (TYPE_DOMAIN (type));
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
tree field;
|
||
|
||
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL
|
||
&& (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
|
||
|| (TREE_CODE (type) == QUAL_UNION_TYPE
|
||
&& CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
|
||
|| type_contains_placeholder_p (TREE_TYPE (field))))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Wrapper around above function used to cache its result. */
|
||
|
||
bool
|
||
type_contains_placeholder_p (tree type)
|
||
{
|
||
bool result;
|
||
|
||
/* If the contains_placeholder_bits field has been initialized,
|
||
then we know the answer. */
|
||
if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
|
||
return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
|
||
|
||
/* Indicate that we've seen this type node, and the answer is false.
|
||
This is what we want to return if we run into recursion via fields. */
|
||
TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
|
||
|
||
/* Compute the real value. */
|
||
result = type_contains_placeholder_1 (type);
|
||
|
||
/* Store the real value. */
|
||
TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Push tree EXP onto vector QUEUE if it is not already present. */
|
||
|
||
static void
|
||
push_without_duplicates (tree exp, VEC (tree, heap) **queue)
|
||
{
|
||
unsigned int i;
|
||
tree iter;
|
||
|
||
FOR_EACH_VEC_ELT (tree, *queue, i, iter)
|
||
if (simple_cst_equal (iter, exp) == 1)
|
||
break;
|
||
|
||
if (!iter)
|
||
VEC_safe_push (tree, heap, *queue, exp);
|
||
}
|
||
|
||
/* Given a tree EXP, find all occurences of references to fields
|
||
in a PLACEHOLDER_EXPR and place them in vector REFS without
|
||
duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
|
||
we assume here that EXP contains only arithmetic expressions
|
||
or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
|
||
argument list. */
|
||
|
||
void
|
||
find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
tree inner;
|
||
int i;
|
||
|
||
/* We handle TREE_LIST and COMPONENT_REF separately. */
|
||
if (code == TREE_LIST)
|
||
{
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
|
||
}
|
||
else if (code == COMPONENT_REF)
|
||
{
|
||
for (inner = TREE_OPERAND (exp, 0);
|
||
REFERENCE_CLASS_P (inner);
|
||
inner = TREE_OPERAND (inner, 0))
|
||
;
|
||
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
|
||
push_without_duplicates (exp, refs);
|
||
else
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
|
||
}
|
||
else
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_constant:
|
||
break;
|
||
|
||
case tcc_declaration:
|
||
/* Variables allocated to static storage can stay. */
|
||
if (!TREE_STATIC (exp))
|
||
push_without_duplicates (exp, refs);
|
||
break;
|
||
|
||
case tcc_expression:
|
||
/* This is the pattern built in ada/make_aligning_type. */
|
||
if (code == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
|
||
{
|
||
push_without_duplicates (exp, refs);
|
||
break;
|
||
}
|
||
|
||
/* Fall through... */
|
||
|
||
case tcc_exceptional:
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_reference:
|
||
for (i = 0; i < TREE_CODE_LENGTH (code); i++)
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
|
||
break;
|
||
|
||
case tcc_vl_exp:
|
||
for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
|
||
return a tree with all occurrences of references to F in a
|
||
PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
|
||
CONST_DECLs. Note that we assume here that EXP contains only
|
||
arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
|
||
occurring only in their argument list. */
|
||
|
||
tree
|
||
substitute_in_expr (tree exp, tree f, tree r)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
tree op0, op1, op2, op3;
|
||
tree new_tree;
|
||
|
||
/* We handle TREE_LIST and COMPONENT_REF separately. */
|
||
if (code == TREE_LIST)
|
||
{
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
|
||
op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
|
||
if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
|
||
return exp;
|
||
|
||
return tree_cons (TREE_PURPOSE (exp), op1, op0);
|
||
}
|
||
else if (code == COMPONENT_REF)
|
||
{
|
||
tree inner;
|
||
|
||
/* If this expression is getting a value from a PLACEHOLDER_EXPR
|
||
and it is the right field, replace it with R. */
|
||
for (inner = TREE_OPERAND (exp, 0);
|
||
REFERENCE_CLASS_P (inner);
|
||
inner = TREE_OPERAND (inner, 0))
|
||
;
|
||
|
||
/* The field. */
|
||
op1 = TREE_OPERAND (exp, 1);
|
||
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
|
||
return r;
|
||
|
||
/* If this expression hasn't been completed let, leave it alone. */
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
|
||
return exp;
|
||
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
new_tree
|
||
= fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
|
||
}
|
||
else
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_constant:
|
||
return exp;
|
||
|
||
case tcc_declaration:
|
||
if (exp == f)
|
||
return r;
|
||
else
|
||
return exp;
|
||
|
||
case tcc_expression:
|
||
if (exp == f)
|
||
return r;
|
||
|
||
/* Fall through... */
|
||
|
||
case tcc_exceptional:
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_reference:
|
||
switch (TREE_CODE_LENGTH (code))
|
||
{
|
||
case 0:
|
||
return exp;
|
||
|
||
case 1:
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
|
||
break;
|
||
|
||
case 2:
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
|
||
return exp;
|
||
|
||
new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
|
||
break;
|
||
|
||
case 3:
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
|
||
op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2))
|
||
return exp;
|
||
|
||
new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
|
||
break;
|
||
|
||
case 4:
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
|
||
op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
|
||
op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2)
|
||
&& op3 == TREE_OPERAND (exp, 3))
|
||
return exp;
|
||
|
||
new_tree
|
||
= fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
case tcc_vl_exp:
|
||
{
|
||
int i;
|
||
|
||
new_tree = NULL_TREE;
|
||
|
||
/* If we are trying to replace F with a constant, inline back
|
||
functions which do nothing else than computing a value from
|
||
the arguments they are passed. This makes it possible to
|
||
fold partially or entirely the replacement expression. */
|
||
if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
|
||
{
|
||
tree t = maybe_inline_call_in_expr (exp);
|
||
if (t)
|
||
return SUBSTITUTE_IN_EXPR (t, f, r);
|
||
}
|
||
|
||
for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
|
||
{
|
||
tree op = TREE_OPERAND (exp, i);
|
||
tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
|
||
if (new_op != op)
|
||
{
|
||
if (!new_tree)
|
||
new_tree = copy_node (exp);
|
||
TREE_OPERAND (new_tree, i) = new_op;
|
||
}
|
||
}
|
||
|
||
if (new_tree)
|
||
{
|
||
new_tree = fold (new_tree);
|
||
if (TREE_CODE (new_tree) == CALL_EXPR)
|
||
process_call_operands (new_tree);
|
||
}
|
||
else
|
||
return exp;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
TREE_READONLY (new_tree) |= TREE_READONLY (exp);
|
||
|
||
if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
|
||
TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
|
||
|
||
return new_tree;
|
||
}
|
||
|
||
/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
|
||
for it within OBJ, a tree that is an object or a chain of references. */
|
||
|
||
tree
|
||
substitute_placeholder_in_expr (tree exp, tree obj)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
tree op0, op1, op2, op3;
|
||
tree new_tree;
|
||
|
||
/* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
|
||
in the chain of OBJ. */
|
||
if (code == PLACEHOLDER_EXPR)
|
||
{
|
||
tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
|
||
tree elt;
|
||
|
||
for (elt = obj; elt != 0;
|
||
elt = ((TREE_CODE (elt) == COMPOUND_EXPR
|
||
|| TREE_CODE (elt) == COND_EXPR)
|
||
? TREE_OPERAND (elt, 1)
|
||
: (REFERENCE_CLASS_P (elt)
|
||
|| UNARY_CLASS_P (elt)
|
||
|| BINARY_CLASS_P (elt)
|
||
|| VL_EXP_CLASS_P (elt)
|
||
|| EXPRESSION_CLASS_P (elt))
|
||
? TREE_OPERAND (elt, 0) : 0))
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
|
||
return elt;
|
||
|
||
for (elt = obj; elt != 0;
|
||
elt = ((TREE_CODE (elt) == COMPOUND_EXPR
|
||
|| TREE_CODE (elt) == COND_EXPR)
|
||
? TREE_OPERAND (elt, 1)
|
||
: (REFERENCE_CLASS_P (elt)
|
||
|| UNARY_CLASS_P (elt)
|
||
|| BINARY_CLASS_P (elt)
|
||
|| VL_EXP_CLASS_P (elt)
|
||
|| EXPRESSION_CLASS_P (elt))
|
||
? TREE_OPERAND (elt, 0) : 0))
|
||
if (POINTER_TYPE_P (TREE_TYPE (elt))
|
||
&& (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
|
||
== need_type))
|
||
return fold_build1 (INDIRECT_REF, need_type, elt);
|
||
|
||
/* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
|
||
survives until RTL generation, there will be an error. */
|
||
return exp;
|
||
}
|
||
|
||
/* TREE_LIST is special because we need to look at TREE_VALUE
|
||
and TREE_CHAIN, not TREE_OPERANDS. */
|
||
else if (code == TREE_LIST)
|
||
{
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
|
||
op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
|
||
if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
|
||
return exp;
|
||
|
||
return tree_cons (TREE_PURPOSE (exp), op1, op0);
|
||
}
|
||
else
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_constant:
|
||
case tcc_declaration:
|
||
return exp;
|
||
|
||
case tcc_exceptional:
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_expression:
|
||
case tcc_reference:
|
||
case tcc_statement:
|
||
switch (TREE_CODE_LENGTH (code))
|
||
{
|
||
case 0:
|
||
return exp;
|
||
|
||
case 1:
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
|
||
break;
|
||
|
||
case 2:
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
|
||
op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
|
||
return exp;
|
||
|
||
new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
|
||
break;
|
||
|
||
case 3:
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
|
||
op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
|
||
op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2))
|
||
return exp;
|
||
|
||
new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
|
||
break;
|
||
|
||
case 4:
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
|
||
op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
|
||
op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
|
||
op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2)
|
||
&& op3 == TREE_OPERAND (exp, 3))
|
||
return exp;
|
||
|
||
new_tree
|
||
= fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
case tcc_vl_exp:
|
||
{
|
||
int i;
|
||
|
||
new_tree = NULL_TREE;
|
||
|
||
for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
|
||
{
|
||
tree op = TREE_OPERAND (exp, i);
|
||
tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
|
||
if (new_op != op)
|
||
{
|
||
if (!new_tree)
|
||
new_tree = copy_node (exp);
|
||
TREE_OPERAND (new_tree, i) = new_op;
|
||
}
|
||
}
|
||
|
||
if (new_tree)
|
||
{
|
||
new_tree = fold (new_tree);
|
||
if (TREE_CODE (new_tree) == CALL_EXPR)
|
||
process_call_operands (new_tree);
|
||
}
|
||
else
|
||
return exp;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
TREE_READONLY (new_tree) |= TREE_READONLY (exp);
|
||
|
||
if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
|
||
TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
|
||
|
||
return new_tree;
|
||
}
|
||
|
||
/* Stabilize a reference so that we can use it any number of times
|
||
without causing its operands to be evaluated more than once.
|
||
Returns the stabilized reference. This works by means of save_expr,
|
||
so see the caveats in the comments about save_expr.
|
||
|
||
Also allows conversion expressions whose operands are references.
|
||
Any other kind of expression is returned unchanged. */
|
||
|
||
tree
|
||
stabilize_reference (tree ref)
|
||
{
|
||
tree result;
|
||
enum tree_code code = TREE_CODE (ref);
|
||
|
||
switch (code)
|
||
{
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
/* No action is needed in this case. */
|
||
return ref;
|
||
|
||
CASE_CONVERT:
|
||
case FLOAT_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
result = build_nt (INDIRECT_REF,
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 0)));
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
result = build_nt (COMPONENT_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
TREE_OPERAND (ref, 1), NULL_TREE);
|
||
break;
|
||
|
||
case BIT_FIELD_REF:
|
||
result = build_nt (BIT_FIELD_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 1)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 2)));
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
result = build_nt (ARRAY_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 1)),
|
||
TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
|
||
break;
|
||
|
||
case ARRAY_RANGE_REF:
|
||
result = build_nt (ARRAY_RANGE_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 1)),
|
||
TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
|
||
break;
|
||
|
||
case COMPOUND_EXPR:
|
||
/* We cannot wrap the first expression in a SAVE_EXPR, as then
|
||
it wouldn't be ignored. This matters when dealing with
|
||
volatiles. */
|
||
return stabilize_reference_1 (ref);
|
||
|
||
/* If arg isn't a kind of lvalue we recognize, make no change.
|
||
Caller should recognize the error for an invalid lvalue. */
|
||
default:
|
||
return ref;
|
||
|
||
case ERROR_MARK:
|
||
return error_mark_node;
|
||
}
|
||
|
||
TREE_TYPE (result) = TREE_TYPE (ref);
|
||
TREE_READONLY (result) = TREE_READONLY (ref);
|
||
TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
|
||
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Subroutine of stabilize_reference; this is called for subtrees of
|
||
references. Any expression with side-effects must be put in a SAVE_EXPR
|
||
to ensure that it is only evaluated once.
|
||
|
||
We don't put SAVE_EXPR nodes around everything, because assigning very
|
||
simple expressions to temporaries causes us to miss good opportunities
|
||
for optimizations. Among other things, the opportunity to fold in the
|
||
addition of a constant into an addressing mode often gets lost, e.g.
|
||
"y[i+1] += x;". In general, we take the approach that we should not make
|
||
an assignment unless we are forced into it - i.e., that any non-side effect
|
||
operator should be allowed, and that cse should take care of coalescing
|
||
multiple utterances of the same expression should that prove fruitful. */
|
||
|
||
tree
|
||
stabilize_reference_1 (tree e)
|
||
{
|
||
tree result;
|
||
enum tree_code code = TREE_CODE (e);
|
||
|
||
/* We cannot ignore const expressions because it might be a reference
|
||
to a const array but whose index contains side-effects. But we can
|
||
ignore things that are actual constant or that already have been
|
||
handled by this function. */
|
||
|
||
if (tree_invariant_p (e))
|
||
return e;
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_exceptional:
|
||
case tcc_type:
|
||
case tcc_declaration:
|
||
case tcc_comparison:
|
||
case tcc_statement:
|
||
case tcc_expression:
|
||
case tcc_reference:
|
||
case tcc_vl_exp:
|
||
/* If the expression has side-effects, then encase it in a SAVE_EXPR
|
||
so that it will only be evaluated once. */
|
||
/* The reference (r) and comparison (<) classes could be handled as
|
||
below, but it is generally faster to only evaluate them once. */
|
||
if (TREE_SIDE_EFFECTS (e))
|
||
return save_expr (e);
|
||
return e;
|
||
|
||
case tcc_constant:
|
||
/* Constants need no processing. In fact, we should never reach
|
||
here. */
|
||
return e;
|
||
|
||
case tcc_binary:
|
||
/* Division is slow and tends to be compiled with jumps,
|
||
especially the division by powers of 2 that is often
|
||
found inside of an array reference. So do it just once. */
|
||
if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
|
||
|| code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
|
||
|| code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
|
||
|| code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
|
||
return save_expr (e);
|
||
/* Recursively stabilize each operand. */
|
||
result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (e, 1)));
|
||
break;
|
||
|
||
case tcc_unary:
|
||
/* Recursively stabilize each operand. */
|
||
result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
TREE_TYPE (result) = TREE_TYPE (e);
|
||
TREE_READONLY (result) = TREE_READONLY (e);
|
||
TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
|
||
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Low-level constructors for expressions. */
|
||
|
||
/* A helper function for build1 and constant folders. Set TREE_CONSTANT,
|
||
and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
|
||
|
||
void
|
||
recompute_tree_invariant_for_addr_expr (tree t)
|
||
{
|
||
tree node;
|
||
bool tc = true, se = false;
|
||
|
||
/* We started out assuming this address is both invariant and constant, but
|
||
does not have side effects. Now go down any handled components and see if
|
||
any of them involve offsets that are either non-constant or non-invariant.
|
||
Also check for side-effects.
|
||
|
||
??? Note that this code makes no attempt to deal with the case where
|
||
taking the address of something causes a copy due to misalignment. */
|
||
|
||
#define UPDATE_FLAGS(NODE) \
|
||
do { tree _node = (NODE); \
|
||
if (_node && !TREE_CONSTANT (_node)) tc = false; \
|
||
if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
|
||
|
||
for (node = TREE_OPERAND (t, 0); handled_component_p (node);
|
||
node = TREE_OPERAND (node, 0))
|
||
{
|
||
/* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
|
||
array reference (probably made temporarily by the G++ front end),
|
||
so ignore all the operands. */
|
||
if ((TREE_CODE (node) == ARRAY_REF
|
||
|| TREE_CODE (node) == ARRAY_RANGE_REF)
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
|
||
{
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 1));
|
||
if (TREE_OPERAND (node, 2))
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 2));
|
||
if (TREE_OPERAND (node, 3))
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 3));
|
||
}
|
||
/* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
|
||
FIELD_DECL, apparently. The G++ front end can put something else
|
||
there, at least temporarily. */
|
||
else if (TREE_CODE (node) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
|
||
{
|
||
if (TREE_OPERAND (node, 2))
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 2));
|
||
}
|
||
else if (TREE_CODE (node) == BIT_FIELD_REF)
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 2));
|
||
}
|
||
|
||
node = lang_hooks.expr_to_decl (node, &tc, &se);
|
||
|
||
/* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
|
||
the address, since &(*a)->b is a form of addition. If it's a constant, the
|
||
address is constant too. If it's a decl, its address is constant if the
|
||
decl is static. Everything else is not constant and, furthermore,
|
||
taking the address of a volatile variable is not volatile. */
|
||
if (TREE_CODE (node) == INDIRECT_REF
|
||
|| TREE_CODE (node) == MEM_REF)
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 0));
|
||
else if (CONSTANT_CLASS_P (node))
|
||
;
|
||
else if (DECL_P (node))
|
||
tc &= (staticp (node) != NULL_TREE);
|
||
else
|
||
{
|
||
tc = false;
|
||
se |= TREE_SIDE_EFFECTS (node);
|
||
}
|
||
|
||
|
||
TREE_CONSTANT (t) = tc;
|
||
TREE_SIDE_EFFECTS (t) = se;
|
||
#undef UPDATE_FLAGS
|
||
}
|
||
|
||
/* Build an expression of code CODE, data type TYPE, and operands as
|
||
specified. Expressions and reference nodes can be created this way.
|
||
Constants, decls, types and misc nodes cannot be.
|
||
|
||
We define 5 non-variadic functions, from 0 to 4 arguments. This is
|
||
enough for all extant tree codes. */
|
||
|
||
tree
|
||
build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 0);
|
||
|
||
t = make_node_stat (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
|
||
{
|
||
int length = sizeof (struct tree_exp);
|
||
tree t;
|
||
|
||
record_node_allocation_statistics (code, length);
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 1);
|
||
|
||
t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
|
||
|
||
memset (t, 0, sizeof (struct tree_common));
|
||
|
||
TREE_SET_CODE (t, code);
|
||
|
||
TREE_TYPE (t) = type;
|
||
SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
|
||
TREE_OPERAND (t, 0) = node;
|
||
TREE_BLOCK (t) = NULL_TREE;
|
||
if (node && !TYPE_P (node))
|
||
{
|
||
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
|
||
TREE_READONLY (t) = TREE_READONLY (node);
|
||
}
|
||
|
||
if (TREE_CODE_CLASS (code) == tcc_statement)
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
else switch (code)
|
||
{
|
||
case VA_ARG_EXPR:
|
||
/* All of these have side-effects, no matter what their
|
||
operands are. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
TREE_READONLY (t) = 0;
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
/* Whether a dereference is readonly has nothing to do with whether
|
||
its operand is readonly. */
|
||
TREE_READONLY (t) = 0;
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
if (node)
|
||
recompute_tree_invariant_for_addr_expr (t);
|
||
break;
|
||
|
||
default:
|
||
if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
|
||
&& node && !TYPE_P (node)
|
||
&& TREE_CONSTANT (node))
|
||
TREE_CONSTANT (t) = 1;
|
||
if (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& node && TREE_THIS_VOLATILE (node))
|
||
TREE_THIS_VOLATILE (t) = 1;
|
||
break;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
#define PROCESS_ARG(N) \
|
||
do { \
|
||
TREE_OPERAND (t, N) = arg##N; \
|
||
if (arg##N &&!TYPE_P (arg##N)) \
|
||
{ \
|
||
if (TREE_SIDE_EFFECTS (arg##N)) \
|
||
side_effects = 1; \
|
||
if (!TREE_READONLY (arg##N) \
|
||
&& !CONSTANT_CLASS_P (arg##N)) \
|
||
(void) (read_only = 0); \
|
||
if (!TREE_CONSTANT (arg##N)) \
|
||
(void) (constant = 0); \
|
||
} \
|
||
} while (0)
|
||
|
||
tree
|
||
build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 2);
|
||
|
||
if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
|
||
&& arg0 && arg1 && tt && POINTER_TYPE_P (tt)
|
||
/* When sizetype precision doesn't match that of pointers
|
||
we need to be able to build explicit extensions or truncations
|
||
of the offset argument. */
|
||
&& TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
|
||
gcc_assert (TREE_CODE (arg0) == INTEGER_CST
|
||
&& TREE_CODE (arg1) == INTEGER_CST);
|
||
|
||
if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
|
||
gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (arg1))
|
||
&& useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
|
||
|
||
t = make_node_stat (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
/* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
|
||
result based on those same flags for the arguments. But if the
|
||
arguments aren't really even `tree' expressions, we shouldn't be trying
|
||
to do this. */
|
||
|
||
/* Expressions without side effects may be constant if their
|
||
arguments are as well. */
|
||
constant = (TREE_CODE_CLASS (code) == tcc_comparison
|
||
|| TREE_CODE_CLASS (code) == tcc_binary);
|
||
read_only = 1;
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
PROCESS_ARG(0);
|
||
PROCESS_ARG(1);
|
||
|
||
TREE_READONLY (t) = read_only;
|
||
TREE_CONSTANT (t) = constant;
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_THIS_VOLATILE (t)
|
||
= (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& arg0 && TREE_THIS_VOLATILE (arg0));
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
tree
|
||
build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
|
||
tree arg2 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 3);
|
||
gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
|
||
|
||
t = make_node_stat (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
read_only = 1;
|
||
|
||
/* As a special exception, if COND_EXPR has NULL branches, we
|
||
assume that it is a gimple statement and always consider
|
||
it to have side effects. */
|
||
if (code == COND_EXPR
|
||
&& tt == void_type_node
|
||
&& arg1 == NULL_TREE
|
||
&& arg2 == NULL_TREE)
|
||
side_effects = true;
|
||
else
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
PROCESS_ARG(0);
|
||
PROCESS_ARG(1);
|
||
PROCESS_ARG(2);
|
||
|
||
if (code == COND_EXPR)
|
||
TREE_READONLY (t) = read_only;
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_THIS_VOLATILE (t)
|
||
= (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& arg0 && TREE_THIS_VOLATILE (arg0));
|
||
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
|
||
tree arg2, tree arg3 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 4);
|
||
|
||
t = make_node_stat (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
PROCESS_ARG(0);
|
||
PROCESS_ARG(1);
|
||
PROCESS_ARG(2);
|
||
PROCESS_ARG(3);
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_THIS_VOLATILE (t)
|
||
= (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& arg0 && TREE_THIS_VOLATILE (arg0));
|
||
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
|
||
tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 5);
|
||
|
||
t = make_node_stat (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
PROCESS_ARG(0);
|
||
PROCESS_ARG(1);
|
||
PROCESS_ARG(2);
|
||
PROCESS_ARG(3);
|
||
PROCESS_ARG(4);
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_THIS_VOLATILE (t)
|
||
= (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& arg0 && TREE_THIS_VOLATILE (arg0));
|
||
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
|
||
tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects;
|
||
tree t;
|
||
|
||
gcc_assert (code == TARGET_MEM_REF);
|
||
|
||
t = make_node_stat (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
PROCESS_ARG(0);
|
||
PROCESS_ARG(1);
|
||
PROCESS_ARG(2);
|
||
PROCESS_ARG(3);
|
||
PROCESS_ARG(4);
|
||
if (code == TARGET_MEM_REF)
|
||
side_effects = 0;
|
||
PROCESS_ARG(5);
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_THIS_VOLATILE (t)
|
||
= (code == TARGET_MEM_REF
|
||
&& arg5 && TREE_THIS_VOLATILE (arg5));
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
|
||
on the pointer PTR. */
|
||
|
||
tree
|
||
build_simple_mem_ref_loc (location_t loc, tree ptr)
|
||
{
|
||
HOST_WIDE_INT offset = 0;
|
||
tree ptype = TREE_TYPE (ptr);
|
||
tree tem;
|
||
/* For convenience allow addresses that collapse to a simple base
|
||
and offset. */
|
||
if (TREE_CODE (ptr) == ADDR_EXPR
|
||
&& (handled_component_p (TREE_OPERAND (ptr, 0))
|
||
|| TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
|
||
{
|
||
ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
|
||
gcc_assert (ptr);
|
||
ptr = build_fold_addr_expr (ptr);
|
||
gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
|
||
}
|
||
tem = build2 (MEM_REF, TREE_TYPE (ptype),
|
||
ptr, build_int_cst (ptype, offset));
|
||
SET_EXPR_LOCATION (tem, loc);
|
||
return tem;
|
||
}
|
||
|
||
/* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
|
||
|
||
double_int
|
||
mem_ref_offset (const_tree t)
|
||
{
|
||
tree toff = TREE_OPERAND (t, 1);
|
||
return double_int_sext (tree_to_double_int (toff),
|
||
TYPE_PRECISION (TREE_TYPE (toff)));
|
||
}
|
||
|
||
/* Return the pointer-type relevant for TBAA purposes from the
|
||
gimple memory reference tree T. This is the type to be used for
|
||
the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
|
||
|
||
tree
|
||
reference_alias_ptr_type (const_tree t)
|
||
{
|
||
const_tree base = t;
|
||
while (handled_component_p (base))
|
||
base = TREE_OPERAND (base, 0);
|
||
if (TREE_CODE (base) == MEM_REF)
|
||
return TREE_TYPE (TREE_OPERAND (base, 1));
|
||
else if (TREE_CODE (base) == TARGET_MEM_REF)
|
||
return TREE_TYPE (TMR_OFFSET (base));
|
||
else
|
||
return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
|
||
}
|
||
|
||
/* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
|
||
offsetted by OFFSET units. */
|
||
|
||
tree
|
||
build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
|
||
{
|
||
tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
|
||
build_fold_addr_expr (base),
|
||
build_int_cst (ptr_type_node, offset));
|
||
tree addr = build1 (ADDR_EXPR, type, ref);
|
||
recompute_tree_invariant_for_addr_expr (addr);
|
||
return addr;
|
||
}
|
||
|
||
/* Similar except don't specify the TREE_TYPE
|
||
and leave the TREE_SIDE_EFFECTS as 0.
|
||
It is permissible for arguments to be null,
|
||
or even garbage if their values do not matter. */
|
||
|
||
tree
|
||
build_nt (enum tree_code code, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
|
||
|
||
va_start (p, code);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
|
||
for (i = 0; i < length; i++)
|
||
TREE_OPERAND (t, i) = va_arg (p, tree);
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Similar to build_nt, but for creating a CALL_EXPR object with a
|
||
tree VEC. */
|
||
|
||
tree
|
||
build_nt_call_vec (tree fn, VEC(tree,gc) *args)
|
||
{
|
||
tree ret, t;
|
||
unsigned int ix;
|
||
|
||
ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
|
||
CALL_EXPR_FN (ret) = fn;
|
||
CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
|
||
FOR_EACH_VEC_ELT (tree, args, ix, t)
|
||
CALL_EXPR_ARG (ret, ix) = t;
|
||
return ret;
|
||
}
|
||
|
||
/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
|
||
We do NOT enter this node in any sort of symbol table.
|
||
|
||
LOC is the location of the decl.
|
||
|
||
layout_decl is used to set up the decl's storage layout.
|
||
Other slots are initialized to 0 or null pointers. */
|
||
|
||
tree
|
||
build_decl_stat (location_t loc, enum tree_code code, tree name,
|
||
tree type MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
|
||
t = make_node_stat (code PASS_MEM_STAT);
|
||
DECL_SOURCE_LOCATION (t) = loc;
|
||
|
||
/* if (type == error_mark_node)
|
||
type = integer_type_node; */
|
||
/* That is not done, deliberately, so that having error_mark_node
|
||
as the type can suppress useless errors in the use of this variable. */
|
||
|
||
DECL_NAME (t) = name;
|
||
TREE_TYPE (t) = type;
|
||
|
||
if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
|
||
layout_decl (t, 0);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Builds and returns function declaration with NAME and TYPE. */
|
||
|
||
tree
|
||
build_fn_decl (const char *name, tree type)
|
||
{
|
||
tree id = get_identifier (name);
|
||
tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
|
||
|
||
DECL_EXTERNAL (decl) = 1;
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
TREE_NOTHROW (decl) = 1;
|
||
|
||
return decl;
|
||
}
|
||
|
||
VEC(tree,gc) *all_translation_units;
|
||
|
||
/* Builds a new translation-unit decl with name NAME, queues it in the
|
||
global list of translation-unit decls and returns it. */
|
||
|
||
tree
|
||
build_translation_unit_decl (tree name)
|
||
{
|
||
tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
|
||
name, NULL_TREE);
|
||
TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
|
||
VEC_safe_push (tree, gc, all_translation_units, tu);
|
||
return tu;
|
||
}
|
||
|
||
|
||
/* BLOCK nodes are used to represent the structure of binding contours
|
||
and declarations, once those contours have been exited and their contents
|
||
compiled. This information is used for outputting debugging info. */
|
||
|
||
tree
|
||
build_block (tree vars, tree subblocks, tree supercontext, tree chain)
|
||
{
|
||
tree block = make_node (BLOCK);
|
||
|
||
BLOCK_VARS (block) = vars;
|
||
BLOCK_SUBBLOCKS (block) = subblocks;
|
||
BLOCK_SUPERCONTEXT (block) = supercontext;
|
||
BLOCK_CHAIN (block) = chain;
|
||
return block;
|
||
}
|
||
|
||
|
||
/* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
|
||
|
||
LOC is the location to use in tree T. */
|
||
|
||
void
|
||
protected_set_expr_location (tree t, location_t loc)
|
||
{
|
||
if (t && CAN_HAVE_LOCATION_P (t))
|
||
SET_EXPR_LOCATION (t, loc);
|
||
}
|
||
|
||
/* Return a declaration like DDECL except that its DECL_ATTRIBUTES
|
||
is ATTRIBUTE. */
|
||
|
||
tree
|
||
build_decl_attribute_variant (tree ddecl, tree attribute)
|
||
{
|
||
DECL_ATTRIBUTES (ddecl) = attribute;
|
||
return ddecl;
|
||
}
|
||
|
||
/* Borrowed from hashtab.c iterative_hash implementation. */
|
||
#define mix(a,b,c) \
|
||
{ \
|
||
a -= b; a -= c; a ^= (c>>13); \
|
||
b -= c; b -= a; b ^= (a<< 8); \
|
||
c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
|
||
a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
|
||
b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
|
||
c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
|
||
a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
|
||
b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
|
||
c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
|
||
}
|
||
|
||
|
||
/* Produce good hash value combining VAL and VAL2. */
|
||
hashval_t
|
||
iterative_hash_hashval_t (hashval_t val, hashval_t val2)
|
||
{
|
||
/* the golden ratio; an arbitrary value. */
|
||
hashval_t a = 0x9e3779b9;
|
||
|
||
mix (a, val, val2);
|
||
return val2;
|
||
}
|
||
|
||
/* Produce good hash value combining VAL and VAL2. */
|
||
hashval_t
|
||
iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
|
||
{
|
||
if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
|
||
return iterative_hash_hashval_t (val, val2);
|
||
else
|
||
{
|
||
hashval_t a = (hashval_t) val;
|
||
/* Avoid warnings about shifting of more than the width of the type on
|
||
hosts that won't execute this path. */
|
||
int zero = 0;
|
||
hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
|
||
mix (a, b, val2);
|
||
if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
|
||
{
|
||
hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
|
||
hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
|
||
mix (a, b, val2);
|
||
}
|
||
return val2;
|
||
}
|
||
}
|
||
|
||
/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
|
||
is ATTRIBUTE and its qualifiers are QUALS.
|
||
|
||
Record such modified types already made so we don't make duplicates. */
|
||
|
||
tree
|
||
build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
|
||
{
|
||
if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
|
||
{
|
||
hashval_t hashcode = 0;
|
||
tree ntype;
|
||
enum tree_code code = TREE_CODE (ttype);
|
||
|
||
/* Building a distinct copy of a tagged type is inappropriate; it
|
||
causes breakage in code that expects there to be a one-to-one
|
||
relationship between a struct and its fields.
|
||
build_duplicate_type is another solution (as used in
|
||
handle_transparent_union_attribute), but that doesn't play well
|
||
with the stronger C++ type identity model. */
|
||
if (TREE_CODE (ttype) == RECORD_TYPE
|
||
|| TREE_CODE (ttype) == UNION_TYPE
|
||
|| TREE_CODE (ttype) == QUAL_UNION_TYPE
|
||
|| TREE_CODE (ttype) == ENUMERAL_TYPE)
|
||
{
|
||
warning (OPT_Wattributes,
|
||
"ignoring attributes applied to %qT after definition",
|
||
TYPE_MAIN_VARIANT (ttype));
|
||
return build_qualified_type (ttype, quals);
|
||
}
|
||
|
||
ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
|
||
ntype = build_distinct_type_copy (ttype);
|
||
|
||
TYPE_ATTRIBUTES (ntype) = attribute;
|
||
|
||
hashcode = iterative_hash_object (code, hashcode);
|
||
if (TREE_TYPE (ntype))
|
||
hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
|
||
hashcode);
|
||
hashcode = attribute_hash_list (attribute, hashcode);
|
||
|
||
switch (TREE_CODE (ntype))
|
||
{
|
||
case FUNCTION_TYPE:
|
||
hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
|
||
break;
|
||
case ARRAY_TYPE:
|
||
if (TYPE_DOMAIN (ntype))
|
||
hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
|
||
hashcode);
|
||
break;
|
||
case INTEGER_TYPE:
|
||
hashcode = iterative_hash_object
|
||
(TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
|
||
hashcode = iterative_hash_object
|
||
(TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
|
||
break;
|
||
case REAL_TYPE:
|
||
case FIXED_POINT_TYPE:
|
||
{
|
||
unsigned int precision = TYPE_PRECISION (ntype);
|
||
hashcode = iterative_hash_object (precision, hashcode);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
ntype = type_hash_canon (hashcode, ntype);
|
||
|
||
/* If the target-dependent attributes make NTYPE different from
|
||
its canonical type, we will need to use structural equality
|
||
checks for this type. */
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
|
||
|| !comp_type_attributes (ntype, ttype))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (ntype);
|
||
else if (TYPE_CANONICAL (ntype) == ntype)
|
||
TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
|
||
|
||
ttype = build_qualified_type (ntype, quals);
|
||
}
|
||
else if (TYPE_QUALS (ttype) != quals)
|
||
ttype = build_qualified_type (ttype, quals);
|
||
|
||
return ttype;
|
||
}
|
||
|
||
/* Compare two attributes for their value identity. Return true if the
|
||
attribute values are known to be equal; otherwise return false.
|
||
*/
|
||
|
||
static bool
|
||
attribute_value_equal (const_tree attr1, const_tree attr2)
|
||
{
|
||
if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
|
||
return true;
|
||
|
||
if (TREE_VALUE (attr1) != NULL_TREE
|
||
&& TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
|
||
&& TREE_VALUE (attr2) != NULL
|
||
&& TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
|
||
return (simple_cst_list_equal (TREE_VALUE (attr1),
|
||
TREE_VALUE (attr2)) == 1);
|
||
|
||
return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
|
||
}
|
||
|
||
/* Return 0 if the attributes for two types are incompatible, 1 if they
|
||
are compatible, and 2 if they are nearly compatible (which causes a
|
||
warning to be generated). */
|
||
int
|
||
comp_type_attributes (const_tree type1, const_tree type2)
|
||
{
|
||
const_tree a1 = TYPE_ATTRIBUTES (type1);
|
||
const_tree a2 = TYPE_ATTRIBUTES (type2);
|
||
const_tree a;
|
||
|
||
if (a1 == a2)
|
||
return 1;
|
||
for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
|
||
{
|
||
const struct attribute_spec *as;
|
||
const_tree attr;
|
||
|
||
as = lookup_attribute_spec (TREE_PURPOSE (a));
|
||
if (!as || as->affects_type_identity == false)
|
||
continue;
|
||
|
||
attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
|
||
if (!attr || !attribute_value_equal (a, attr))
|
||
break;
|
||
}
|
||
if (!a)
|
||
{
|
||
for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
|
||
{
|
||
const struct attribute_spec *as;
|
||
|
||
as = lookup_attribute_spec (TREE_PURPOSE (a));
|
||
if (!as || as->affects_type_identity == false)
|
||
continue;
|
||
|
||
if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
|
||
break;
|
||
/* We don't need to compare trees again, as we did this
|
||
already in first loop. */
|
||
}
|
||
/* All types - affecting identity - are equal, so
|
||
there is no need to call target hook for comparison. */
|
||
if (!a)
|
||
return 1;
|
||
}
|
||
/* As some type combinations - like default calling-convention - might
|
||
be compatible, we have to call the target hook to get the final result. */
|
||
return targetm.comp_type_attributes (type1, type2);
|
||
}
|
||
|
||
/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
|
||
is ATTRIBUTE.
|
||
|
||
Record such modified types already made so we don't make duplicates. */
|
||
|
||
tree
|
||
build_type_attribute_variant (tree ttype, tree attribute)
|
||
{
|
||
return build_type_attribute_qual_variant (ttype, attribute,
|
||
TYPE_QUALS (ttype));
|
||
}
|
||
|
||
|
||
/* Reset the expression *EXPR_P, a size or position.
|
||
|
||
??? We could reset all non-constant sizes or positions. But it's cheap
|
||
enough to not do so and refrain from adding workarounds to dwarf2out.c.
|
||
|
||
We need to reset self-referential sizes or positions because they cannot
|
||
be gimplified and thus can contain a CALL_EXPR after the gimplification
|
||
is finished, which will run afoul of LTO streaming. And they need to be
|
||
reset to something essentially dummy but not constant, so as to preserve
|
||
the properties of the object they are attached to. */
|
||
|
||
static inline void
|
||
free_lang_data_in_one_sizepos (tree *expr_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
if (CONTAINS_PLACEHOLDER_P (expr))
|
||
*expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
|
||
}
|
||
|
||
|
||
/* Reset all the fields in a binfo node BINFO. We only keep
|
||
BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
|
||
|
||
static void
|
||
free_lang_data_in_binfo (tree binfo)
|
||
{
|
||
unsigned i;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
|
||
|
||
BINFO_VTABLE (binfo) = NULL_TREE;
|
||
BINFO_BASE_ACCESSES (binfo) = NULL;
|
||
BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
|
||
BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
|
||
|
||
FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
|
||
free_lang_data_in_binfo (t);
|
||
}
|
||
|
||
|
||
/* Reset all language specific information still present in TYPE. */
|
||
|
||
static void
|
||
free_lang_data_in_type (tree type)
|
||
{
|
||
gcc_assert (TYPE_P (type));
|
||
|
||
/* Give the FE a chance to remove its own data first. */
|
||
lang_hooks.free_lang_data (type);
|
||
|
||
TREE_LANG_FLAG_0 (type) = 0;
|
||
TREE_LANG_FLAG_1 (type) = 0;
|
||
TREE_LANG_FLAG_2 (type) = 0;
|
||
TREE_LANG_FLAG_3 (type) = 0;
|
||
TREE_LANG_FLAG_4 (type) = 0;
|
||
TREE_LANG_FLAG_5 (type) = 0;
|
||
TREE_LANG_FLAG_6 (type) = 0;
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
/* Remove the const and volatile qualifiers from arguments. The
|
||
C++ front end removes them, but the C front end does not,
|
||
leading to false ODR violation errors when merging two
|
||
instances of the same function signature compiled by
|
||
different front ends. */
|
||
tree p;
|
||
|
||
for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
|
||
{
|
||
tree arg_type = TREE_VALUE (p);
|
||
|
||
if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
|
||
{
|
||
int quals = TYPE_QUALS (arg_type)
|
||
& ~TYPE_QUAL_CONST
|
||
& ~TYPE_QUAL_VOLATILE;
|
||
TREE_VALUE (p) = build_qualified_type (arg_type, quals);
|
||
free_lang_data_in_type (TREE_VALUE (p));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove members that are not actually FIELD_DECLs from the field
|
||
list of an aggregate. These occur in C++. */
|
||
if (RECORD_OR_UNION_TYPE_P (type))
|
||
{
|
||
tree prev, member;
|
||
|
||
/* Note that TYPE_FIELDS can be shared across distinct
|
||
TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
|
||
to be removed, we cannot set its TREE_CHAIN to NULL.
|
||
Otherwise, we would not be able to find all the other fields
|
||
in the other instances of this TREE_TYPE.
|
||
|
||
This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
|
||
prev = NULL_TREE;
|
||
member = TYPE_FIELDS (type);
|
||
while (member)
|
||
{
|
||
if (TREE_CODE (member) == FIELD_DECL)
|
||
{
|
||
if (prev)
|
||
TREE_CHAIN (prev) = member;
|
||
else
|
||
TYPE_FIELDS (type) = member;
|
||
prev = member;
|
||
}
|
||
|
||
member = TREE_CHAIN (member);
|
||
}
|
||
|
||
if (prev)
|
||
TREE_CHAIN (prev) = NULL_TREE;
|
||
else
|
||
TYPE_FIELDS (type) = NULL_TREE;
|
||
|
||
TYPE_METHODS (type) = NULL_TREE;
|
||
if (TYPE_BINFO (type))
|
||
free_lang_data_in_binfo (TYPE_BINFO (type));
|
||
}
|
||
else
|
||
{
|
||
/* For non-aggregate types, clear out the language slot (which
|
||
overloads TYPE_BINFO). */
|
||
TYPE_LANG_SLOT_1 (type) = NULL_TREE;
|
||
|
||
if (INTEGRAL_TYPE_P (type)
|
||
|| SCALAR_FLOAT_TYPE_P (type)
|
||
|| FIXED_POINT_TYPE_P (type))
|
||
{
|
||
free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
|
||
free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
|
||
}
|
||
}
|
||
|
||
free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
|
||
free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
|
||
|
||
if (debug_info_level < DINFO_LEVEL_TERSE
|
||
|| (TYPE_CONTEXT (type)
|
||
&& TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
|
||
&& TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
|
||
TYPE_CONTEXT (type) = NULL_TREE;
|
||
|
||
if (debug_info_level < DINFO_LEVEL_TERSE)
|
||
TYPE_STUB_DECL (type) = NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Return true if DECL may need an assembler name to be set. */
|
||
|
||
static inline bool
|
||
need_assembler_name_p (tree decl)
|
||
{
|
||
/* Only FUNCTION_DECLs and VAR_DECLs are considered. */
|
||
if (TREE_CODE (decl) != FUNCTION_DECL
|
||
&& TREE_CODE (decl) != VAR_DECL)
|
||
return false;
|
||
|
||
/* If DECL already has its assembler name set, it does not need a
|
||
new one. */
|
||
if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
|
||
|| DECL_ASSEMBLER_NAME_SET_P (decl))
|
||
return false;
|
||
|
||
/* Abstract decls do not need an assembler name. */
|
||
if (DECL_ABSTRACT (decl))
|
||
return false;
|
||
|
||
/* For VAR_DECLs, only static, public and external symbols need an
|
||
assembler name. */
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& !TREE_STATIC (decl)
|
||
&& !TREE_PUBLIC (decl)
|
||
&& !DECL_EXTERNAL (decl))
|
||
return false;
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
/* Do not set assembler name on builtins. Allow RTL expansion to
|
||
decide whether to expand inline or via a regular call. */
|
||
if (DECL_BUILT_IN (decl)
|
||
&& DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
|
||
return false;
|
||
|
||
/* Functions represented in the callgraph need an assembler name. */
|
||
if (cgraph_get_node (decl) != NULL)
|
||
return true;
|
||
|
||
/* Unused and not public functions don't need an assembler name. */
|
||
if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Reset all language specific information still present in symbol
|
||
DECL. */
|
||
|
||
static void
|
||
free_lang_data_in_decl (tree decl)
|
||
{
|
||
gcc_assert (DECL_P (decl));
|
||
|
||
/* Give the FE a chance to remove its own data first. */
|
||
lang_hooks.free_lang_data (decl);
|
||
|
||
TREE_LANG_FLAG_0 (decl) = 0;
|
||
TREE_LANG_FLAG_1 (decl) = 0;
|
||
TREE_LANG_FLAG_2 (decl) = 0;
|
||
TREE_LANG_FLAG_3 (decl) = 0;
|
||
TREE_LANG_FLAG_4 (decl) = 0;
|
||
TREE_LANG_FLAG_5 (decl) = 0;
|
||
TREE_LANG_FLAG_6 (decl) = 0;
|
||
|
||
free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
|
||
free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
|
||
if (TREE_CODE (decl) == FIELD_DECL)
|
||
free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
|
||
|
||
/* DECL_FCONTEXT is only used for debug info generation. */
|
||
if (TREE_CODE (decl) == FIELD_DECL
|
||
&& debug_info_level < DINFO_LEVEL_TERSE)
|
||
DECL_FCONTEXT (decl) = NULL_TREE;
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
if (gimple_has_body_p (decl))
|
||
{
|
||
tree t;
|
||
|
||
/* If DECL has a gimple body, then the context for its
|
||
arguments must be DECL. Otherwise, it doesn't really
|
||
matter, as we will not be emitting any code for DECL. In
|
||
general, there may be other instances of DECL created by
|
||
the front end and since PARM_DECLs are generally shared,
|
||
their DECL_CONTEXT changes as the replicas of DECL are
|
||
created. The only time where DECL_CONTEXT is important
|
||
is for the FUNCTION_DECLs that have a gimple body (since
|
||
the PARM_DECL will be used in the function's body). */
|
||
for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
|
||
DECL_CONTEXT (t) = decl;
|
||
}
|
||
|
||
/* DECL_SAVED_TREE holds the GENERIC representation for DECL.
|
||
At this point, it is not needed anymore. */
|
||
DECL_SAVED_TREE (decl) = NULL_TREE;
|
||
|
||
/* Clear the abstract origin if it refers to a method. Otherwise
|
||
dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
|
||
origin will not be output correctly. */
|
||
if (DECL_ABSTRACT_ORIGIN (decl)
|
||
&& DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
|
||
&& RECORD_OR_UNION_TYPE_P
|
||
(DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
|
||
DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
|
||
|
||
/* Sometimes the C++ frontend doesn't manage to transform a temporary
|
||
DECL_VINDEX referring to itself into a vtable slot number as it
|
||
should. Happens with functions that are copied and then forgotten
|
||
about. Just clear it, it won't matter anymore. */
|
||
if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
|
||
DECL_VINDEX (decl) = NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
if ((DECL_EXTERNAL (decl)
|
||
&& (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
|
||
|| (decl_function_context (decl) && !TREE_STATIC (decl)))
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (decl) == TYPE_DECL)
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
|
||
&& DECL_INITIAL (decl)
|
||
&& TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
|
||
{
|
||
/* Strip builtins from the translation-unit BLOCK. We still have
|
||
targets without builtin_decl support and also builtins are
|
||
shared nodes and thus we can't use TREE_CHAIN in multiple
|
||
lists. */
|
||
tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
|
||
while (*nextp)
|
||
{
|
||
tree var = *nextp;
|
||
if (TREE_CODE (var) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN (var))
|
||
*nextp = TREE_CHAIN (var);
|
||
else
|
||
nextp = &TREE_CHAIN (var);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Data used when collecting DECLs and TYPEs for language data removal. */
|
||
|
||
struct free_lang_data_d
|
||
{
|
||
/* Worklist to avoid excessive recursion. */
|
||
VEC(tree,heap) *worklist;
|
||
|
||
/* Set of traversed objects. Used to avoid duplicate visits. */
|
||
struct pointer_set_t *pset;
|
||
|
||
/* Array of symbols to process with free_lang_data_in_decl. */
|
||
VEC(tree,heap) *decls;
|
||
|
||
/* Array of types to process with free_lang_data_in_type. */
|
||
VEC(tree,heap) *types;
|
||
};
|
||
|
||
|
||
/* Save all language fields needed to generate proper debug information
|
||
for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
|
||
|
||
static void
|
||
save_debug_info_for_decl (tree t)
|
||
{
|
||
/*struct saved_debug_info_d *sdi;*/
|
||
|
||
gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
|
||
|
||
/* FIXME. Partial implementation for saving debug info removed. */
|
||
}
|
||
|
||
|
||
/* Save all language fields needed to generate proper debug information
|
||
for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
|
||
|
||
static void
|
||
save_debug_info_for_type (tree t)
|
||
{
|
||
/*struct saved_debug_info_d *sdi;*/
|
||
|
||
gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
|
||
|
||
/* FIXME. Partial implementation for saving debug info removed. */
|
||
}
|
||
|
||
|
||
/* Add type or decl T to one of the list of tree nodes that need their
|
||
language data removed. The lists are held inside FLD. */
|
||
|
||
static void
|
||
add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
|
||
{
|
||
if (DECL_P (t))
|
||
{
|
||
VEC_safe_push (tree, heap, fld->decls, t);
|
||
if (debug_info_level > DINFO_LEVEL_TERSE)
|
||
save_debug_info_for_decl (t);
|
||
}
|
||
else if (TYPE_P (t))
|
||
{
|
||
VEC_safe_push (tree, heap, fld->types, t);
|
||
if (debug_info_level > DINFO_LEVEL_TERSE)
|
||
save_debug_info_for_type (t);
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Push tree node T into FLD->WORKLIST. */
|
||
|
||
static inline void
|
||
fld_worklist_push (tree t, struct free_lang_data_d *fld)
|
||
{
|
||
if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
|
||
VEC_safe_push (tree, heap, fld->worklist, (t));
|
||
}
|
||
|
||
|
||
/* Operand callback helper for free_lang_data_in_node. *TP is the
|
||
subtree operand being considered. */
|
||
|
||
static tree
|
||
find_decls_types_r (tree *tp, int *ws, void *data)
|
||
{
|
||
tree t = *tp;
|
||
struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
|
||
|
||
if (TREE_CODE (t) == TREE_LIST)
|
||
return NULL_TREE;
|
||
|
||
/* Language specific nodes will be removed, so there is no need
|
||
to gather anything under them. */
|
||
if (is_lang_specific (t))
|
||
{
|
||
*ws = 0;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (DECL_P (t))
|
||
{
|
||
/* Note that walk_tree does not traverse every possible field in
|
||
decls, so we have to do our own traversals here. */
|
||
add_tree_to_fld_list (t, fld);
|
||
|
||
fld_worklist_push (DECL_NAME (t), fld);
|
||
fld_worklist_push (DECL_CONTEXT (t), fld);
|
||
fld_worklist_push (DECL_SIZE (t), fld);
|
||
fld_worklist_push (DECL_SIZE_UNIT (t), fld);
|
||
|
||
/* We are going to remove everything under DECL_INITIAL for
|
||
TYPE_DECLs. No point walking them. */
|
||
if (TREE_CODE (t) != TYPE_DECL)
|
||
fld_worklist_push (DECL_INITIAL (t), fld);
|
||
|
||
fld_worklist_push (DECL_ATTRIBUTES (t), fld);
|
||
fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
|
||
|
||
if (TREE_CODE (t) == FUNCTION_DECL)
|
||
{
|
||
fld_worklist_push (DECL_ARGUMENTS (t), fld);
|
||
fld_worklist_push (DECL_RESULT (t), fld);
|
||
}
|
||
else if (TREE_CODE (t) == TYPE_DECL)
|
||
{
|
||
fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
|
||
fld_worklist_push (DECL_VINDEX (t), fld);
|
||
}
|
||
else if (TREE_CODE (t) == FIELD_DECL)
|
||
{
|
||
fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
|
||
fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
|
||
fld_worklist_push (DECL_QUALIFIER (t), fld);
|
||
fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
|
||
fld_worklist_push (DECL_FCONTEXT (t), fld);
|
||
}
|
||
else if (TREE_CODE (t) == VAR_DECL)
|
||
{
|
||
fld_worklist_push (DECL_SECTION_NAME (t), fld);
|
||
fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
|
||
}
|
||
|
||
if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
|
||
&& DECL_HAS_VALUE_EXPR_P (t))
|
||
fld_worklist_push (DECL_VALUE_EXPR (t), fld);
|
||
|
||
if (TREE_CODE (t) != FIELD_DECL
|
||
&& TREE_CODE (t) != TYPE_DECL)
|
||
fld_worklist_push (TREE_CHAIN (t), fld);
|
||
*ws = 0;
|
||
}
|
||
else if (TYPE_P (t))
|
||
{
|
||
/* Note that walk_tree does not traverse every possible field in
|
||
types, so we have to do our own traversals here. */
|
||
add_tree_to_fld_list (t, fld);
|
||
|
||
if (!RECORD_OR_UNION_TYPE_P (t))
|
||
fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
|
||
fld_worklist_push (TYPE_SIZE (t), fld);
|
||
fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
|
||
fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
|
||
fld_worklist_push (TYPE_POINTER_TO (t), fld);
|
||
fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
|
||
fld_worklist_push (TYPE_NAME (t), fld);
|
||
/* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
|
||
them and thus do not and want not to reach unused pointer types
|
||
this way. */
|
||
if (!POINTER_TYPE_P (t))
|
||
fld_worklist_push (TYPE_MINVAL (t), fld);
|
||
if (!RECORD_OR_UNION_TYPE_P (t))
|
||
fld_worklist_push (TYPE_MAXVAL (t), fld);
|
||
fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
|
||
/* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
|
||
do not and want not to reach unused variants this way. */
|
||
fld_worklist_push (TYPE_CONTEXT (t), fld);
|
||
/* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
|
||
and want not to reach unused types this way. */
|
||
|
||
if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
|
||
{
|
||
unsigned i;
|
||
tree tem;
|
||
for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
|
||
i, tem); ++i)
|
||
fld_worklist_push (TREE_TYPE (tem), fld);
|
||
tem = BINFO_VIRTUALS (TYPE_BINFO (t));
|
||
if (tem
|
||
/* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
|
||
&& TREE_CODE (tem) == TREE_LIST)
|
||
do
|
||
{
|
||
fld_worklist_push (TREE_VALUE (tem), fld);
|
||
tem = TREE_CHAIN (tem);
|
||
}
|
||
while (tem);
|
||
}
|
||
if (RECORD_OR_UNION_TYPE_P (t))
|
||
{
|
||
tree tem;
|
||
/* Push all TYPE_FIELDS - there can be interleaving interesting
|
||
and non-interesting things. */
|
||
tem = TYPE_FIELDS (t);
|
||
while (tem)
|
||
{
|
||
if (TREE_CODE (tem) == FIELD_DECL)
|
||
fld_worklist_push (tem, fld);
|
||
tem = TREE_CHAIN (tem);
|
||
}
|
||
}
|
||
|
||
fld_worklist_push (TREE_CHAIN (t), fld);
|
||
*ws = 0;
|
||
}
|
||
else if (TREE_CODE (t) == BLOCK)
|
||
{
|
||
tree tem;
|
||
for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
|
||
fld_worklist_push (tem, fld);
|
||
for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
|
||
fld_worklist_push (tem, fld);
|
||
fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
|
||
}
|
||
|
||
if (TREE_CODE (t) != IDENTIFIER_NODE)
|
||
fld_worklist_push (TREE_TYPE (t), fld);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Find decls and types in T. */
|
||
|
||
static void
|
||
find_decls_types (tree t, struct free_lang_data_d *fld)
|
||
{
|
||
while (1)
|
||
{
|
||
if (!pointer_set_contains (fld->pset, t))
|
||
walk_tree (&t, find_decls_types_r, fld, fld->pset);
|
||
if (VEC_empty (tree, fld->worklist))
|
||
break;
|
||
t = VEC_pop (tree, fld->worklist);
|
||
}
|
||
}
|
||
|
||
/* Translate all the types in LIST with the corresponding runtime
|
||
types. */
|
||
|
||
static tree
|
||
get_eh_types_for_runtime (tree list)
|
||
{
|
||
tree head, prev;
|
||
|
||
if (list == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
|
||
prev = head;
|
||
list = TREE_CHAIN (list);
|
||
while (list)
|
||
{
|
||
tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
|
||
TREE_CHAIN (prev) = n;
|
||
prev = TREE_CHAIN (prev);
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
|
||
return head;
|
||
}
|
||
|
||
|
||
/* Find decls and types referenced in EH region R and store them in
|
||
FLD->DECLS and FLD->TYPES. */
|
||
|
||
static void
|
||
find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
|
||
{
|
||
switch (r->type)
|
||
{
|
||
case ERT_CLEANUP:
|
||
break;
|
||
|
||
case ERT_TRY:
|
||
{
|
||
eh_catch c;
|
||
|
||
/* The types referenced in each catch must first be changed to the
|
||
EH types used at runtime. This removes references to FE types
|
||
in the region. */
|
||
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
|
||
{
|
||
c->type_list = get_eh_types_for_runtime (c->type_list);
|
||
walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ERT_ALLOWED_EXCEPTIONS:
|
||
r->u.allowed.type_list
|
||
= get_eh_types_for_runtime (r->u.allowed.type_list);
|
||
walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
|
||
break;
|
||
|
||
case ERT_MUST_NOT_THROW:
|
||
walk_tree (&r->u.must_not_throw.failure_decl,
|
||
find_decls_types_r, fld, fld->pset);
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Find decls and types referenced in cgraph node N and store them in
|
||
FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
|
||
look for *every* kind of DECL and TYPE node reachable from N,
|
||
including those embedded inside types and decls (i.e,, TYPE_DECLs,
|
||
NAMESPACE_DECLs, etc). */
|
||
|
||
static void
|
||
find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
|
||
{
|
||
basic_block bb;
|
||
struct function *fn;
|
||
unsigned ix;
|
||
tree t;
|
||
|
||
find_decls_types (n->decl, fld);
|
||
|
||
if (!gimple_has_body_p (n->decl))
|
||
return;
|
||
|
||
gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
|
||
|
||
fn = DECL_STRUCT_FUNCTION (n->decl);
|
||
|
||
/* Traverse locals. */
|
||
FOR_EACH_LOCAL_DECL (fn, ix, t)
|
||
find_decls_types (t, fld);
|
||
|
||
/* Traverse EH regions in FN. */
|
||
{
|
||
eh_region r;
|
||
FOR_ALL_EH_REGION_FN (r, fn)
|
||
find_decls_types_in_eh_region (r, fld);
|
||
}
|
||
|
||
/* Traverse every statement in FN. */
|
||
FOR_EACH_BB_FN (bb, fn)
|
||
{
|
||
gimple_stmt_iterator si;
|
||
unsigned i;
|
||
|
||
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
||
{
|
||
gimple phi = gsi_stmt (si);
|
||
|
||
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
||
{
|
||
tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
|
||
find_decls_types (*arg_p, fld);
|
||
}
|
||
}
|
||
|
||
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
||
{
|
||
gimple stmt = gsi_stmt (si);
|
||
|
||
for (i = 0; i < gimple_num_ops (stmt); i++)
|
||
{
|
||
tree arg = gimple_op (stmt, i);
|
||
find_decls_types (arg, fld);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Find decls and types referenced in varpool node N and store them in
|
||
FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
|
||
look for *every* kind of DECL and TYPE node reachable from N,
|
||
including those embedded inside types and decls (i.e,, TYPE_DECLs,
|
||
NAMESPACE_DECLs, etc). */
|
||
|
||
static void
|
||
find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
|
||
{
|
||
find_decls_types (v->decl, fld);
|
||
}
|
||
|
||
/* If T needs an assembler name, have one created for it. */
|
||
|
||
void
|
||
assign_assembler_name_if_neeeded (tree t)
|
||
{
|
||
if (need_assembler_name_p (t))
|
||
{
|
||
/* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
|
||
diagnostics that use input_location to show locus
|
||
information. The problem here is that, at this point,
|
||
input_location is generally anchored to the end of the file
|
||
(since the parser is long gone), so we don't have a good
|
||
position to pin it to.
|
||
|
||
To alleviate this problem, this uses the location of T's
|
||
declaration. Examples of this are
|
||
testsuite/g++.dg/template/cond2.C and
|
||
testsuite/g++.dg/template/pr35240.C. */
|
||
location_t saved_location = input_location;
|
||
input_location = DECL_SOURCE_LOCATION (t);
|
||
|
||
decl_assembler_name (t);
|
||
|
||
input_location = saved_location;
|
||
}
|
||
}
|
||
|
||
|
||
/* Free language specific information for every operand and expression
|
||
in every node of the call graph. This process operates in three stages:
|
||
|
||
1- Every callgraph node and varpool node is traversed looking for
|
||
decls and types embedded in them. This is a more exhaustive
|
||
search than that done by find_referenced_vars, because it will
|
||
also collect individual fields, decls embedded in types, etc.
|
||
|
||
2- All the decls found are sent to free_lang_data_in_decl.
|
||
|
||
3- All the types found are sent to free_lang_data_in_type.
|
||
|
||
The ordering between decls and types is important because
|
||
free_lang_data_in_decl sets assembler names, which includes
|
||
mangling. So types cannot be freed up until assembler names have
|
||
been set up. */
|
||
|
||
static void
|
||
free_lang_data_in_cgraph (void)
|
||
{
|
||
struct cgraph_node *n;
|
||
struct varpool_node *v;
|
||
struct free_lang_data_d fld;
|
||
tree t;
|
||
unsigned i;
|
||
alias_pair *p;
|
||
|
||
/* Initialize sets and arrays to store referenced decls and types. */
|
||
fld.pset = pointer_set_create ();
|
||
fld.worklist = NULL;
|
||
fld.decls = VEC_alloc (tree, heap, 100);
|
||
fld.types = VEC_alloc (tree, heap, 100);
|
||
|
||
/* Find decls and types in the body of every function in the callgraph. */
|
||
for (n = cgraph_nodes; n; n = n->next)
|
||
find_decls_types_in_node (n, &fld);
|
||
|
||
FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
|
||
find_decls_types (p->decl, &fld);
|
||
|
||
/* Find decls and types in every varpool symbol. */
|
||
for (v = varpool_nodes; v; v = v->next)
|
||
find_decls_types_in_var (v, &fld);
|
||
|
||
/* Set the assembler name on every decl found. We need to do this
|
||
now because free_lang_data_in_decl will invalidate data needed
|
||
for mangling. This breaks mangling on interdependent decls. */
|
||
FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
|
||
assign_assembler_name_if_neeeded (t);
|
||
|
||
/* Traverse every decl found freeing its language data. */
|
||
FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
|
||
free_lang_data_in_decl (t);
|
||
|
||
/* Traverse every type found freeing its language data. */
|
||
FOR_EACH_VEC_ELT (tree, fld.types, i, t)
|
||
free_lang_data_in_type (t);
|
||
|
||
pointer_set_destroy (fld.pset);
|
||
VEC_free (tree, heap, fld.worklist);
|
||
VEC_free (tree, heap, fld.decls);
|
||
VEC_free (tree, heap, fld.types);
|
||
}
|
||
|
||
|
||
/* Free resources that are used by FE but are not needed once they are done. */
|
||
|
||
static unsigned
|
||
free_lang_data (void)
|
||
{
|
||
unsigned i;
|
||
|
||
/* If we are the LTO frontend we have freed lang-specific data already. */
|
||
if (in_lto_p
|
||
|| !flag_generate_lto)
|
||
return 0;
|
||
|
||
/* Allocate and assign alias sets to the standard integer types
|
||
while the slots are still in the way the frontends generated them. */
|
||
for (i = 0; i < itk_none; ++i)
|
||
if (integer_types[i])
|
||
TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
|
||
|
||
/* Traverse the IL resetting language specific information for
|
||
operands, expressions, etc. */
|
||
free_lang_data_in_cgraph ();
|
||
|
||
/* Create gimple variants for common types. */
|
||
ptrdiff_type_node = integer_type_node;
|
||
fileptr_type_node = ptr_type_node;
|
||
if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
|
||
|| (TYPE_MODE (boolean_type_node)
|
||
!= mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
|
||
|| TYPE_PRECISION (boolean_type_node) != 1
|
||
|| !TYPE_UNSIGNED (boolean_type_node))
|
||
{
|
||
boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
|
||
TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
|
||
TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
|
||
TYPE_PRECISION (boolean_type_node) = 1;
|
||
boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
|
||
boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
|
||
}
|
||
|
||
/* Unify char_type_node with its properly signed variant. */
|
||
if (TYPE_UNSIGNED (char_type_node))
|
||
unsigned_char_type_node = char_type_node;
|
||
else
|
||
signed_char_type_node = char_type_node;
|
||
|
||
/* Reset some langhooks. Do not reset types_compatible_p, it may
|
||
still be used indirectly via the get_alias_set langhook. */
|
||
lang_hooks.callgraph.analyze_expr = NULL;
|
||
lang_hooks.dwarf_name = lhd_dwarf_name;
|
||
lang_hooks.decl_printable_name = gimple_decl_printable_name;
|
||
/* We do not want the default decl_assembler_name implementation,
|
||
rather if we have fixed everything we want a wrapper around it
|
||
asserting that all non-local symbols already got their assembler
|
||
name and only produce assembler names for local symbols. Or rather
|
||
make sure we never call decl_assembler_name on local symbols and
|
||
devise a separate, middle-end private scheme for it. */
|
||
|
||
/* Reset diagnostic machinery. */
|
||
diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
|
||
diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
|
||
diagnostic_format_decoder (global_dc) = default_tree_printer;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
struct simple_ipa_opt_pass pass_ipa_free_lang_data =
|
||
{
|
||
{
|
||
SIMPLE_IPA_PASS,
|
||
"*free_lang_data", /* name */
|
||
NULL, /* gate */
|
||
free_lang_data, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_IPA_FREE_LANG_DATA, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_ggc_collect /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
/* Return nonzero if IDENT is a valid name for attribute ATTR,
|
||
or zero if not.
|
||
|
||
We try both `text' and `__text__', ATTR may be either one. */
|
||
/* ??? It might be a reasonable simplification to require ATTR to be only
|
||
`text'. One might then also require attribute lists to be stored in
|
||
their canonicalized form. */
|
||
|
||
static int
|
||
is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
|
||
{
|
||
int ident_len;
|
||
const char *p;
|
||
|
||
if (TREE_CODE (ident) != IDENTIFIER_NODE)
|
||
return 0;
|
||
|
||
p = IDENTIFIER_POINTER (ident);
|
||
ident_len = IDENTIFIER_LENGTH (ident);
|
||
|
||
if (ident_len == attr_len
|
||
&& strcmp (attr, p) == 0)
|
||
return 1;
|
||
|
||
/* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
|
||
if (attr[0] == '_')
|
||
{
|
||
gcc_assert (attr[1] == '_');
|
||
gcc_assert (attr[attr_len - 2] == '_');
|
||
gcc_assert (attr[attr_len - 1] == '_');
|
||
if (ident_len == attr_len - 4
|
||
&& strncmp (attr + 2, p, attr_len - 4) == 0)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (ident_len == attr_len + 4
|
||
&& p[0] == '_' && p[1] == '_'
|
||
&& p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
|
||
&& strncmp (attr, p + 2, attr_len) == 0)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if IDENT is a valid name for attribute ATTR,
|
||
or zero if not.
|
||
|
||
We try both `text' and `__text__', ATTR may be either one. */
|
||
|
||
int
|
||
is_attribute_p (const char *attr, const_tree ident)
|
||
{
|
||
return is_attribute_with_length_p (attr, strlen (attr), ident);
|
||
}
|
||
|
||
/* Given an attribute name and a list of attributes, return a pointer to the
|
||
attribute's list element if the attribute is part of the list, or NULL_TREE
|
||
if not found. If the attribute appears more than once, this only
|
||
returns the first occurrence; the TREE_CHAIN of the return value should
|
||
be passed back in if further occurrences are wanted. */
|
||
|
||
tree
|
||
lookup_attribute (const char *attr_name, tree list)
|
||
{
|
||
tree l;
|
||
size_t attr_len = strlen (attr_name);
|
||
|
||
for (l = list; l; l = TREE_CHAIN (l))
|
||
{
|
||
gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
|
||
if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
|
||
return l;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Remove any instances of attribute ATTR_NAME in LIST and return the
|
||
modified list. */
|
||
|
||
tree
|
||
remove_attribute (const char *attr_name, tree list)
|
||
{
|
||
tree *p;
|
||
size_t attr_len = strlen (attr_name);
|
||
|
||
for (p = &list; *p; )
|
||
{
|
||
tree l = *p;
|
||
gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
|
||
if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
|
||
*p = TREE_CHAIN (l);
|
||
else
|
||
p = &TREE_CHAIN (l);
|
||
}
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Return an attribute list that is the union of a1 and a2. */
|
||
|
||
tree
|
||
merge_attributes (tree a1, tree a2)
|
||
{
|
||
tree attributes;
|
||
|
||
/* Either one unset? Take the set one. */
|
||
|
||
if ((attributes = a1) == 0)
|
||
attributes = a2;
|
||
|
||
/* One that completely contains the other? Take it. */
|
||
|
||
else if (a2 != 0 && ! attribute_list_contained (a1, a2))
|
||
{
|
||
if (attribute_list_contained (a2, a1))
|
||
attributes = a2;
|
||
else
|
||
{
|
||
/* Pick the longest list, and hang on the other list. */
|
||
|
||
if (list_length (a1) < list_length (a2))
|
||
attributes = a2, a2 = a1;
|
||
|
||
for (; a2 != 0; a2 = TREE_CHAIN (a2))
|
||
{
|
||
tree a;
|
||
for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
|
||
attributes);
|
||
a != NULL_TREE && !attribute_value_equal (a, a2);
|
||
a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
|
||
TREE_CHAIN (a)))
|
||
;
|
||
if (a == NULL_TREE)
|
||
{
|
||
a1 = copy_node (a2);
|
||
TREE_CHAIN (a1) = attributes;
|
||
attributes = a1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return attributes;
|
||
}
|
||
|
||
/* Given types T1 and T2, merge their attributes and return
|
||
the result. */
|
||
|
||
tree
|
||
merge_type_attributes (tree t1, tree t2)
|
||
{
|
||
return merge_attributes (TYPE_ATTRIBUTES (t1),
|
||
TYPE_ATTRIBUTES (t2));
|
||
}
|
||
|
||
/* Given decls OLDDECL and NEWDECL, merge their attributes and return
|
||
the result. */
|
||
|
||
tree
|
||
merge_decl_attributes (tree olddecl, tree newdecl)
|
||
{
|
||
return merge_attributes (DECL_ATTRIBUTES (olddecl),
|
||
DECL_ATTRIBUTES (newdecl));
|
||
}
|
||
|
||
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
||
|
||
/* Specialization of merge_decl_attributes for various Windows targets.
|
||
|
||
This handles the following situation:
|
||
|
||
__declspec (dllimport) int foo;
|
||
int foo;
|
||
|
||
The second instance of `foo' nullifies the dllimport. */
|
||
|
||
tree
|
||
merge_dllimport_decl_attributes (tree old, tree new_tree)
|
||
{
|
||
tree a;
|
||
int delete_dllimport_p = 1;
|
||
|
||
/* What we need to do here is remove from `old' dllimport if it doesn't
|
||
appear in `new'. dllimport behaves like extern: if a declaration is
|
||
marked dllimport and a definition appears later, then the object
|
||
is not dllimport'd. We also remove a `new' dllimport if the old list
|
||
contains dllexport: dllexport always overrides dllimport, regardless
|
||
of the order of declaration. */
|
||
if (!VAR_OR_FUNCTION_DECL_P (new_tree))
|
||
delete_dllimport_p = 0;
|
||
else if (DECL_DLLIMPORT_P (new_tree)
|
||
&& lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
|
||
{
|
||
DECL_DLLIMPORT_P (new_tree) = 0;
|
||
warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
|
||
"dllimport ignored", new_tree);
|
||
}
|
||
else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
|
||
{
|
||
/* Warn about overriding a symbol that has already been used, e.g.:
|
||
extern int __attribute__ ((dllimport)) foo;
|
||
int* bar () {return &foo;}
|
||
int foo;
|
||
*/
|
||
if (TREE_USED (old))
|
||
{
|
||
warning (0, "%q+D redeclared without dllimport attribute "
|
||
"after being referenced with dll linkage", new_tree);
|
||
/* If we have used a variable's address with dllimport linkage,
|
||
keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
|
||
decl may already have had TREE_CONSTANT computed.
|
||
We still remove the attribute so that assembler code refers
|
||
to '&foo rather than '_imp__foo'. */
|
||
if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
|
||
DECL_DLLIMPORT_P (new_tree) = 1;
|
||
}
|
||
|
||
/* Let an inline definition silently override the external reference,
|
||
but otherwise warn about attribute inconsistency. */
|
||
else if (TREE_CODE (new_tree) == VAR_DECL
|
||
|| !DECL_DECLARED_INLINE_P (new_tree))
|
||
warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
|
||
"previous dllimport ignored", new_tree);
|
||
}
|
||
else
|
||
delete_dllimport_p = 0;
|
||
|
||
a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
|
||
|
||
if (delete_dllimport_p)
|
||
{
|
||
tree prev, t;
|
||
const size_t attr_len = strlen ("dllimport");
|
||
|
||
/* Scan the list for dllimport and delete it. */
|
||
for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
|
||
{
|
||
if (is_attribute_with_length_p ("dllimport", attr_len,
|
||
TREE_PURPOSE (t)))
|
||
{
|
||
if (prev == NULL_TREE)
|
||
a = TREE_CHAIN (a);
|
||
else
|
||
TREE_CHAIN (prev) = TREE_CHAIN (t);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return a;
|
||
}
|
||
|
||
/* Handle a "dllimport" or "dllexport" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
tree
|
||
handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
|
||
bool *no_add_attrs)
|
||
{
|
||
tree node = *pnode;
|
||
bool is_dllimport;
|
||
|
||
/* These attributes may apply to structure and union types being created,
|
||
but otherwise should pass to the declaration involved. */
|
||
if (!DECL_P (node))
|
||
{
|
||
if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
|
||
| (int) ATTR_FLAG_ARRAY_NEXT))
|
||
{
|
||
*no_add_attrs = true;
|
||
return tree_cons (name, args, NULL_TREE);
|
||
}
|
||
if (TREE_CODE (node) == RECORD_TYPE
|
||
|| TREE_CODE (node) == UNION_TYPE)
|
||
{
|
||
node = TYPE_NAME (node);
|
||
if (!node)
|
||
return NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored",
|
||
name);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (node) != FUNCTION_DECL
|
||
&& TREE_CODE (node) != VAR_DECL
|
||
&& TREE_CODE (node) != TYPE_DECL)
|
||
{
|
||
*no_add_attrs = true;
|
||
warning (OPT_Wattributes, "%qE attribute ignored",
|
||
name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (node) == TYPE_DECL
|
||
&& TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
|
||
&& TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
|
||
{
|
||
*no_add_attrs = true;
|
||
warning (OPT_Wattributes, "%qE attribute ignored",
|
||
name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
is_dllimport = is_attribute_p ("dllimport", name);
|
||
|
||
/* Report error on dllimport ambiguities seen now before they cause
|
||
any damage. */
|
||
if (is_dllimport)
|
||
{
|
||
/* Honor any target-specific overrides. */
|
||
if (!targetm.valid_dllimport_attribute_p (node))
|
||
*no_add_attrs = true;
|
||
|
||
else if (TREE_CODE (node) == FUNCTION_DECL
|
||
&& DECL_DECLARED_INLINE_P (node))
|
||
{
|
||
warning (OPT_Wattributes, "inline function %q+D declared as "
|
||
" dllimport: attribute ignored", node);
|
||
*no_add_attrs = true;
|
||
}
|
||
/* Like MS, treat definition of dllimported variables and
|
||
non-inlined functions on declaration as syntax errors. */
|
||
else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
|
||
{
|
||
error ("function %q+D definition is marked dllimport", node);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
else if (TREE_CODE (node) == VAR_DECL)
|
||
{
|
||
if (DECL_INITIAL (node))
|
||
{
|
||
error ("variable %q+D definition is marked dllimport",
|
||
node);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
/* `extern' needn't be specified with dllimport.
|
||
Specify `extern' now and hope for the best. Sigh. */
|
||
DECL_EXTERNAL (node) = 1;
|
||
/* Also, implicitly give dllimport'd variables declared within
|
||
a function global scope, unless declared static. */
|
||
if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
|
||
TREE_PUBLIC (node) = 1;
|
||
}
|
||
|
||
if (*no_add_attrs == false)
|
||
DECL_DLLIMPORT_P (node) = 1;
|
||
}
|
||
else if (TREE_CODE (node) == FUNCTION_DECL
|
||
&& DECL_DECLARED_INLINE_P (node)
|
||
&& flag_keep_inline_dllexport)
|
||
/* An exported function, even if inline, must be emitted. */
|
||
DECL_EXTERNAL (node) = 0;
|
||
|
||
/* Report error if symbol is not accessible at global scope. */
|
||
if (!TREE_PUBLIC (node)
|
||
&& (TREE_CODE (node) == VAR_DECL
|
||
|| TREE_CODE (node) == FUNCTION_DECL))
|
||
{
|
||
error ("external linkage required for symbol %q+D because of "
|
||
"%qE attribute", node, name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
/* A dllexport'd entity must have default visibility so that other
|
||
program units (shared libraries or the main executable) can see
|
||
it. A dllimport'd entity must have default visibility so that
|
||
the linker knows that undefined references within this program
|
||
unit can be resolved by the dynamic linker. */
|
||
if (!*no_add_attrs)
|
||
{
|
||
if (DECL_VISIBILITY_SPECIFIED (node)
|
||
&& DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
|
||
error ("%qE implies default visibility, but %qD has already "
|
||
"been declared with a different visibility",
|
||
name, node);
|
||
DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
|
||
DECL_VISIBILITY_SPECIFIED (node) = 1;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
#endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
|
||
|
||
/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
|
||
of the various TYPE_QUAL values. */
|
||
|
||
static void
|
||
set_type_quals (tree type, int type_quals)
|
||
{
|
||
TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
|
||
TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
|
||
TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
|
||
TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
|
||
}
|
||
|
||
/* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
|
||
|
||
bool
|
||
check_qualified_type (const_tree cand, const_tree base, int type_quals)
|
||
{
|
||
return (TYPE_QUALS (cand) == type_quals
|
||
&& TYPE_NAME (cand) == TYPE_NAME (base)
|
||
/* Apparently this is needed for Objective-C. */
|
||
&& TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
|
||
/* Check alignment. */
|
||
&& TYPE_ALIGN (cand) == TYPE_ALIGN (base)
|
||
&& attribute_list_equal (TYPE_ATTRIBUTES (cand),
|
||
TYPE_ATTRIBUTES (base)));
|
||
}
|
||
|
||
/* Returns true iff CAND is equivalent to BASE with ALIGN. */
|
||
|
||
static bool
|
||
check_aligned_type (const_tree cand, const_tree base, unsigned int align)
|
||
{
|
||
return (TYPE_QUALS (cand) == TYPE_QUALS (base)
|
||
&& TYPE_NAME (cand) == TYPE_NAME (base)
|
||
/* Apparently this is needed for Objective-C. */
|
||
&& TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
|
||
/* Check alignment. */
|
||
&& TYPE_ALIGN (cand) == align
|
||
&& attribute_list_equal (TYPE_ATTRIBUTES (cand),
|
||
TYPE_ATTRIBUTES (base)));
|
||
}
|
||
|
||
/* Return a version of the TYPE, qualified as indicated by the
|
||
TYPE_QUALS, if one exists. If no qualified version exists yet,
|
||
return NULL_TREE. */
|
||
|
||
tree
|
||
get_qualified_type (tree type, int type_quals)
|
||
{
|
||
tree t;
|
||
|
||
if (TYPE_QUALS (type) == type_quals)
|
||
return type;
|
||
|
||
/* Search the chain of variants to see if there is already one there just
|
||
like the one we need to have. If so, use that existing one. We must
|
||
preserve the TYPE_NAME, since there is code that depends on this. */
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
if (check_qualified_type (t, type, type_quals))
|
||
return t;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Like get_qualified_type, but creates the type if it does not
|
||
exist. This function never returns NULL_TREE. */
|
||
|
||
tree
|
||
build_qualified_type (tree type, int type_quals)
|
||
{
|
||
tree t;
|
||
|
||
/* See if we already have the appropriate qualified variant. */
|
||
t = get_qualified_type (type, type_quals);
|
||
|
||
/* If not, build it. */
|
||
if (!t)
|
||
{
|
||
t = build_variant_type_copy (type);
|
||
set_type_quals (t, type_quals);
|
||
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (type))
|
||
/* Propagate structural equality. */
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (type) != type)
|
||
/* Build the underlying canonical type, since it is different
|
||
from TYPE. */
|
||
TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
|
||
type_quals);
|
||
else
|
||
/* T is its own canonical type. */
|
||
TYPE_CANONICAL (t) = t;
|
||
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a variant of type T with alignment ALIGN. */
|
||
|
||
tree
|
||
build_aligned_type (tree type, unsigned int align)
|
||
{
|
||
tree t;
|
||
|
||
if (TYPE_PACKED (type)
|
||
|| TYPE_ALIGN (type) == align)
|
||
return type;
|
||
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
if (check_aligned_type (t, type, align))
|
||
return t;
|
||
|
||
t = build_variant_type_copy (type);
|
||
TYPE_ALIGN (t) = align;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a new distinct copy of TYPE. The new type is made its own
|
||
MAIN_VARIANT. If TYPE requires structural equality checks, the
|
||
resulting type requires structural equality checks; otherwise, its
|
||
TYPE_CANONICAL points to itself. */
|
||
|
||
tree
|
||
build_distinct_type_copy (tree type)
|
||
{
|
||
tree t = copy_node (type);
|
||
|
||
TYPE_POINTER_TO (t) = 0;
|
||
TYPE_REFERENCE_TO (t) = 0;
|
||
|
||
/* Set the canonical type either to a new equivalence class, or
|
||
propagate the need for structural equality checks. */
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (type))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else
|
||
TYPE_CANONICAL (t) = t;
|
||
|
||
/* Make it its own variant. */
|
||
TYPE_MAIN_VARIANT (t) = t;
|
||
TYPE_NEXT_VARIANT (t) = 0;
|
||
|
||
/* Note that it is now possible for TYPE_MIN_VALUE to be a value
|
||
whose TREE_TYPE is not t. This can also happen in the Ada
|
||
frontend when using subtypes. */
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a new variant of TYPE, equivalent but distinct. This is so
|
||
the caller can modify it. TYPE_CANONICAL for the return type will
|
||
be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
|
||
are considered equal by the language itself (or that both types
|
||
require structural equality checks). */
|
||
|
||
tree
|
||
build_variant_type_copy (tree type)
|
||
{
|
||
tree t, m = TYPE_MAIN_VARIANT (type);
|
||
|
||
t = build_distinct_type_copy (type);
|
||
|
||
/* Since we're building a variant, assume that it is a non-semantic
|
||
variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
|
||
TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
|
||
|
||
/* Add the new type to the chain of variants of TYPE. */
|
||
TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
|
||
TYPE_NEXT_VARIANT (m) = t;
|
||
TYPE_MAIN_VARIANT (t) = m;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return true if the from tree in both tree maps are equal. */
|
||
|
||
int
|
||
tree_map_base_eq (const void *va, const void *vb)
|
||
{
|
||
const struct tree_map_base *const a = (const struct tree_map_base *) va,
|
||
*const b = (const struct tree_map_base *) vb;
|
||
return (a->from == b->from);
|
||
}
|
||
|
||
/* Hash a from tree in a tree_base_map. */
|
||
|
||
unsigned int
|
||
tree_map_base_hash (const void *item)
|
||
{
|
||
return htab_hash_pointer (((const struct tree_map_base *)item)->from);
|
||
}
|
||
|
||
/* Return true if this tree map structure is marked for garbage collection
|
||
purposes. We simply return true if the from tree is marked, so that this
|
||
structure goes away when the from tree goes away. */
|
||
|
||
int
|
||
tree_map_base_marked_p (const void *p)
|
||
{
|
||
return ggc_marked_p (((const struct tree_map_base *) p)->from);
|
||
}
|
||
|
||
/* Hash a from tree in a tree_map. */
|
||
|
||
unsigned int
|
||
tree_map_hash (const void *item)
|
||
{
|
||
return (((const struct tree_map *) item)->hash);
|
||
}
|
||
|
||
/* Hash a from tree in a tree_decl_map. */
|
||
|
||
unsigned int
|
||
tree_decl_map_hash (const void *item)
|
||
{
|
||
return DECL_UID (((const struct tree_decl_map *) item)->base.from);
|
||
}
|
||
|
||
/* Return the initialization priority for DECL. */
|
||
|
||
priority_type
|
||
decl_init_priority_lookup (tree decl)
|
||
{
|
||
struct tree_priority_map *h;
|
||
struct tree_map_base in;
|
||
|
||
gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
|
||
in.from = decl;
|
||
h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
|
||
return h ? h->init : DEFAULT_INIT_PRIORITY;
|
||
}
|
||
|
||
/* Return the finalization priority for DECL. */
|
||
|
||
priority_type
|
||
decl_fini_priority_lookup (tree decl)
|
||
{
|
||
struct tree_priority_map *h;
|
||
struct tree_map_base in;
|
||
|
||
gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
|
||
in.from = decl;
|
||
h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
|
||
return h ? h->fini : DEFAULT_INIT_PRIORITY;
|
||
}
|
||
|
||
/* Return the initialization and finalization priority information for
|
||
DECL. If there is no previous priority information, a freshly
|
||
allocated structure is returned. */
|
||
|
||
static struct tree_priority_map *
|
||
decl_priority_info (tree decl)
|
||
{
|
||
struct tree_priority_map in;
|
||
struct tree_priority_map *h;
|
||
void **loc;
|
||
|
||
in.base.from = decl;
|
||
loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
|
||
h = (struct tree_priority_map *) *loc;
|
||
if (!h)
|
||
{
|
||
h = ggc_alloc_cleared_tree_priority_map ();
|
||
*loc = h;
|
||
h->base.from = decl;
|
||
h->init = DEFAULT_INIT_PRIORITY;
|
||
h->fini = DEFAULT_INIT_PRIORITY;
|
||
}
|
||
|
||
return h;
|
||
}
|
||
|
||
/* Set the initialization priority for DECL to PRIORITY. */
|
||
|
||
void
|
||
decl_init_priority_insert (tree decl, priority_type priority)
|
||
{
|
||
struct tree_priority_map *h;
|
||
|
||
gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
|
||
if (priority == DEFAULT_INIT_PRIORITY)
|
||
return;
|
||
h = decl_priority_info (decl);
|
||
h->init = priority;
|
||
}
|
||
|
||
/* Set the finalization priority for DECL to PRIORITY. */
|
||
|
||
void
|
||
decl_fini_priority_insert (tree decl, priority_type priority)
|
||
{
|
||
struct tree_priority_map *h;
|
||
|
||
gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
|
||
if (priority == DEFAULT_INIT_PRIORITY)
|
||
return;
|
||
h = decl_priority_info (decl);
|
||
h->fini = priority;
|
||
}
|
||
|
||
/* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
|
||
|
||
static void
|
||
print_debug_expr_statistics (void)
|
||
{
|
||
fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
|
||
(long) htab_size (debug_expr_for_decl),
|
||
(long) htab_elements (debug_expr_for_decl),
|
||
htab_collisions (debug_expr_for_decl));
|
||
}
|
||
|
||
/* Print out the statistics for the DECL_VALUE_EXPR hash table. */
|
||
|
||
static void
|
||
print_value_expr_statistics (void)
|
||
{
|
||
fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
|
||
(long) htab_size (value_expr_for_decl),
|
||
(long) htab_elements (value_expr_for_decl),
|
||
htab_collisions (value_expr_for_decl));
|
||
}
|
||
|
||
/* Lookup a debug expression for FROM, and return it if we find one. */
|
||
|
||
tree
|
||
decl_debug_expr_lookup (tree from)
|
||
{
|
||
struct tree_decl_map *h, in;
|
||
in.base.from = from;
|
||
|
||
h = (struct tree_decl_map *)
|
||
htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
|
||
if (h)
|
||
return h->to;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Insert a mapping FROM->TO in the debug expression hashtable. */
|
||
|
||
void
|
||
decl_debug_expr_insert (tree from, tree to)
|
||
{
|
||
struct tree_decl_map *h;
|
||
void **loc;
|
||
|
||
h = ggc_alloc_tree_decl_map ();
|
||
h->base.from = from;
|
||
h->to = to;
|
||
loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
|
||
INSERT);
|
||
*(struct tree_decl_map **) loc = h;
|
||
}
|
||
|
||
/* Lookup a value expression for FROM, and return it if we find one. */
|
||
|
||
tree
|
||
decl_value_expr_lookup (tree from)
|
||
{
|
||
struct tree_decl_map *h, in;
|
||
in.base.from = from;
|
||
|
||
h = (struct tree_decl_map *)
|
||
htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
|
||
if (h)
|
||
return h->to;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Insert a mapping FROM->TO in the value expression hashtable. */
|
||
|
||
void
|
||
decl_value_expr_insert (tree from, tree to)
|
||
{
|
||
struct tree_decl_map *h;
|
||
void **loc;
|
||
|
||
h = ggc_alloc_tree_decl_map ();
|
||
h->base.from = from;
|
||
h->to = to;
|
||
loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
|
||
INSERT);
|
||
*(struct tree_decl_map **) loc = h;
|
||
}
|
||
|
||
/* Hashing of types so that we don't make duplicates.
|
||
The entry point is `type_hash_canon'. */
|
||
|
||
/* Compute a hash code for a list of types (chain of TREE_LIST nodes
|
||
with types in the TREE_VALUE slots), by adding the hash codes
|
||
of the individual types. */
|
||
|
||
static unsigned int
|
||
type_hash_list (const_tree list, hashval_t hashcode)
|
||
{
|
||
const_tree tail;
|
||
|
||
for (tail = list; tail; tail = TREE_CHAIN (tail))
|
||
if (TREE_VALUE (tail) != error_mark_node)
|
||
hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
|
||
hashcode);
|
||
|
||
return hashcode;
|
||
}
|
||
|
||
/* These are the Hashtable callback functions. */
|
||
|
||
/* Returns true iff the types are equivalent. */
|
||
|
||
static int
|
||
type_hash_eq (const void *va, const void *vb)
|
||
{
|
||
const struct type_hash *const a = (const struct type_hash *) va,
|
||
*const b = (const struct type_hash *) vb;
|
||
|
||
/* First test the things that are the same for all types. */
|
||
if (a->hash != b->hash
|
||
|| TREE_CODE (a->type) != TREE_CODE (b->type)
|
||
|| TREE_TYPE (a->type) != TREE_TYPE (b->type)
|
||
|| !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
|
||
TYPE_ATTRIBUTES (b->type))
|
||
|| (TREE_CODE (a->type) != COMPLEX_TYPE
|
||
&& TYPE_NAME (a->type) != TYPE_NAME (b->type)))
|
||
return 0;
|
||
|
||
/* Be careful about comparing arrays before and after the element type
|
||
has been completed; don't compare TYPE_ALIGN unless both types are
|
||
complete. */
|
||
if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
|
||
&& (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
|
||
|| TYPE_MODE (a->type) != TYPE_MODE (b->type)))
|
||
return 0;
|
||
|
||
switch (TREE_CODE (a->type))
|
||
{
|
||
case VOID_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
return 1;
|
||
|
||
case VECTOR_TYPE:
|
||
return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
|
||
|
||
case ENUMERAL_TYPE:
|
||
if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
|
||
&& !(TYPE_VALUES (a->type)
|
||
&& TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
|
||
&& TYPE_VALUES (b->type)
|
||
&& TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_VALUES (a->type),
|
||
TYPE_VALUES (b->type))))
|
||
return 0;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
|
||
|| tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
|
||
TYPE_MAX_VALUE (b->type)))
|
||
&& (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
|
||
|| tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
|
||
TYPE_MIN_VALUE (b->type))));
|
||
|
||
case FIXED_POINT_TYPE:
|
||
return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
|
||
|
||
case OFFSET_TYPE:
|
||
return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
|
||
|
||
case METHOD_TYPE:
|
||
if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
|
||
&& (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
|
||
|| (TYPE_ARG_TYPES (a->type)
|
||
&& TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
|
||
&& TYPE_ARG_TYPES (b->type)
|
||
&& TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_ARG_TYPES (a->type),
|
||
TYPE_ARG_TYPES (b->type)))))
|
||
break;
|
||
return 0;
|
||
case ARRAY_TYPE:
|
||
return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
|
||
|| (TYPE_FIELDS (a->type)
|
||
&& TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
|
||
&& TYPE_FIELDS (b->type)
|
||
&& TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_FIELDS (a->type),
|
||
TYPE_FIELDS (b->type))));
|
||
|
||
case FUNCTION_TYPE:
|
||
if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
|
||
|| (TYPE_ARG_TYPES (a->type)
|
||
&& TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
|
||
&& TYPE_ARG_TYPES (b->type)
|
||
&& TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_ARG_TYPES (a->type),
|
||
TYPE_ARG_TYPES (b->type))))
|
||
break;
|
||
return 0;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
if (lang_hooks.types.type_hash_eq != NULL)
|
||
return lang_hooks.types.type_hash_eq (a->type, b->type);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return the cached hash value. */
|
||
|
||
static hashval_t
|
||
type_hash_hash (const void *item)
|
||
{
|
||
return ((const struct type_hash *) item)->hash;
|
||
}
|
||
|
||
/* Look in the type hash table for a type isomorphic to TYPE.
|
||
If one is found, return it. Otherwise return 0. */
|
||
|
||
tree
|
||
type_hash_lookup (hashval_t hashcode, tree type)
|
||
{
|
||
struct type_hash *h, in;
|
||
|
||
/* The TYPE_ALIGN field of a type is set by layout_type(), so we
|
||
must call that routine before comparing TYPE_ALIGNs. */
|
||
layout_type (type);
|
||
|
||
in.hash = hashcode;
|
||
in.type = type;
|
||
|
||
h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
|
||
hashcode);
|
||
if (h)
|
||
return h->type;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Add an entry to the type-hash-table
|
||
for a type TYPE whose hash code is HASHCODE. */
|
||
|
||
void
|
||
type_hash_add (hashval_t hashcode, tree type)
|
||
{
|
||
struct type_hash *h;
|
||
void **loc;
|
||
|
||
h = ggc_alloc_type_hash ();
|
||
h->hash = hashcode;
|
||
h->type = type;
|
||
loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
|
||
*loc = (void *)h;
|
||
}
|
||
|
||
/* Given TYPE, and HASHCODE its hash code, return the canonical
|
||
object for an identical type if one already exists.
|
||
Otherwise, return TYPE, and record it as the canonical object.
|
||
|
||
To use this function, first create a type of the sort you want.
|
||
Then compute its hash code from the fields of the type that
|
||
make it different from other similar types.
|
||
Then call this function and use the value. */
|
||
|
||
tree
|
||
type_hash_canon (unsigned int hashcode, tree type)
|
||
{
|
||
tree t1;
|
||
|
||
/* The hash table only contains main variants, so ensure that's what we're
|
||
being passed. */
|
||
gcc_assert (TYPE_MAIN_VARIANT (type) == type);
|
||
|
||
/* See if the type is in the hash table already. If so, return it.
|
||
Otherwise, add the type. */
|
||
t1 = type_hash_lookup (hashcode, type);
|
||
if (t1 != 0)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
tree_code_counts[(int) TREE_CODE (type)]--;
|
||
tree_node_counts[(int) t_kind]--;
|
||
tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
|
||
#endif
|
||
return t1;
|
||
}
|
||
else
|
||
{
|
||
type_hash_add (hashcode, type);
|
||
return type;
|
||
}
|
||
}
|
||
|
||
/* See if the data pointed to by the type hash table is marked. We consider
|
||
it marked if the type is marked or if a debug type number or symbol
|
||
table entry has been made for the type. */
|
||
|
||
static int
|
||
type_hash_marked_p (const void *p)
|
||
{
|
||
const_tree const type = ((const struct type_hash *) p)->type;
|
||
|
||
return ggc_marked_p (type);
|
||
}
|
||
|
||
static void
|
||
print_type_hash_statistics (void)
|
||
{
|
||
fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
|
||
(long) htab_size (type_hash_table),
|
||
(long) htab_elements (type_hash_table),
|
||
htab_collisions (type_hash_table));
|
||
}
|
||
|
||
/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
|
||
with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
|
||
by adding the hash codes of the individual attributes. */
|
||
|
||
static unsigned int
|
||
attribute_hash_list (const_tree list, hashval_t hashcode)
|
||
{
|
||
const_tree tail;
|
||
|
||
for (tail = list; tail; tail = TREE_CHAIN (tail))
|
||
/* ??? Do we want to add in TREE_VALUE too? */
|
||
hashcode = iterative_hash_object
|
||
(IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
|
||
return hashcode;
|
||
}
|
||
|
||
/* Given two lists of attributes, return true if list l2 is
|
||
equivalent to l1. */
|
||
|
||
int
|
||
attribute_list_equal (const_tree l1, const_tree l2)
|
||
{
|
||
return attribute_list_contained (l1, l2)
|
||
&& attribute_list_contained (l2, l1);
|
||
}
|
||
|
||
/* Given two lists of attributes, return true if list L2 is
|
||
completely contained within L1. */
|
||
/* ??? This would be faster if attribute names were stored in a canonicalized
|
||
form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
|
||
must be used to show these elements are equivalent (which they are). */
|
||
/* ??? It's not clear that attributes with arguments will always be handled
|
||
correctly. */
|
||
|
||
int
|
||
attribute_list_contained (const_tree l1, const_tree l2)
|
||
{
|
||
const_tree t1, t2;
|
||
|
||
/* First check the obvious, maybe the lists are identical. */
|
||
if (l1 == l2)
|
||
return 1;
|
||
|
||
/* Maybe the lists are similar. */
|
||
for (t1 = l1, t2 = l2;
|
||
t1 != 0 && t2 != 0
|
||
&& TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
|
||
&& TREE_VALUE (t1) == TREE_VALUE (t2);
|
||
t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
|
||
|
||
/* Maybe the lists are equal. */
|
||
if (t1 == 0 && t2 == 0)
|
||
return 1;
|
||
|
||
for (; t2 != 0; t2 = TREE_CHAIN (t2))
|
||
{
|
||
const_tree attr;
|
||
/* This CONST_CAST is okay because lookup_attribute does not
|
||
modify its argument and the return value is assigned to a
|
||
const_tree. */
|
||
for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
|
||
CONST_CAST_TREE(l1));
|
||
attr != NULL_TREE && !attribute_value_equal (t2, attr);
|
||
attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
|
||
TREE_CHAIN (attr)))
|
||
;
|
||
|
||
if (attr == NULL_TREE)
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Given two lists of types
|
||
(chains of TREE_LIST nodes with types in the TREE_VALUE slots)
|
||
return 1 if the lists contain the same types in the same order.
|
||
Also, the TREE_PURPOSEs must match. */
|
||
|
||
int
|
||
type_list_equal (const_tree l1, const_tree l2)
|
||
{
|
||
const_tree t1, t2;
|
||
|
||
for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
|
||
if (TREE_VALUE (t1) != TREE_VALUE (t2)
|
||
|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
|
||
&& ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
|
||
&& (TREE_TYPE (TREE_PURPOSE (t1))
|
||
== TREE_TYPE (TREE_PURPOSE (t2))))))
|
||
return 0;
|
||
|
||
return t1 == t2;
|
||
}
|
||
|
||
/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
|
||
given by TYPE. If the argument list accepts variable arguments,
|
||
then this function counts only the ordinary arguments. */
|
||
|
||
int
|
||
type_num_arguments (const_tree type)
|
||
{
|
||
int i = 0;
|
||
tree t;
|
||
|
||
for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
|
||
/* If the function does not take a variable number of arguments,
|
||
the last element in the list will have type `void'. */
|
||
if (VOID_TYPE_P (TREE_VALUE (t)))
|
||
break;
|
||
else
|
||
++i;
|
||
|
||
return i;
|
||
}
|
||
|
||
/* Nonzero if integer constants T1 and T2
|
||
represent the same constant value. */
|
||
|
||
int
|
||
tree_int_cst_equal (const_tree t1, const_tree t2)
|
||
{
|
||
if (t1 == t2)
|
||
return 1;
|
||
|
||
if (t1 == 0 || t2 == 0)
|
||
return 0;
|
||
|
||
if (TREE_CODE (t1) == INTEGER_CST
|
||
&& TREE_CODE (t2) == INTEGER_CST
|
||
&& TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
||
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
|
||
The precise way of comparison depends on their data type. */
|
||
|
||
int
|
||
tree_int_cst_lt (const_tree t1, const_tree t2)
|
||
{
|
||
if (t1 == t2)
|
||
return 0;
|
||
|
||
if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
|
||
{
|
||
int t1_sgn = tree_int_cst_sgn (t1);
|
||
int t2_sgn = tree_int_cst_sgn (t2);
|
||
|
||
if (t1_sgn < t2_sgn)
|
||
return 1;
|
||
else if (t1_sgn > t2_sgn)
|
||
return 0;
|
||
/* Otherwise, both are non-negative, so we compare them as
|
||
unsigned just in case one of them would overflow a signed
|
||
type. */
|
||
}
|
||
else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
|
||
return INT_CST_LT (t1, t2);
|
||
|
||
return INT_CST_LT_UNSIGNED (t1, t2);
|
||
}
|
||
|
||
/* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
|
||
|
||
int
|
||
tree_int_cst_compare (const_tree t1, const_tree t2)
|
||
{
|
||
if (tree_int_cst_lt (t1, t2))
|
||
return -1;
|
||
else if (tree_int_cst_lt (t2, t1))
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
|
||
the host. If POS is zero, the value can be represented in a single
|
||
HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
|
||
be represented in a single unsigned HOST_WIDE_INT. */
|
||
|
||
int
|
||
host_integerp (const_tree t, int pos)
|
||
{
|
||
if (t == NULL_TREE)
|
||
return 0;
|
||
|
||
return (TREE_CODE (t) == INTEGER_CST
|
||
&& ((TREE_INT_CST_HIGH (t) == 0
|
||
&& (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
|
||
|| (! pos && TREE_INT_CST_HIGH (t) == -1
|
||
&& (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
|
||
&& (!TYPE_UNSIGNED (TREE_TYPE (t))
|
||
|| (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
|
||
&& TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
|
||
|| (pos && TREE_INT_CST_HIGH (t) == 0)));
|
||
}
|
||
|
||
/* Return the HOST_WIDE_INT least significant bits of T if it is an
|
||
INTEGER_CST and there is no overflow. POS is nonzero if the result must
|
||
be non-negative. We must be able to satisfy the above conditions. */
|
||
|
||
HOST_WIDE_INT
|
||
tree_low_cst (const_tree t, int pos)
|
||
{
|
||
gcc_assert (host_integerp (t, pos));
|
||
return TREE_INT_CST_LOW (t);
|
||
}
|
||
|
||
/* Return the most significant bit of the integer constant T. */
|
||
|
||
int
|
||
tree_int_cst_msb (const_tree t)
|
||
{
|
||
int prec;
|
||
HOST_WIDE_INT h;
|
||
unsigned HOST_WIDE_INT l;
|
||
|
||
/* Note that using TYPE_PRECISION here is wrong. We care about the
|
||
actual bits, not the (arbitrary) range of the type. */
|
||
prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
|
||
rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
|
||
2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
|
||
return (l & 1) == 1;
|
||
}
|
||
|
||
/* Return an indication of the sign of the integer constant T.
|
||
The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
|
||
Note that -1 will never be returned if T's type is unsigned. */
|
||
|
||
int
|
||
tree_int_cst_sgn (const_tree t)
|
||
{
|
||
if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
|
||
return 0;
|
||
else if (TYPE_UNSIGNED (TREE_TYPE (t)))
|
||
return 1;
|
||
else if (TREE_INT_CST_HIGH (t) < 0)
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Return the minimum number of bits needed to represent VALUE in a
|
||
signed or unsigned type, UNSIGNEDP says which. */
|
||
|
||
unsigned int
|
||
tree_int_cst_min_precision (tree value, bool unsignedp)
|
||
{
|
||
int log;
|
||
|
||
/* If the value is negative, compute its negative minus 1. The latter
|
||
adjustment is because the absolute value of the largest negative value
|
||
is one larger than the largest positive value. This is equivalent to
|
||
a bit-wise negation, so use that operation instead. */
|
||
|
||
if (tree_int_cst_sgn (value) < 0)
|
||
value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
|
||
|
||
/* Return the number of bits needed, taking into account the fact
|
||
that we need one more bit for a signed than unsigned type. */
|
||
|
||
if (integer_zerop (value))
|
||
log = 0;
|
||
else
|
||
log = tree_floor_log2 (value);
|
||
|
||
return log + 1 + !unsignedp;
|
||
}
|
||
|
||
/* Compare two constructor-element-type constants. Return 1 if the lists
|
||
are known to be equal; otherwise return 0. */
|
||
|
||
int
|
||
simple_cst_list_equal (const_tree l1, const_tree l2)
|
||
{
|
||
while (l1 != NULL_TREE && l2 != NULL_TREE)
|
||
{
|
||
if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
|
||
return 0;
|
||
|
||
l1 = TREE_CHAIN (l1);
|
||
l2 = TREE_CHAIN (l2);
|
||
}
|
||
|
||
return l1 == l2;
|
||
}
|
||
|
||
/* Return truthvalue of whether T1 is the same tree structure as T2.
|
||
Return 1 if they are the same.
|
||
Return 0 if they are understandably different.
|
||
Return -1 if either contains tree structure not understood by
|
||
this function. */
|
||
|
||
int
|
||
simple_cst_equal (const_tree t1, const_tree t2)
|
||
{
|
||
enum tree_code code1, code2;
|
||
int cmp;
|
||
int i;
|
||
|
||
if (t1 == t2)
|
||
return 1;
|
||
if (t1 == 0 || t2 == 0)
|
||
return 0;
|
||
|
||
code1 = TREE_CODE (t1);
|
||
code2 = TREE_CODE (t2);
|
||
|
||
if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
|
||
{
|
||
if (CONVERT_EXPR_CODE_P (code2)
|
||
|| code2 == NON_LVALUE_EXPR)
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
else
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
|
||
}
|
||
|
||
else if (CONVERT_EXPR_CODE_P (code2)
|
||
|| code2 == NON_LVALUE_EXPR)
|
||
return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
|
||
|
||
if (code1 != code2)
|
||
return 0;
|
||
|
||
switch (code1)
|
||
{
|
||
case INTEGER_CST:
|
||
return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
||
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
|
||
|
||
case REAL_CST:
|
||
return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
|
||
|
||
case FIXED_CST:
|
||
return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
|
||
|
||
case STRING_CST:
|
||
return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
|
||
&& ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
||
TREE_STRING_LENGTH (t1)));
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
|
||
VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
|
||
|
||
if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
|
||
return false;
|
||
|
||
for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
|
||
/* ??? Should we handle also fields here? */
|
||
if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
|
||
VEC_index (constructor_elt, v2, idx)->value))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
case SAVE_EXPR:
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
case CALL_EXPR:
|
||
cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
if (call_expr_nargs (t1) != call_expr_nargs (t2))
|
||
return 0;
|
||
{
|
||
const_tree arg1, arg2;
|
||
const_call_expr_arg_iterator iter1, iter2;
|
||
for (arg1 = first_const_call_expr_arg (t1, &iter1),
|
||
arg2 = first_const_call_expr_arg (t2, &iter2);
|
||
arg1 && arg2;
|
||
arg1 = next_const_call_expr_arg (&iter1),
|
||
arg2 = next_const_call_expr_arg (&iter2))
|
||
{
|
||
cmp = simple_cst_equal (arg1, arg2);
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
}
|
||
return arg1 == arg2;
|
||
}
|
||
|
||
case TARGET_EXPR:
|
||
/* Special case: if either target is an unallocated VAR_DECL,
|
||
it means that it's going to be unified with whatever the
|
||
TARGET_EXPR is really supposed to initialize, so treat it
|
||
as being equivalent to anything. */
|
||
if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
|
||
&& DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
|
||
|| (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
|
||
&& DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
|
||
cmp = 1;
|
||
else
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
|
||
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
|
||
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
return 0;
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case CONST_DECL:
|
||
case FUNCTION_DECL:
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* This general rule works for most tree codes. All exceptions should be
|
||
handled above. If this is a language-specific tree code, we can't
|
||
trust what might be in the operand, so say we don't know
|
||
the situation. */
|
||
if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
|
||
return -1;
|
||
|
||
switch (TREE_CODE_CLASS (code1))
|
||
{
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_expression:
|
||
case tcc_reference:
|
||
case tcc_statement:
|
||
cmp = 1;
|
||
for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
|
||
{
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
}
|
||
|
||
return cmp;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
|
||
Return -1, 0, or 1 if the value of T is less than, equal to, or greater
|
||
than U, respectively. */
|
||
|
||
int
|
||
compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
|
||
{
|
||
if (tree_int_cst_sgn (t) < 0)
|
||
return -1;
|
||
else if (TREE_INT_CST_HIGH (t) != 0)
|
||
return 1;
|
||
else if (TREE_INT_CST_LOW (t) == u)
|
||
return 0;
|
||
else if (TREE_INT_CST_LOW (t) < u)
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Return true if CODE represents an associative tree code. Otherwise
|
||
return false. */
|
||
bool
|
||
associative_tree_code (enum tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case BIT_IOR_EXPR:
|
||
case BIT_AND_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MIN_EXPR:
|
||
case MAX_EXPR:
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if CODE represents a commutative tree code. Otherwise
|
||
return false. */
|
||
bool
|
||
commutative_tree_code (enum tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MIN_EXPR:
|
||
case MAX_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case BIT_AND_EXPR:
|
||
case NE_EXPR:
|
||
case EQ_EXPR:
|
||
case UNORDERED_EXPR:
|
||
case ORDERED_EXPR:
|
||
case UNEQ_EXPR:
|
||
case LTGT_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if CODE represents a ternary tree code for which the
|
||
first two operands are commutative. Otherwise return false. */
|
||
bool
|
||
commutative_ternary_tree_code (enum tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case WIDEN_MULT_PLUS_EXPR:
|
||
case WIDEN_MULT_MINUS_EXPR:
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Generate a hash value for an expression. This can be used iteratively
|
||
by passing a previous result as the VAL argument.
|
||
|
||
This function is intended to produce the same hash for expressions which
|
||
would compare equal using operand_equal_p. */
|
||
|
||
hashval_t
|
||
iterative_hash_expr (const_tree t, hashval_t val)
|
||
{
|
||
int i;
|
||
enum tree_code code;
|
||
char tclass;
|
||
|
||
if (t == NULL_TREE)
|
||
return iterative_hash_hashval_t (0, val);
|
||
|
||
code = TREE_CODE (t);
|
||
|
||
switch (code)
|
||
{
|
||
/* Alas, constants aren't shared, so we can't rely on pointer
|
||
identity. */
|
||
case INTEGER_CST:
|
||
val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
|
||
return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
|
||
case REAL_CST:
|
||
{
|
||
unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
|
||
|
||
return iterative_hash_hashval_t (val2, val);
|
||
}
|
||
case FIXED_CST:
|
||
{
|
||
unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
|
||
|
||
return iterative_hash_hashval_t (val2, val);
|
||
}
|
||
case STRING_CST:
|
||
return iterative_hash (TREE_STRING_POINTER (t),
|
||
TREE_STRING_LENGTH (t), val);
|
||
case COMPLEX_CST:
|
||
val = iterative_hash_expr (TREE_REALPART (t), val);
|
||
return iterative_hash_expr (TREE_IMAGPART (t), val);
|
||
case VECTOR_CST:
|
||
return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
|
||
case SSA_NAME:
|
||
/* We can just compare by pointer. */
|
||
return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
|
||
case PLACEHOLDER_EXPR:
|
||
/* The node itself doesn't matter. */
|
||
return val;
|
||
case TREE_LIST:
|
||
/* A list of expressions, for a CALL_EXPR or as the elements of a
|
||
VECTOR_CST. */
|
||
for (; t; t = TREE_CHAIN (t))
|
||
val = iterative_hash_expr (TREE_VALUE (t), val);
|
||
return val;
|
||
case CONSTRUCTOR:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree field, value;
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
|
||
{
|
||
val = iterative_hash_expr (field, val);
|
||
val = iterative_hash_expr (value, val);
|
||
}
|
||
return val;
|
||
}
|
||
case MEM_REF:
|
||
{
|
||
/* The type of the second operand is relevant, except for
|
||
its top-level qualifiers. */
|
||
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
|
||
|
||
val = iterative_hash_object (TYPE_HASH (type), val);
|
||
|
||
/* We could use the standard hash computation from this point
|
||
on. */
|
||
val = iterative_hash_object (code, val);
|
||
val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
|
||
val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
|
||
return val;
|
||
}
|
||
case FUNCTION_DECL:
|
||
/* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
|
||
Otherwise nodes that compare equal according to operand_equal_p might
|
||
get different hash codes. However, don't do this for machine specific
|
||
or front end builtins, since the function code is overloaded in those
|
||
cases. */
|
||
if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
|
||
&& built_in_decls[DECL_FUNCTION_CODE (t)])
|
||
{
|
||
t = built_in_decls[DECL_FUNCTION_CODE (t)];
|
||
code = TREE_CODE (t);
|
||
}
|
||
/* FALL THROUGH */
|
||
default:
|
||
tclass = TREE_CODE_CLASS (code);
|
||
|
||
if (tclass == tcc_declaration)
|
||
{
|
||
/* DECL's have a unique ID */
|
||
val = iterative_hash_host_wide_int (DECL_UID (t), val);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (IS_EXPR_CODE_CLASS (tclass));
|
||
|
||
val = iterative_hash_object (code, val);
|
||
|
||
/* Don't hash the type, that can lead to having nodes which
|
||
compare equal according to operand_equal_p, but which
|
||
have different hash codes. */
|
||
if (CONVERT_EXPR_CODE_P (code)
|
||
|| code == NON_LVALUE_EXPR)
|
||
{
|
||
/* Make sure to include signness in the hash computation. */
|
||
val += TYPE_UNSIGNED (TREE_TYPE (t));
|
||
val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
|
||
}
|
||
|
||
else if (commutative_tree_code (code))
|
||
{
|
||
/* It's a commutative expression. We want to hash it the same
|
||
however it appears. We do this by first hashing both operands
|
||
and then rehashing based on the order of their independent
|
||
hashes. */
|
||
hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
|
||
hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
|
||
hashval_t t;
|
||
|
||
if (one > two)
|
||
t = one, one = two, two = t;
|
||
|
||
val = iterative_hash_hashval_t (one, val);
|
||
val = iterative_hash_hashval_t (two, val);
|
||
}
|
||
else
|
||
for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
|
||
val = iterative_hash_expr (TREE_OPERAND (t, i), val);
|
||
}
|
||
return val;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Generate a hash value for a pair of expressions. This can be used
|
||
iteratively by passing a previous result as the VAL argument.
|
||
|
||
The same hash value is always returned for a given pair of expressions,
|
||
regardless of the order in which they are presented. This is useful in
|
||
hashing the operands of commutative functions. */
|
||
|
||
hashval_t
|
||
iterative_hash_exprs_commutative (const_tree t1,
|
||
const_tree t2, hashval_t val)
|
||
{
|
||
hashval_t one = iterative_hash_expr (t1, 0);
|
||
hashval_t two = iterative_hash_expr (t2, 0);
|
||
hashval_t t;
|
||
|
||
if (one > two)
|
||
t = one, one = two, two = t;
|
||
val = iterative_hash_hashval_t (one, val);
|
||
val = iterative_hash_hashval_t (two, val);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Constructors for pointer, array and function types.
|
||
(RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
|
||
constructed by language-dependent code, not here.) */
|
||
|
||
/* Construct, lay out and return the type of pointers to TO_TYPE with
|
||
mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
|
||
reference all of memory. If such a type has already been
|
||
constructed, reuse it. */
|
||
|
||
tree
|
||
build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
|
||
bool can_alias_all)
|
||
{
|
||
tree t;
|
||
|
||
if (to_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* If the pointed-to type has the may_alias attribute set, force
|
||
a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
|
||
if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
|
||
can_alias_all = true;
|
||
|
||
/* In some cases, languages will have things that aren't a POINTER_TYPE
|
||
(such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
|
||
In that case, return that type without regard to the rest of our
|
||
operands.
|
||
|
||
??? This is a kludge, but consistent with the way this function has
|
||
always operated and there doesn't seem to be a good way to avoid this
|
||
at the moment. */
|
||
if (TYPE_POINTER_TO (to_type) != 0
|
||
&& TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
|
||
return TYPE_POINTER_TO (to_type);
|
||
|
||
/* First, if we already have a type for pointers to TO_TYPE and it's
|
||
the proper mode, use it. */
|
||
for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
|
||
if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
|
||
return t;
|
||
|
||
t = make_node (POINTER_TYPE);
|
||
|
||
TREE_TYPE (t) = to_type;
|
||
SET_TYPE_MODE (t, mode);
|
||
TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
|
||
TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
|
||
TYPE_POINTER_TO (to_type) = t;
|
||
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (to_type) != to_type)
|
||
TYPE_CANONICAL (t)
|
||
= build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
|
||
mode, can_alias_all);
|
||
|
||
/* Lay out the type. This function has many callers that are concerned
|
||
with expression-construction, and this simplifies them all. */
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* By default build pointers in ptr_mode. */
|
||
|
||
tree
|
||
build_pointer_type (tree to_type)
|
||
{
|
||
addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
|
||
: TYPE_ADDR_SPACE (to_type);
|
||
enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
|
||
return build_pointer_type_for_mode (to_type, pointer_mode, false);
|
||
}
|
||
|
||
/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
|
||
|
||
tree
|
||
build_reference_type_for_mode (tree to_type, enum machine_mode mode,
|
||
bool can_alias_all)
|
||
{
|
||
tree t;
|
||
|
||
if (to_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* If the pointed-to type has the may_alias attribute set, force
|
||
a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
|
||
if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
|
||
can_alias_all = true;
|
||
|
||
/* In some cases, languages will have things that aren't a REFERENCE_TYPE
|
||
(such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
|
||
In that case, return that type without regard to the rest of our
|
||
operands.
|
||
|
||
??? This is a kludge, but consistent with the way this function has
|
||
always operated and there doesn't seem to be a good way to avoid this
|
||
at the moment. */
|
||
if (TYPE_REFERENCE_TO (to_type) != 0
|
||
&& TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
|
||
return TYPE_REFERENCE_TO (to_type);
|
||
|
||
/* First, if we already have a type for pointers to TO_TYPE and it's
|
||
the proper mode, use it. */
|
||
for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
|
||
if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
|
||
return t;
|
||
|
||
t = make_node (REFERENCE_TYPE);
|
||
|
||
TREE_TYPE (t) = to_type;
|
||
SET_TYPE_MODE (t, mode);
|
||
TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
|
||
TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
|
||
TYPE_REFERENCE_TO (to_type) = t;
|
||
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (to_type) != to_type)
|
||
TYPE_CANONICAL (t)
|
||
= build_reference_type_for_mode (TYPE_CANONICAL (to_type),
|
||
mode, can_alias_all);
|
||
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
/* Build the node for the type of references-to-TO_TYPE by default
|
||
in ptr_mode. */
|
||
|
||
tree
|
||
build_reference_type (tree to_type)
|
||
{
|
||
addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
|
||
: TYPE_ADDR_SPACE (to_type);
|
||
enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
|
||
return build_reference_type_for_mode (to_type, pointer_mode, false);
|
||
}
|
||
|
||
/* Build a type that is compatible with t but has no cv quals anywhere
|
||
in its type, thus
|
||
|
||
const char *const *const * -> char ***. */
|
||
|
||
tree
|
||
build_type_no_quals (tree t)
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case POINTER_TYPE:
|
||
return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
|
||
TYPE_MODE (t),
|
||
TYPE_REF_CAN_ALIAS_ALL (t));
|
||
case REFERENCE_TYPE:
|
||
return
|
||
build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
|
||
TYPE_MODE (t),
|
||
TYPE_REF_CAN_ALIAS_ALL (t));
|
||
default:
|
||
return TYPE_MAIN_VARIANT (t);
|
||
}
|
||
}
|
||
|
||
#define MAX_INT_CACHED_PREC \
|
||
(HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
|
||
static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
|
||
|
||
/* Builds a signed or unsigned integer type of precision PRECISION.
|
||
Used for C bitfields whose precision does not match that of
|
||
built-in target types. */
|
||
tree
|
||
build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
|
||
int unsignedp)
|
||
{
|
||
tree itype, ret;
|
||
|
||
if (unsignedp)
|
||
unsignedp = MAX_INT_CACHED_PREC + 1;
|
||
|
||
if (precision <= MAX_INT_CACHED_PREC)
|
||
{
|
||
itype = nonstandard_integer_type_cache[precision + unsignedp];
|
||
if (itype)
|
||
return itype;
|
||
}
|
||
|
||
itype = make_node (INTEGER_TYPE);
|
||
TYPE_PRECISION (itype) = precision;
|
||
|
||
if (unsignedp)
|
||
fixup_unsigned_type (itype);
|
||
else
|
||
fixup_signed_type (itype);
|
||
|
||
ret = itype;
|
||
if (host_integerp (TYPE_MAX_VALUE (itype), 1))
|
||
ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
|
||
if (precision <= MAX_INT_CACHED_PREC)
|
||
nonstandard_integer_type_cache[precision + unsignedp] = ret;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
|
||
or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
|
||
is true, reuse such a type that has already been constructed. */
|
||
|
||
static tree
|
||
build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
|
||
{
|
||
tree itype = make_node (INTEGER_TYPE);
|
||
hashval_t hashcode = 0;
|
||
|
||
TREE_TYPE (itype) = type;
|
||
|
||
TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
|
||
TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
|
||
|
||
TYPE_PRECISION (itype) = TYPE_PRECISION (type);
|
||
SET_TYPE_MODE (itype, TYPE_MODE (type));
|
||
TYPE_SIZE (itype) = TYPE_SIZE (type);
|
||
TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
|
||
TYPE_ALIGN (itype) = TYPE_ALIGN (type);
|
||
TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
|
||
|
||
if (!shared)
|
||
return itype;
|
||
|
||
if ((TYPE_MIN_VALUE (itype)
|
||
&& TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
|
||
|| (TYPE_MAX_VALUE (itype)
|
||
&& TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
|
||
{
|
||
/* Since we cannot reliably merge this type, we need to compare it using
|
||
structural equality checks. */
|
||
SET_TYPE_STRUCTURAL_EQUALITY (itype);
|
||
return itype;
|
||
}
|
||
|
||
hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
|
||
hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
|
||
hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
|
||
itype = type_hash_canon (hashcode, itype);
|
||
|
||
return itype;
|
||
}
|
||
|
||
/* Wrapper around build_range_type_1 with SHARED set to true. */
|
||
|
||
tree
|
||
build_range_type (tree type, tree lowval, tree highval)
|
||
{
|
||
return build_range_type_1 (type, lowval, highval, true);
|
||
}
|
||
|
||
/* Wrapper around build_range_type_1 with SHARED set to false. */
|
||
|
||
tree
|
||
build_nonshared_range_type (tree type, tree lowval, tree highval)
|
||
{
|
||
return build_range_type_1 (type, lowval, highval, false);
|
||
}
|
||
|
||
/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
|
||
MAXVAL should be the maximum value in the domain
|
||
(one less than the length of the array).
|
||
|
||
The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
|
||
We don't enforce this limit, that is up to caller (e.g. language front end).
|
||
The limit exists because the result is a signed type and we don't handle
|
||
sizes that use more than one HOST_WIDE_INT. */
|
||
|
||
tree
|
||
build_index_type (tree maxval)
|
||
{
|
||
return build_range_type (sizetype, size_zero_node, maxval);
|
||
}
|
||
|
||
/* Return true if the debug information for TYPE, a subtype, should be emitted
|
||
as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
|
||
high bound, respectively. Sometimes doing so unnecessarily obfuscates the
|
||
debug info and doesn't reflect the source code. */
|
||
|
||
bool
|
||
subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
|
||
{
|
||
tree base_type = TREE_TYPE (type), low, high;
|
||
|
||
/* Subrange types have a base type which is an integral type. */
|
||
if (!INTEGRAL_TYPE_P (base_type))
|
||
return false;
|
||
|
||
/* Get the real bounds of the subtype. */
|
||
if (lang_hooks.types.get_subrange_bounds)
|
||
lang_hooks.types.get_subrange_bounds (type, &low, &high);
|
||
else
|
||
{
|
||
low = TYPE_MIN_VALUE (type);
|
||
high = TYPE_MAX_VALUE (type);
|
||
}
|
||
|
||
/* If the type and its base type have the same representation and the same
|
||
name, then the type is not a subrange but a copy of the base type. */
|
||
if ((TREE_CODE (base_type) == INTEGER_TYPE
|
||
|| TREE_CODE (base_type) == BOOLEAN_TYPE)
|
||
&& int_size_in_bytes (type) == int_size_in_bytes (base_type)
|
||
&& tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
|
||
&& tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
|
||
{
|
||
tree type_name = TYPE_NAME (type);
|
||
tree base_type_name = TYPE_NAME (base_type);
|
||
|
||
if (type_name && TREE_CODE (type_name) == TYPE_DECL)
|
||
type_name = DECL_NAME (type_name);
|
||
|
||
if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
|
||
base_type_name = DECL_NAME (base_type_name);
|
||
|
||
if (type_name == base_type_name)
|
||
return false;
|
||
}
|
||
|
||
if (lowval)
|
||
*lowval = low;
|
||
if (highval)
|
||
*highval = high;
|
||
return true;
|
||
}
|
||
|
||
/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
|
||
and number of elements specified by the range of values of INDEX_TYPE.
|
||
If SHARED is true, reuse such a type that has already been constructed. */
|
||
|
||
static tree
|
||
build_array_type_1 (tree elt_type, tree index_type, bool shared)
|
||
{
|
||
tree t;
|
||
|
||
if (TREE_CODE (elt_type) == FUNCTION_TYPE)
|
||
{
|
||
error ("arrays of functions are not meaningful");
|
||
elt_type = integer_type_node;
|
||
}
|
||
|
||
t = make_node (ARRAY_TYPE);
|
||
TREE_TYPE (t) = elt_type;
|
||
TYPE_DOMAIN (t) = index_type;
|
||
TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
|
||
layout_type (t);
|
||
|
||
/* If the element type is incomplete at this point we get marked for
|
||
structural equality. Do not record these types in the canonical
|
||
type hashtable. */
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (t))
|
||
return t;
|
||
|
||
if (shared)
|
||
{
|
||
hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
|
||
if (index_type)
|
||
hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
|
||
t = type_hash_canon (hashcode, t);
|
||
}
|
||
|
||
if (TYPE_CANONICAL (t) == t)
|
||
{
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
|
||
|| (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (elt_type) != elt_type
|
||
|| (index_type && TYPE_CANONICAL (index_type) != index_type))
|
||
TYPE_CANONICAL (t)
|
||
= build_array_type_1 (TYPE_CANONICAL (elt_type),
|
||
index_type
|
||
? TYPE_CANONICAL (index_type) : NULL_TREE,
|
||
shared);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Wrapper around build_array_type_1 with SHARED set to true. */
|
||
|
||
tree
|
||
build_array_type (tree elt_type, tree index_type)
|
||
{
|
||
return build_array_type_1 (elt_type, index_type, true);
|
||
}
|
||
|
||
/* Wrapper around build_array_type_1 with SHARED set to false. */
|
||
|
||
tree
|
||
build_nonshared_array_type (tree elt_type, tree index_type)
|
||
{
|
||
return build_array_type_1 (elt_type, index_type, false);
|
||
}
|
||
|
||
/* Return a representation of ELT_TYPE[NELTS], using indices of type
|
||
sizetype. */
|
||
|
||
tree
|
||
build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
|
||
{
|
||
return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
|
||
}
|
||
|
||
/* Recursively examines the array elements of TYPE, until a non-array
|
||
element type is found. */
|
||
|
||
tree
|
||
strip_array_types (tree type)
|
||
{
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Computes the canonical argument types from the argument type list
|
||
ARGTYPES.
|
||
|
||
Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
|
||
on entry to this function, or if any of the ARGTYPES are
|
||
structural.
|
||
|
||
Upon return, *ANY_NONCANONICAL_P will be true iff either it was
|
||
true on entry to this function, or if any of the ARGTYPES are
|
||
non-canonical.
|
||
|
||
Returns a canonical argument list, which may be ARGTYPES when the
|
||
canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
|
||
true) or would not differ from ARGTYPES. */
|
||
|
||
static tree
|
||
maybe_canonicalize_argtypes(tree argtypes,
|
||
bool *any_structural_p,
|
||
bool *any_noncanonical_p)
|
||
{
|
||
tree arg;
|
||
bool any_noncanonical_argtypes_p = false;
|
||
|
||
for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
|
||
{
|
||
if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
|
||
/* Fail gracefully by stating that the type is structural. */
|
||
*any_structural_p = true;
|
||
else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
|
||
*any_structural_p = true;
|
||
else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
|
||
|| TREE_PURPOSE (arg))
|
||
/* If the argument has a default argument, we consider it
|
||
non-canonical even though the type itself is canonical.
|
||
That way, different variants of function and method types
|
||
with default arguments will all point to the variant with
|
||
no defaults as their canonical type. */
|
||
any_noncanonical_argtypes_p = true;
|
||
}
|
||
|
||
if (*any_structural_p)
|
||
return argtypes;
|
||
|
||
if (any_noncanonical_argtypes_p)
|
||
{
|
||
/* Build the canonical list of argument types. */
|
||
tree canon_argtypes = NULL_TREE;
|
||
bool is_void = false;
|
||
|
||
for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
|
||
{
|
||
if (arg == void_list_node)
|
||
is_void = true;
|
||
else
|
||
canon_argtypes = tree_cons (NULL_TREE,
|
||
TYPE_CANONICAL (TREE_VALUE (arg)),
|
||
canon_argtypes);
|
||
}
|
||
|
||
canon_argtypes = nreverse (canon_argtypes);
|
||
if (is_void)
|
||
canon_argtypes = chainon (canon_argtypes, void_list_node);
|
||
|
||
/* There is a non-canonical type. */
|
||
*any_noncanonical_p = true;
|
||
return canon_argtypes;
|
||
}
|
||
|
||
/* The canonical argument types are the same as ARGTYPES. */
|
||
return argtypes;
|
||
}
|
||
|
||
/* Construct, lay out and return
|
||
the type of functions returning type VALUE_TYPE
|
||
given arguments of types ARG_TYPES.
|
||
ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
|
||
are data type nodes for the arguments of the function.
|
||
If such a type has already been constructed, reuse it. */
|
||
|
||
tree
|
||
build_function_type (tree value_type, tree arg_types)
|
||
{
|
||
tree t;
|
||
hashval_t hashcode = 0;
|
||
bool any_structural_p, any_noncanonical_p;
|
||
tree canon_argtypes;
|
||
|
||
if (TREE_CODE (value_type) == FUNCTION_TYPE)
|
||
{
|
||
error ("function return type cannot be function");
|
||
value_type = integer_type_node;
|
||
}
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (FUNCTION_TYPE);
|
||
TREE_TYPE (t) = value_type;
|
||
TYPE_ARG_TYPES (t) = arg_types;
|
||
|
||
/* If we already have such a type, use the old one. */
|
||
hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
|
||
hashcode = type_hash_list (arg_types, hashcode);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
/* Set up the canonical type. */
|
||
any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
|
||
any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
|
||
canon_argtypes = maybe_canonicalize_argtypes (arg_types,
|
||
&any_structural_p,
|
||
&any_noncanonical_p);
|
||
if (any_structural_p)
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (any_noncanonical_p)
|
||
TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
|
||
canon_argtypes);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
return t;
|
||
}
|
||
|
||
/* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
|
||
|
||
tree
|
||
build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
|
||
{
|
||
tree new_type = NULL;
|
||
tree args, new_args = NULL, t;
|
||
tree new_reversed;
|
||
int i = 0;
|
||
|
||
for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
|
||
args = TREE_CHAIN (args), i++)
|
||
if (!bitmap_bit_p (args_to_skip, i))
|
||
new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
|
||
|
||
new_reversed = nreverse (new_args);
|
||
if (args)
|
||
{
|
||
if (new_reversed)
|
||
TREE_CHAIN (new_args) = void_list_node;
|
||
else
|
||
new_reversed = void_list_node;
|
||
}
|
||
|
||
/* Use copy_node to preserve as much as possible from original type
|
||
(debug info, attribute lists etc.)
|
||
Exception is METHOD_TYPEs must have THIS argument.
|
||
When we are asked to remove it, we need to build new FUNCTION_TYPE
|
||
instead. */
|
||
if (TREE_CODE (orig_type) != METHOD_TYPE
|
||
|| !bitmap_bit_p (args_to_skip, 0))
|
||
{
|
||
new_type = build_distinct_type_copy (orig_type);
|
||
TYPE_ARG_TYPES (new_type) = new_reversed;
|
||
}
|
||
else
|
||
{
|
||
new_type
|
||
= build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
|
||
new_reversed));
|
||
TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
|
||
}
|
||
|
||
/* This is a new type, not a copy of an old type. Need to reassociate
|
||
variants. We can handle everything except the main variant lazily. */
|
||
t = TYPE_MAIN_VARIANT (orig_type);
|
||
if (orig_type != t)
|
||
{
|
||
TYPE_MAIN_VARIANT (new_type) = t;
|
||
TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
|
||
TYPE_NEXT_VARIANT (t) = new_type;
|
||
}
|
||
else
|
||
{
|
||
TYPE_MAIN_VARIANT (new_type) = new_type;
|
||
TYPE_NEXT_VARIANT (new_type) = NULL;
|
||
}
|
||
return new_type;
|
||
}
|
||
|
||
/* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
|
||
|
||
Arguments from DECL_ARGUMENTS list can't be removed now, since they are
|
||
linked by TREE_CHAIN directly. The caller is responsible for eliminating
|
||
them when they are being duplicated (i.e. copy_arguments_for_versioning). */
|
||
|
||
tree
|
||
build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
|
||
{
|
||
tree new_decl = copy_node (orig_decl);
|
||
tree new_type;
|
||
|
||
new_type = TREE_TYPE (orig_decl);
|
||
if (prototype_p (new_type))
|
||
new_type = build_function_type_skip_args (new_type, args_to_skip);
|
||
TREE_TYPE (new_decl) = new_type;
|
||
|
||
/* For declarations setting DECL_VINDEX (i.e. methods)
|
||
we expect first argument to be THIS pointer. */
|
||
if (bitmap_bit_p (args_to_skip, 0))
|
||
DECL_VINDEX (new_decl) = NULL_TREE;
|
||
|
||
/* When signature changes, we need to clear builtin info. */
|
||
if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
|
||
{
|
||
DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
|
||
DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
|
||
}
|
||
return new_decl;
|
||
}
|
||
|
||
/* Build a function type. The RETURN_TYPE is the type returned by the
|
||
function. If VAARGS is set, no void_type_node is appended to the
|
||
the list. ARGP must be always be terminated be a NULL_TREE. */
|
||
|
||
static tree
|
||
build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
|
||
{
|
||
tree t, args, last;
|
||
|
||
t = va_arg (argp, tree);
|
||
for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
|
||
args = tree_cons (NULL_TREE, t, args);
|
||
|
||
if (vaargs)
|
||
{
|
||
last = args;
|
||
if (args != NULL_TREE)
|
||
args = nreverse (args);
|
||
gcc_assert (last != void_list_node);
|
||
}
|
||
else if (args == NULL_TREE)
|
||
args = void_list_node;
|
||
else
|
||
{
|
||
last = args;
|
||
args = nreverse (args);
|
||
TREE_CHAIN (last) = void_list_node;
|
||
}
|
||
args = build_function_type (return_type, args);
|
||
|
||
return args;
|
||
}
|
||
|
||
/* Build a function type. The RETURN_TYPE is the type returned by the
|
||
function. If additional arguments are provided, they are
|
||
additional argument types. The list of argument types must always
|
||
be terminated by NULL_TREE. */
|
||
|
||
tree
|
||
build_function_type_list (tree return_type, ...)
|
||
{
|
||
tree args;
|
||
va_list p;
|
||
|
||
va_start (p, return_type);
|
||
args = build_function_type_list_1 (false, return_type, p);
|
||
va_end (p);
|
||
return args;
|
||
}
|
||
|
||
/* Build a variable argument function type. The RETURN_TYPE is the
|
||
type returned by the function. If additional arguments are provided,
|
||
they are additional argument types. The list of argument types must
|
||
always be terminated by NULL_TREE. */
|
||
|
||
tree
|
||
build_varargs_function_type_list (tree return_type, ...)
|
||
{
|
||
tree args;
|
||
va_list p;
|
||
|
||
va_start (p, return_type);
|
||
args = build_function_type_list_1 (true, return_type, p);
|
||
va_end (p);
|
||
|
||
return args;
|
||
}
|
||
|
||
/* Build a function type. RETURN_TYPE is the type returned by the
|
||
function; VAARGS indicates whether the function takes varargs. The
|
||
function takes N named arguments, the types of which are provided in
|
||
ARG_TYPES. */
|
||
|
||
static tree
|
||
build_function_type_array_1 (bool vaargs, tree return_type, int n,
|
||
tree *arg_types)
|
||
{
|
||
int i;
|
||
tree t = vaargs ? NULL_TREE : void_list_node;
|
||
|
||
for (i = n - 1; i >= 0; i--)
|
||
t = tree_cons (NULL_TREE, arg_types[i], t);
|
||
|
||
return build_function_type (return_type, t);
|
||
}
|
||
|
||
/* Build a function type. RETURN_TYPE is the type returned by the
|
||
function. The function takes N named arguments, the types of which
|
||
are provided in ARG_TYPES. */
|
||
|
||
tree
|
||
build_function_type_array (tree return_type, int n, tree *arg_types)
|
||
{
|
||
return build_function_type_array_1 (false, return_type, n, arg_types);
|
||
}
|
||
|
||
/* Build a variable argument function type. RETURN_TYPE is the type
|
||
returned by the function. The function takes N named arguments, the
|
||
types of which are provided in ARG_TYPES. */
|
||
|
||
tree
|
||
build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
|
||
{
|
||
return build_function_type_array_1 (true, return_type, n, arg_types);
|
||
}
|
||
|
||
/* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
|
||
and ARGTYPES (a TREE_LIST) are the return type and arguments types
|
||
for the method. An implicit additional parameter (of type
|
||
pointer-to-BASETYPE) is added to the ARGTYPES. */
|
||
|
||
tree
|
||
build_method_type_directly (tree basetype,
|
||
tree rettype,
|
||
tree argtypes)
|
||
{
|
||
tree t;
|
||
tree ptype;
|
||
int hashcode = 0;
|
||
bool any_structural_p, any_noncanonical_p;
|
||
tree canon_argtypes;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (METHOD_TYPE);
|
||
|
||
TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
|
||
TREE_TYPE (t) = rettype;
|
||
ptype = build_pointer_type (basetype);
|
||
|
||
/* The actual arglist for this function includes a "hidden" argument
|
||
which is "this". Put it into the list of argument types. */
|
||
argtypes = tree_cons (NULL_TREE, ptype, argtypes);
|
||
TYPE_ARG_TYPES (t) = argtypes;
|
||
|
||
/* If we already have such a type, use the old one. */
|
||
hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
|
||
hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
|
||
hashcode = type_hash_list (argtypes, hashcode);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
/* Set up the canonical type. */
|
||
any_structural_p
|
||
= (TYPE_STRUCTURAL_EQUALITY_P (basetype)
|
||
|| TYPE_STRUCTURAL_EQUALITY_P (rettype));
|
||
any_noncanonical_p
|
||
= (TYPE_CANONICAL (basetype) != basetype
|
||
|| TYPE_CANONICAL (rettype) != rettype);
|
||
canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
|
||
&any_structural_p,
|
||
&any_noncanonical_p);
|
||
if (any_structural_p)
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (any_noncanonical_p)
|
||
TYPE_CANONICAL (t)
|
||
= build_method_type_directly (TYPE_CANONICAL (basetype),
|
||
TYPE_CANONICAL (rettype),
|
||
canon_argtypes);
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Construct, lay out and return the type of methods belonging to class
|
||
BASETYPE and whose arguments and values are described by TYPE.
|
||
If that type exists already, reuse it.
|
||
TYPE must be a FUNCTION_TYPE node. */
|
||
|
||
tree
|
||
build_method_type (tree basetype, tree type)
|
||
{
|
||
gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
|
||
|
||
return build_method_type_directly (basetype,
|
||
TREE_TYPE (type),
|
||
TYPE_ARG_TYPES (type));
|
||
}
|
||
|
||
/* Construct, lay out and return the type of offsets to a value
|
||
of type TYPE, within an object of type BASETYPE.
|
||
If a suitable offset type exists already, reuse it. */
|
||
|
||
tree
|
||
build_offset_type (tree basetype, tree type)
|
||
{
|
||
tree t;
|
||
hashval_t hashcode = 0;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (OFFSET_TYPE);
|
||
|
||
TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
|
||
TREE_TYPE (t) = type;
|
||
|
||
/* If we already have such a type, use the old one. */
|
||
hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
|
||
hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
|
||
if (TYPE_CANONICAL (t) == t)
|
||
{
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
|
||
|| TYPE_STRUCTURAL_EQUALITY_P (type))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
|
||
|| TYPE_CANONICAL (type) != type)
|
||
TYPE_CANONICAL (t)
|
||
= build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
|
||
TYPE_CANONICAL (type));
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a complex type whose components are COMPONENT_TYPE. */
|
||
|
||
tree
|
||
build_complex_type (tree component_type)
|
||
{
|
||
tree t;
|
||
hashval_t hashcode;
|
||
|
||
gcc_assert (INTEGRAL_TYPE_P (component_type)
|
||
|| SCALAR_FLOAT_TYPE_P (component_type)
|
||
|| FIXED_POINT_TYPE_P (component_type));
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (COMPLEX_TYPE);
|
||
|
||
TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
|
||
|
||
/* If we already have such a type, use the old one. */
|
||
hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
|
||
if (TYPE_CANONICAL (t) == t)
|
||
{
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (component_type) != component_type)
|
||
TYPE_CANONICAL (t)
|
||
= build_complex_type (TYPE_CANONICAL (component_type));
|
||
}
|
||
|
||
/* We need to create a name, since complex is a fundamental type. */
|
||
if (! TYPE_NAME (t))
|
||
{
|
||
const char *name;
|
||
if (component_type == char_type_node)
|
||
name = "complex char";
|
||
else if (component_type == signed_char_type_node)
|
||
name = "complex signed char";
|
||
else if (component_type == unsigned_char_type_node)
|
||
name = "complex unsigned char";
|
||
else if (component_type == short_integer_type_node)
|
||
name = "complex short int";
|
||
else if (component_type == short_unsigned_type_node)
|
||
name = "complex short unsigned int";
|
||
else if (component_type == integer_type_node)
|
||
name = "complex int";
|
||
else if (component_type == unsigned_type_node)
|
||
name = "complex unsigned int";
|
||
else if (component_type == long_integer_type_node)
|
||
name = "complex long int";
|
||
else if (component_type == long_unsigned_type_node)
|
||
name = "complex long unsigned int";
|
||
else if (component_type == long_long_integer_type_node)
|
||
name = "complex long long int";
|
||
else if (component_type == long_long_unsigned_type_node)
|
||
name = "complex long long unsigned int";
|
||
else
|
||
name = 0;
|
||
|
||
if (name != 0)
|
||
TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
|
||
get_identifier (name), t);
|
||
}
|
||
|
||
return build_qualified_type (t, TYPE_QUALS (component_type));
|
||
}
|
||
|
||
/* If TYPE is a real or complex floating-point type and the target
|
||
does not directly support arithmetic on TYPE then return the wider
|
||
type to be used for arithmetic on TYPE. Otherwise, return
|
||
NULL_TREE. */
|
||
|
||
tree
|
||
excess_precision_type (tree type)
|
||
{
|
||
if (flag_excess_precision != EXCESS_PRECISION_FAST)
|
||
{
|
||
int flt_eval_method = TARGET_FLT_EVAL_METHOD;
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case REAL_TYPE:
|
||
switch (flt_eval_method)
|
||
{
|
||
case 1:
|
||
if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
|
||
return double_type_node;
|
||
break;
|
||
case 2:
|
||
if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
|
||
|| TYPE_MODE (type) == TYPE_MODE (double_type_node))
|
||
return long_double_type_node;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
case COMPLEX_TYPE:
|
||
if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
|
||
return NULL_TREE;
|
||
switch (flt_eval_method)
|
||
{
|
||
case 1:
|
||
if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
|
||
return complex_double_type_node;
|
||
break;
|
||
case 2:
|
||
if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
|
||
|| (TYPE_MODE (TREE_TYPE (type))
|
||
== TYPE_MODE (double_type_node)))
|
||
return complex_long_double_type_node;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return OP, stripped of any conversions to wider types as much as is safe.
|
||
Converting the value back to OP's type makes a value equivalent to OP.
|
||
|
||
If FOR_TYPE is nonzero, we return a value which, if converted to
|
||
type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
|
||
|
||
OP must have integer, real or enumeral type. Pointers are not allowed!
|
||
|
||
There are some cases where the obvious value we could return
|
||
would regenerate to OP if converted to OP's type,
|
||
but would not extend like OP to wider types.
|
||
If FOR_TYPE indicates such extension is contemplated, we eschew such values.
|
||
For example, if OP is (unsigned short)(signed char)-1,
|
||
we avoid returning (signed char)-1 if FOR_TYPE is int,
|
||
even though extending that to an unsigned short would regenerate OP,
|
||
since the result of extending (signed char)-1 to (int)
|
||
is different from (int) OP. */
|
||
|
||
tree
|
||
get_unwidened (tree op, tree for_type)
|
||
{
|
||
/* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
|
||
tree type = TREE_TYPE (op);
|
||
unsigned final_prec
|
||
= TYPE_PRECISION (for_type != 0 ? for_type : type);
|
||
int uns
|
||
= (for_type != 0 && for_type != type
|
||
&& final_prec > TYPE_PRECISION (type)
|
||
&& TYPE_UNSIGNED (type));
|
||
tree win = op;
|
||
|
||
while (CONVERT_EXPR_P (op))
|
||
{
|
||
int bitschange;
|
||
|
||
/* TYPE_PRECISION on vector types has different meaning
|
||
(TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
|
||
so avoid them here. */
|
||
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
|
||
break;
|
||
|
||
bitschange = TYPE_PRECISION (TREE_TYPE (op))
|
||
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
|
||
|
||
/* Truncations are many-one so cannot be removed.
|
||
Unless we are later going to truncate down even farther. */
|
||
if (bitschange < 0
|
||
&& final_prec > TYPE_PRECISION (TREE_TYPE (op)))
|
||
break;
|
||
|
||
/* See what's inside this conversion. If we decide to strip it,
|
||
we will set WIN. */
|
||
op = TREE_OPERAND (op, 0);
|
||
|
||
/* If we have not stripped any zero-extensions (uns is 0),
|
||
we can strip any kind of extension.
|
||
If we have previously stripped a zero-extension,
|
||
only zero-extensions can safely be stripped.
|
||
Any extension can be stripped if the bits it would produce
|
||
are all going to be discarded later by truncating to FOR_TYPE. */
|
||
|
||
if (bitschange > 0)
|
||
{
|
||
if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
|
||
win = op;
|
||
/* TYPE_UNSIGNED says whether this is a zero-extension.
|
||
Let's avoid computing it if it does not affect WIN
|
||
and if UNS will not be needed again. */
|
||
if ((uns
|
||
|| CONVERT_EXPR_P (op))
|
||
&& TYPE_UNSIGNED (TREE_TYPE (op)))
|
||
{
|
||
uns = 1;
|
||
win = op;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we finally reach a constant see if it fits in for_type and
|
||
in that case convert it. */
|
||
if (for_type
|
||
&& TREE_CODE (win) == INTEGER_CST
|
||
&& TREE_TYPE (win) != for_type
|
||
&& int_fits_type_p (win, for_type))
|
||
win = fold_convert (for_type, win);
|
||
|
||
return win;
|
||
}
|
||
|
||
/* Return OP or a simpler expression for a narrower value
|
||
which can be sign-extended or zero-extended to give back OP.
|
||
Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
|
||
or 0 if the value should be sign-extended. */
|
||
|
||
tree
|
||
get_narrower (tree op, int *unsignedp_ptr)
|
||
{
|
||
int uns = 0;
|
||
int first = 1;
|
||
tree win = op;
|
||
bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
|
||
|
||
while (TREE_CODE (op) == NOP_EXPR)
|
||
{
|
||
int bitschange
|
||
= (TYPE_PRECISION (TREE_TYPE (op))
|
||
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
|
||
|
||
/* Truncations are many-one so cannot be removed. */
|
||
if (bitschange < 0)
|
||
break;
|
||
|
||
/* See what's inside this conversion. If we decide to strip it,
|
||
we will set WIN. */
|
||
|
||
if (bitschange > 0)
|
||
{
|
||
op = TREE_OPERAND (op, 0);
|
||
/* An extension: the outermost one can be stripped,
|
||
but remember whether it is zero or sign extension. */
|
||
if (first)
|
||
uns = TYPE_UNSIGNED (TREE_TYPE (op));
|
||
/* Otherwise, if a sign extension has been stripped,
|
||
only sign extensions can now be stripped;
|
||
if a zero extension has been stripped, only zero-extensions. */
|
||
else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
|
||
break;
|
||
first = 0;
|
||
}
|
||
else /* bitschange == 0 */
|
||
{
|
||
/* A change in nominal type can always be stripped, but we must
|
||
preserve the unsignedness. */
|
||
if (first)
|
||
uns = TYPE_UNSIGNED (TREE_TYPE (op));
|
||
first = 0;
|
||
op = TREE_OPERAND (op, 0);
|
||
/* Keep trying to narrow, but don't assign op to win if it
|
||
would turn an integral type into something else. */
|
||
if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
|
||
continue;
|
||
}
|
||
|
||
win = op;
|
||
}
|
||
|
||
if (TREE_CODE (op) == COMPONENT_REF
|
||
/* Since type_for_size always gives an integer type. */
|
||
&& TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
|
||
&& TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
|
||
/* Ensure field is laid out already. */
|
||
&& DECL_SIZE (TREE_OPERAND (op, 1)) != 0
|
||
&& host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
|
||
{
|
||
unsigned HOST_WIDE_INT innerprec
|
||
= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
|
||
int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
|
||
|| TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
|
||
tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
|
||
|
||
/* We can get this structure field in a narrower type that fits it,
|
||
but the resulting extension to its nominal type (a fullword type)
|
||
must satisfy the same conditions as for other extensions.
|
||
|
||
Do this only for fields that are aligned (not bit-fields),
|
||
because when bit-field insns will be used there is no
|
||
advantage in doing this. */
|
||
|
||
if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
|
||
&& ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
|
||
&& (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
|
||
&& type != 0)
|
||
{
|
||
if (first)
|
||
uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
|
||
win = fold_convert (type, op);
|
||
}
|
||
}
|
||
|
||
*unsignedp_ptr = uns;
|
||
return win;
|
||
}
|
||
|
||
/* Returns true if integer constant C has a value that is permissible
|
||
for type TYPE (an INTEGER_TYPE). */
|
||
|
||
bool
|
||
int_fits_type_p (const_tree c, const_tree type)
|
||
{
|
||
tree type_low_bound, type_high_bound;
|
||
bool ok_for_low_bound, ok_for_high_bound, unsc;
|
||
double_int dc, dd;
|
||
|
||
dc = tree_to_double_int (c);
|
||
unsc = TYPE_UNSIGNED (TREE_TYPE (c));
|
||
|
||
if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
|
||
&& TYPE_IS_SIZETYPE (TREE_TYPE (c))
|
||
&& unsc)
|
||
/* So c is an unsigned integer whose type is sizetype and type is not.
|
||
sizetype'd integers are sign extended even though they are
|
||
unsigned. If the integer value fits in the lower end word of c,
|
||
and if the higher end word has all its bits set to 1, that
|
||
means the higher end bits are set to 1 only for sign extension.
|
||
So let's convert c into an equivalent zero extended unsigned
|
||
integer. */
|
||
dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
|
||
|
||
retry:
|
||
type_low_bound = TYPE_MIN_VALUE (type);
|
||
type_high_bound = TYPE_MAX_VALUE (type);
|
||
|
||
/* If at least one bound of the type is a constant integer, we can check
|
||
ourselves and maybe make a decision. If no such decision is possible, but
|
||
this type is a subtype, try checking against that. Otherwise, use
|
||
double_int_fits_to_tree_p, which checks against the precision.
|
||
|
||
Compute the status for each possibly constant bound, and return if we see
|
||
one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
|
||
for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
|
||
for "constant known to fit". */
|
||
|
||
/* Check if c >= type_low_bound. */
|
||
if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
|
||
{
|
||
dd = tree_to_double_int (type_low_bound);
|
||
if (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TYPE_IS_SIZETYPE (type)
|
||
&& TYPE_UNSIGNED (type))
|
||
dd = double_int_zext (dd, TYPE_PRECISION (type));
|
||
if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
|
||
{
|
||
int c_neg = (!unsc && double_int_negative_p (dc));
|
||
int t_neg = (unsc && double_int_negative_p (dd));
|
||
|
||
if (c_neg && !t_neg)
|
||
return false;
|
||
if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
|
||
return false;
|
||
}
|
||
else if (double_int_cmp (dc, dd, unsc) < 0)
|
||
return false;
|
||
ok_for_low_bound = true;
|
||
}
|
||
else
|
||
ok_for_low_bound = false;
|
||
|
||
/* Check if c <= type_high_bound. */
|
||
if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
|
||
{
|
||
dd = tree_to_double_int (type_high_bound);
|
||
if (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TYPE_IS_SIZETYPE (type)
|
||
&& TYPE_UNSIGNED (type))
|
||
dd = double_int_zext (dd, TYPE_PRECISION (type));
|
||
if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
|
||
{
|
||
int c_neg = (!unsc && double_int_negative_p (dc));
|
||
int t_neg = (unsc && double_int_negative_p (dd));
|
||
|
||
if (t_neg && !c_neg)
|
||
return false;
|
||
if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
|
||
return false;
|
||
}
|
||
else if (double_int_cmp (dc, dd, unsc) > 0)
|
||
return false;
|
||
ok_for_high_bound = true;
|
||
}
|
||
else
|
||
ok_for_high_bound = false;
|
||
|
||
/* If the constant fits both bounds, the result is known. */
|
||
if (ok_for_low_bound && ok_for_high_bound)
|
||
return true;
|
||
|
||
/* Perform some generic filtering which may allow making a decision
|
||
even if the bounds are not constant. First, negative integers
|
||
never fit in unsigned types, */
|
||
if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
|
||
return false;
|
||
|
||
/* Second, narrower types always fit in wider ones. */
|
||
if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
|
||
return true;
|
||
|
||
/* Third, unsigned integers with top bit set never fit signed types. */
|
||
if (! TYPE_UNSIGNED (type) && unsc)
|
||
{
|
||
int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
|
||
return false;
|
||
}
|
||
else if (((((unsigned HOST_WIDE_INT) 1)
|
||
<< (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
|
||
return false;
|
||
}
|
||
|
||
/* If we haven't been able to decide at this point, there nothing more we
|
||
can check ourselves here. Look at the base type if we have one and it
|
||
has the same precision. */
|
||
if (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TREE_TYPE (type) != 0
|
||
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
|
||
{
|
||
type = TREE_TYPE (type);
|
||
goto retry;
|
||
}
|
||
|
||
/* Or to double_int_fits_to_tree_p, if nothing else. */
|
||
return double_int_fits_to_tree_p (type, dc);
|
||
}
|
||
|
||
/* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
|
||
bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
|
||
represented (assuming two's-complement arithmetic) within the bit
|
||
precision of the type are returned instead. */
|
||
|
||
void
|
||
get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
|
||
{
|
||
if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
|
||
&& TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
|
||
mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
|
||
TYPE_UNSIGNED (type));
|
||
else
|
||
{
|
||
if (TYPE_UNSIGNED (type))
|
||
mpz_set_ui (min, 0);
|
||
else
|
||
{
|
||
double_int mn;
|
||
mn = double_int_mask (TYPE_PRECISION (type) - 1);
|
||
mn = double_int_sext (double_int_add (mn, double_int_one),
|
||
TYPE_PRECISION (type));
|
||
mpz_set_double_int (min, mn, false);
|
||
}
|
||
}
|
||
|
||
if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
|
||
&& TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
|
||
mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
|
||
TYPE_UNSIGNED (type));
|
||
else
|
||
{
|
||
if (TYPE_UNSIGNED (type))
|
||
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
|
||
true);
|
||
else
|
||
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
|
||
true);
|
||
}
|
||
}
|
||
|
||
/* Return true if VAR is an automatic variable defined in function FN. */
|
||
|
||
bool
|
||
auto_var_in_fn_p (const_tree var, const_tree fn)
|
||
{
|
||
return (DECL_P (var) && DECL_CONTEXT (var) == fn
|
||
&& ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
|
||
|| TREE_CODE (var) == PARM_DECL)
|
||
&& ! TREE_STATIC (var))
|
||
|| TREE_CODE (var) == LABEL_DECL
|
||
|| TREE_CODE (var) == RESULT_DECL));
|
||
}
|
||
|
||
/* Subprogram of following function. Called by walk_tree.
|
||
|
||
Return *TP if it is an automatic variable or parameter of the
|
||
function passed in as DATA. */
|
||
|
||
static tree
|
||
find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
tree fn = (tree) data;
|
||
|
||
if (TYPE_P (*tp))
|
||
*walk_subtrees = 0;
|
||
|
||
else if (DECL_P (*tp)
|
||
&& auto_var_in_fn_p (*tp, fn))
|
||
return *tp;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns true if T is, contains, or refers to a type with variable
|
||
size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
|
||
arguments, but not the return type. If FN is nonzero, only return
|
||
true if a modifier of the type or position of FN is a variable or
|
||
parameter inside FN.
|
||
|
||
This concept is more general than that of C99 'variably modified types':
|
||
in C99, a struct type is never variably modified because a VLA may not
|
||
appear as a structure member. However, in GNU C code like:
|
||
|
||
struct S { int i[f()]; };
|
||
|
||
is valid, and other languages may define similar constructs. */
|
||
|
||
bool
|
||
variably_modified_type_p (tree type, tree fn)
|
||
{
|
||
tree t;
|
||
|
||
/* Test if T is either variable (if FN is zero) or an expression containing
|
||
a variable in FN. */
|
||
#define RETURN_TRUE_IF_VAR(T) \
|
||
do { tree _t = (T); \
|
||
if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
|
||
&& (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
|
||
return true; } while (0)
|
||
|
||
if (type == error_mark_node)
|
||
return false;
|
||
|
||
/* If TYPE itself has variable size, it is variably modified. */
|
||
RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
|
||
RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case VECTOR_TYPE:
|
||
if (variably_modified_type_p (TREE_TYPE (type), fn))
|
||
return true;
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
/* If TYPE is a function type, it is variably modified if the
|
||
return type is variably modified. */
|
||
if (variably_modified_type_p (TREE_TYPE (type), fn))
|
||
return true;
|
||
break;
|
||
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case FIXED_POINT_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
/* Scalar types are variably modified if their end points
|
||
aren't constant. */
|
||
RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
|
||
RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
/* We can't see if any of the fields are variably-modified by the
|
||
definition we normally use, since that would produce infinite
|
||
recursion via pointers. */
|
||
/* This is variably modified if some field's type is. */
|
||
for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
|
||
if (TREE_CODE (t) == FIELD_DECL)
|
||
{
|
||
RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
|
||
RETURN_TRUE_IF_VAR (DECL_SIZE (t));
|
||
RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
|
||
|
||
if (TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
|
||
}
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
/* Do not call ourselves to avoid infinite recursion. This is
|
||
variably modified if the element type is. */
|
||
RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
|
||
RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* The current language may have other cases to check, but in general,
|
||
all other types are not variably modified. */
|
||
return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
|
||
|
||
#undef RETURN_TRUE_IF_VAR
|
||
}
|
||
|
||
/* Given a DECL or TYPE, return the scope in which it was declared, or
|
||
NULL_TREE if there is no containing scope. */
|
||
|
||
tree
|
||
get_containing_scope (const_tree t)
|
||
{
|
||
return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
|
||
}
|
||
|
||
/* Return the innermost context enclosing DECL that is
|
||
a FUNCTION_DECL, or zero if none. */
|
||
|
||
tree
|
||
decl_function_context (const_tree decl)
|
||
{
|
||
tree context;
|
||
|
||
if (TREE_CODE (decl) == ERROR_MARK)
|
||
return 0;
|
||
|
||
/* C++ virtual functions use DECL_CONTEXT for the class of the vtable
|
||
where we look up the function at runtime. Such functions always take
|
||
a first argument of type 'pointer to real context'.
|
||
|
||
C++ should really be fixed to use DECL_CONTEXT for the real context,
|
||
and use something else for the "virtual context". */
|
||
else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
|
||
context
|
||
= TYPE_MAIN_VARIANT
|
||
(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
|
||
else
|
||
context = DECL_CONTEXT (decl);
|
||
|
||
while (context && TREE_CODE (context) != FUNCTION_DECL)
|
||
{
|
||
if (TREE_CODE (context) == BLOCK)
|
||
context = BLOCK_SUPERCONTEXT (context);
|
||
else
|
||
context = get_containing_scope (context);
|
||
}
|
||
|
||
return context;
|
||
}
|
||
|
||
/* Return the innermost context enclosing DECL that is
|
||
a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
|
||
TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
|
||
|
||
tree
|
||
decl_type_context (const_tree decl)
|
||
{
|
||
tree context = DECL_CONTEXT (decl);
|
||
|
||
while (context)
|
||
switch (TREE_CODE (context))
|
||
{
|
||
case NAMESPACE_DECL:
|
||
case TRANSLATION_UNIT_DECL:
|
||
return NULL_TREE;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
return context;
|
||
|
||
case TYPE_DECL:
|
||
case FUNCTION_DECL:
|
||
context = DECL_CONTEXT (context);
|
||
break;
|
||
|
||
case BLOCK:
|
||
context = BLOCK_SUPERCONTEXT (context);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* CALL is a CALL_EXPR. Return the declaration for the function
|
||
called, or NULL_TREE if the called function cannot be
|
||
determined. */
|
||
|
||
tree
|
||
get_callee_fndecl (const_tree call)
|
||
{
|
||
tree addr;
|
||
|
||
if (call == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* It's invalid to call this function with anything but a
|
||
CALL_EXPR. */
|
||
gcc_assert (TREE_CODE (call) == CALL_EXPR);
|
||
|
||
/* The first operand to the CALL is the address of the function
|
||
called. */
|
||
addr = CALL_EXPR_FN (call);
|
||
|
||
STRIP_NOPS (addr);
|
||
|
||
/* If this is a readonly function pointer, extract its initial value. */
|
||
if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
|
||
&& TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
|
||
&& DECL_INITIAL (addr))
|
||
addr = DECL_INITIAL (addr);
|
||
|
||
/* If the address is just `&f' for some function `f', then we know
|
||
that `f' is being called. */
|
||
if (TREE_CODE (addr) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
|
||
return TREE_OPERAND (addr, 0);
|
||
|
||
/* We couldn't figure out what was being called. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Print debugging information about tree nodes generated during the compile,
|
||
and any language-specific information. */
|
||
|
||
void
|
||
dump_tree_statistics (void)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
int i;
|
||
int total_nodes, total_bytes;
|
||
#endif
|
||
|
||
fprintf (stderr, "\n??? tree nodes created\n\n");
|
||
#ifdef GATHER_STATISTICS
|
||
fprintf (stderr, "Kind Nodes Bytes\n");
|
||
fprintf (stderr, "---------------------------------------\n");
|
||
total_nodes = total_bytes = 0;
|
||
for (i = 0; i < (int) all_kinds; i++)
|
||
{
|
||
fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
|
||
tree_node_counts[i], tree_node_sizes[i]);
|
||
total_nodes += tree_node_counts[i];
|
||
total_bytes += tree_node_sizes[i];
|
||
}
|
||
fprintf (stderr, "---------------------------------------\n");
|
||
fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
|
||
fprintf (stderr, "---------------------------------------\n");
|
||
fprintf (stderr, "Code Nodes\n");
|
||
fprintf (stderr, "----------------------------\n");
|
||
for (i = 0; i < (int) MAX_TREE_CODES; i++)
|
||
fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
|
||
fprintf (stderr, "----------------------------\n");
|
||
ssanames_print_statistics ();
|
||
phinodes_print_statistics ();
|
||
#else
|
||
fprintf (stderr, "(No per-node statistics)\n");
|
||
#endif
|
||
print_type_hash_statistics ();
|
||
print_debug_expr_statistics ();
|
||
print_value_expr_statistics ();
|
||
lang_hooks.print_statistics ();
|
||
}
|
||
|
||
#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
|
||
|
||
/* Generate a crc32 of a byte. */
|
||
|
||
unsigned
|
||
crc32_byte (unsigned chksum, char byte)
|
||
{
|
||
unsigned value = (unsigned) byte << 24;
|
||
unsigned ix;
|
||
|
||
for (ix = 8; ix--; value <<= 1)
|
||
{
|
||
unsigned feedback;
|
||
|
||
feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
|
||
chksum <<= 1;
|
||
chksum ^= feedback;
|
||
}
|
||
return chksum;
|
||
}
|
||
|
||
|
||
/* Generate a crc32 of a string. */
|
||
|
||
unsigned
|
||
crc32_string (unsigned chksum, const char *string)
|
||
{
|
||
do
|
||
{
|
||
chksum = crc32_byte (chksum, *string);
|
||
}
|
||
while (*string++);
|
||
return chksum;
|
||
}
|
||
|
||
/* P is a string that will be used in a symbol. Mask out any characters
|
||
that are not valid in that context. */
|
||
|
||
void
|
||
clean_symbol_name (char *p)
|
||
{
|
||
for (; *p; p++)
|
||
if (! (ISALNUM (*p)
|
||
#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
|
||
|| *p == '$'
|
||
#endif
|
||
#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
|
||
|| *p == '.'
|
||
#endif
|
||
))
|
||
*p = '_';
|
||
}
|
||
|
||
/* Generate a name for a special-purpose function.
|
||
The generated name may need to be unique across the whole link.
|
||
Changes to this function may also require corresponding changes to
|
||
xstrdup_mask_random.
|
||
TYPE is some string to identify the purpose of this function to the
|
||
linker or collect2; it must start with an uppercase letter,
|
||
one of:
|
||
I - for constructors
|
||
D - for destructors
|
||
N - for C++ anonymous namespaces
|
||
F - for DWARF unwind frame information. */
|
||
|
||
tree
|
||
get_file_function_name (const char *type)
|
||
{
|
||
char *buf;
|
||
const char *p;
|
||
char *q;
|
||
|
||
/* If we already have a name we know to be unique, just use that. */
|
||
if (first_global_object_name)
|
||
p = q = ASTRDUP (first_global_object_name);
|
||
/* If the target is handling the constructors/destructors, they
|
||
will be local to this file and the name is only necessary for
|
||
debugging purposes.
|
||
We also assign sub_I and sub_D sufixes to constructors called from
|
||
the global static constructors. These are always local. */
|
||
else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
|
||
|| (strncmp (type, "sub_", 4) == 0
|
||
&& (type[4] == 'I' || type[4] == 'D')))
|
||
{
|
||
const char *file = main_input_filename;
|
||
if (! file)
|
||
file = input_filename;
|
||
/* Just use the file's basename, because the full pathname
|
||
might be quite long. */
|
||
p = q = ASTRDUP (lbasename (file));
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, the name must be unique across the entire link.
|
||
We don't have anything that we know to be unique to this translation
|
||
unit, so use what we do have and throw in some randomness. */
|
||
unsigned len;
|
||
const char *name = weak_global_object_name;
|
||
const char *file = main_input_filename;
|
||
|
||
if (! name)
|
||
name = "";
|
||
if (! file)
|
||
file = input_filename;
|
||
|
||
len = strlen (file);
|
||
q = (char *) alloca (9 * 2 + len + 1);
|
||
memcpy (q, file, len + 1);
|
||
|
||
sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
|
||
crc32_string (0, get_random_seed (false)));
|
||
|
||
p = q;
|
||
}
|
||
|
||
clean_symbol_name (q);
|
||
buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
|
||
+ strlen (type));
|
||
|
||
/* Set up the name of the file-level functions we may need.
|
||
Use a global object (which is already required to be unique over
|
||
the program) rather than the file name (which imposes extra
|
||
constraints). */
|
||
sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
|
||
|
||
return get_identifier (buf);
|
||
}
|
||
|
||
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
||
|
||
/* Complain that the tree code of NODE does not match the expected 0
|
||
terminated list of trailing codes. The trailing code list can be
|
||
empty, for a more vague error message. FILE, LINE, and FUNCTION
|
||
are of the caller. */
|
||
|
||
void
|
||
tree_check_failed (const_tree node, const char *file,
|
||
int line, const char *function, ...)
|
||
{
|
||
va_list args;
|
||
const char *buffer;
|
||
unsigned length = 0;
|
||
int code;
|
||
|
||
va_start (args, function);
|
||
while ((code = va_arg (args, int)))
|
||
length += 4 + strlen (tree_code_name[code]);
|
||
va_end (args);
|
||
if (length)
|
||
{
|
||
char *tmp;
|
||
va_start (args, function);
|
||
length += strlen ("expected ");
|
||
buffer = tmp = (char *) alloca (length);
|
||
length = 0;
|
||
while ((code = va_arg (args, int)))
|
||
{
|
||
const char *prefix = length ? " or " : "expected ";
|
||
|
||
strcpy (tmp + length, prefix);
|
||
length += strlen (prefix);
|
||
strcpy (tmp + length, tree_code_name[code]);
|
||
length += strlen (tree_code_name[code]);
|
||
}
|
||
va_end (args);
|
||
}
|
||
else
|
||
buffer = "unexpected node";
|
||
|
||
internal_error ("tree check: %s, have %s in %s, at %s:%d",
|
||
buffer, tree_code_name[TREE_CODE (node)],
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Complain that the tree code of NODE does match the expected 0
|
||
terminated list of trailing codes. FILE, LINE, and FUNCTION are of
|
||
the caller. */
|
||
|
||
void
|
||
tree_not_check_failed (const_tree node, const char *file,
|
||
int line, const char *function, ...)
|
||
{
|
||
va_list args;
|
||
char *buffer;
|
||
unsigned length = 0;
|
||
int code;
|
||
|
||
va_start (args, function);
|
||
while ((code = va_arg (args, int)))
|
||
length += 4 + strlen (tree_code_name[code]);
|
||
va_end (args);
|
||
va_start (args, function);
|
||
buffer = (char *) alloca (length);
|
||
length = 0;
|
||
while ((code = va_arg (args, int)))
|
||
{
|
||
if (length)
|
||
{
|
||
strcpy (buffer + length, " or ");
|
||
length += 4;
|
||
}
|
||
strcpy (buffer + length, tree_code_name[code]);
|
||
length += strlen (tree_code_name[code]);
|
||
}
|
||
va_end (args);
|
||
|
||
internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
|
||
buffer, tree_code_name[TREE_CODE (node)],
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to tree_check_failed, except that we check for a class of tree
|
||
code, given in CL. */
|
||
|
||
void
|
||
tree_class_check_failed (const_tree node, const enum tree_code_class cl,
|
||
const char *file, int line, const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
|
||
TREE_CODE_CLASS_STRING (cl),
|
||
TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
|
||
tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to tree_check_failed, except that instead of specifying a
|
||
dozen codes, use the knowledge that they're all sequential. */
|
||
|
||
void
|
||
tree_range_check_failed (const_tree node, const char *file, int line,
|
||
const char *function, enum tree_code c1,
|
||
enum tree_code c2)
|
||
{
|
||
char *buffer;
|
||
unsigned length = 0;
|
||
unsigned int c;
|
||
|
||
for (c = c1; c <= c2; ++c)
|
||
length += 4 + strlen (tree_code_name[c]);
|
||
|
||
length += strlen ("expected ");
|
||
buffer = (char *) alloca (length);
|
||
length = 0;
|
||
|
||
for (c = c1; c <= c2; ++c)
|
||
{
|
||
const char *prefix = length ? " or " : "expected ";
|
||
|
||
strcpy (buffer + length, prefix);
|
||
length += strlen (prefix);
|
||
strcpy (buffer + length, tree_code_name[c]);
|
||
length += strlen (tree_code_name[c]);
|
||
}
|
||
|
||
internal_error ("tree check: %s, have %s in %s, at %s:%d",
|
||
buffer, tree_code_name[TREE_CODE (node)],
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
/* Similar to tree_check_failed, except that we check that a tree does
|
||
not have the specified code, given in CL. */
|
||
|
||
void
|
||
tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
|
||
const char *file, int line, const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
|
||
TREE_CODE_CLASS_STRING (cl),
|
||
TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
|
||
tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
/* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
|
||
|
||
void
|
||
omp_clause_check_failed (const_tree node, const char *file, int line,
|
||
const char *function, enum omp_clause_code code)
|
||
{
|
||
internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
|
||
omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
|
||
|
||
void
|
||
omp_clause_range_check_failed (const_tree node, const char *file, int line,
|
||
const char *function, enum omp_clause_code c1,
|
||
enum omp_clause_code c2)
|
||
{
|
||
char *buffer;
|
||
unsigned length = 0;
|
||
unsigned int c;
|
||
|
||
for (c = c1; c <= c2; ++c)
|
||
length += 4 + strlen (omp_clause_code_name[c]);
|
||
|
||
length += strlen ("expected ");
|
||
buffer = (char *) alloca (length);
|
||
length = 0;
|
||
|
||
for (c = c1; c <= c2; ++c)
|
||
{
|
||
const char *prefix = length ? " or " : "expected ";
|
||
|
||
strcpy (buffer + length, prefix);
|
||
length += strlen (prefix);
|
||
strcpy (buffer + length, omp_clause_code_name[c]);
|
||
length += strlen (omp_clause_code_name[c]);
|
||
}
|
||
|
||
internal_error ("tree check: %s, have %s in %s, at %s:%d",
|
||
buffer, omp_clause_code_name[TREE_CODE (node)],
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
#undef DEFTREESTRUCT
|
||
#define DEFTREESTRUCT(VAL, NAME) NAME,
|
||
|
||
static const char *ts_enum_names[] = {
|
||
#include "treestruct.def"
|
||
};
|
||
#undef DEFTREESTRUCT
|
||
|
||
#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
|
||
|
||
/* Similar to tree_class_check_failed, except that we check for
|
||
whether CODE contains the tree structure identified by EN. */
|
||
|
||
void
|
||
tree_contains_struct_check_failed (const_tree node,
|
||
const enum tree_node_structure_enum en,
|
||
const char *file, int line,
|
||
const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
|
||
TS_ENUM_NAME(en),
|
||
tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
/* Similar to above, except that the check is for the bounds of a TREE_VEC's
|
||
(dynamically sized) vector. */
|
||
|
||
void
|
||
tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
|
||
const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
|
||
idx + 1, len, function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to above, except that the check is for the bounds of the operand
|
||
vector of an expression node EXP. */
|
||
|
||
void
|
||
tree_operand_check_failed (int idx, const_tree exp, const char *file,
|
||
int line, const char *function)
|
||
{
|
||
int code = TREE_CODE (exp);
|
||
internal_error
|
||
("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
|
||
idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to above, except that the check is for the number of
|
||
operands of an OMP_CLAUSE node. */
|
||
|
||
void
|
||
omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
|
||
int line, const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: accessed operand %d of omp_clause %s with %d operands "
|
||
"in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
|
||
omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
|
||
trim_filename (file), line);
|
||
}
|
||
#endif /* ENABLE_TREE_CHECKING */
|
||
|
||
/* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
|
||
and mapped to the machine mode MODE. Initialize its fields and build
|
||
the information necessary for debugging output. */
|
||
|
||
static tree
|
||
make_vector_type (tree innertype, int nunits, enum machine_mode mode)
|
||
{
|
||
tree t;
|
||
hashval_t hashcode = 0;
|
||
|
||
t = make_node (VECTOR_TYPE);
|
||
TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
|
||
SET_TYPE_VECTOR_SUBPARTS (t, nunits);
|
||
SET_TYPE_MODE (t, mode);
|
||
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (innertype) != innertype
|
||
|| mode != VOIDmode)
|
||
TYPE_CANONICAL (t)
|
||
= make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
|
||
|
||
layout_type (t);
|
||
|
||
hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
|
||
hashcode = iterative_hash_host_wide_int (nunits, hashcode);
|
||
hashcode = iterative_hash_host_wide_int (mode, hashcode);
|
||
hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
/* We have built a main variant, based on the main variant of the
|
||
inner type. Use it to build the variant we return. */
|
||
if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
|
||
&& TREE_TYPE (t) != innertype)
|
||
return build_type_attribute_qual_variant (t,
|
||
TYPE_ATTRIBUTES (innertype),
|
||
TYPE_QUALS (innertype));
|
||
|
||
return t;
|
||
}
|
||
|
||
static tree
|
||
make_or_reuse_type (unsigned size, int unsignedp)
|
||
{
|
||
if (size == INT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
if (size == CHAR_TYPE_SIZE)
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
if (size == SHORT_TYPE_SIZE)
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
if (size == LONG_TYPE_SIZE)
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
if (size == LONG_LONG_TYPE_SIZE)
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
if (size == 128 && int128_integer_type_node)
|
||
return (unsignedp ? int128_unsigned_type_node
|
||
: int128_integer_type_node);
|
||
|
||
if (unsignedp)
|
||
return make_unsigned_type (size);
|
||
else
|
||
return make_signed_type (size);
|
||
}
|
||
|
||
/* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
|
||
|
||
static tree
|
||
make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
|
||
{
|
||
if (satp)
|
||
{
|
||
if (size == SHORT_FRACT_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_short_fract_type_node
|
||
: sat_short_fract_type_node;
|
||
if (size == FRACT_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
|
||
if (size == LONG_FRACT_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_long_fract_type_node
|
||
: sat_long_fract_type_node;
|
||
if (size == LONG_LONG_FRACT_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_long_long_fract_type_node
|
||
: sat_long_long_fract_type_node;
|
||
}
|
||
else
|
||
{
|
||
if (size == SHORT_FRACT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_short_fract_type_node
|
||
: short_fract_type_node;
|
||
if (size == FRACT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_fract_type_node : fract_type_node;
|
||
if (size == LONG_FRACT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_long_fract_type_node
|
||
: long_fract_type_node;
|
||
if (size == LONG_LONG_FRACT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_long_long_fract_type_node
|
||
: long_long_fract_type_node;
|
||
}
|
||
|
||
return make_fract_type (size, unsignedp, satp);
|
||
}
|
||
|
||
/* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
|
||
|
||
static tree
|
||
make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
|
||
{
|
||
if (satp)
|
||
{
|
||
if (size == SHORT_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_short_accum_type_node
|
||
: sat_short_accum_type_node;
|
||
if (size == ACCUM_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
|
||
if (size == LONG_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_long_accum_type_node
|
||
: sat_long_accum_type_node;
|
||
if (size == LONG_LONG_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_long_long_accum_type_node
|
||
: sat_long_long_accum_type_node;
|
||
}
|
||
else
|
||
{
|
||
if (size == SHORT_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? unsigned_short_accum_type_node
|
||
: short_accum_type_node;
|
||
if (size == ACCUM_TYPE_SIZE)
|
||
return unsignedp ? unsigned_accum_type_node : accum_type_node;
|
||
if (size == LONG_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? unsigned_long_accum_type_node
|
||
: long_accum_type_node;
|
||
if (size == LONG_LONG_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? unsigned_long_long_accum_type_node
|
||
: long_long_accum_type_node;
|
||
}
|
||
|
||
return make_accum_type (size, unsignedp, satp);
|
||
}
|
||
|
||
/* Create nodes for all integer types (and error_mark_node) using the sizes
|
||
of C datatypes. The caller should call set_sizetype soon after calling
|
||
this function to select one of the types as sizetype. */
|
||
|
||
void
|
||
build_common_tree_nodes (bool signed_char)
|
||
{
|
||
error_mark_node = make_node (ERROR_MARK);
|
||
TREE_TYPE (error_mark_node) = error_mark_node;
|
||
|
||
initialize_sizetypes ();
|
||
|
||
/* Define both `signed char' and `unsigned char'. */
|
||
signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
|
||
TYPE_STRING_FLAG (signed_char_type_node) = 1;
|
||
unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
|
||
TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
|
||
|
||
/* Define `char', which is like either `signed char' or `unsigned char'
|
||
but not the same as either. */
|
||
char_type_node
|
||
= (signed_char
|
||
? make_signed_type (CHAR_TYPE_SIZE)
|
||
: make_unsigned_type (CHAR_TYPE_SIZE));
|
||
TYPE_STRING_FLAG (char_type_node) = 1;
|
||
|
||
short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
|
||
short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
|
||
integer_type_node = make_signed_type (INT_TYPE_SIZE);
|
||
unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
|
||
long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
|
||
long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
|
||
long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
|
||
long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
/* TODO: This isn't correct, but as logic depends at the moment on
|
||
host's instead of target's wide-integer.
|
||
If there is a target not supporting TImode, but has an 128-bit
|
||
integer-scalar register, this target check needs to be adjusted. */
|
||
if (targetm.scalar_mode_supported_p (TImode))
|
||
{
|
||
int128_integer_type_node = make_signed_type (128);
|
||
int128_unsigned_type_node = make_unsigned_type (128);
|
||
}
|
||
#endif
|
||
/* Define a boolean type. This type only represents boolean values but
|
||
may be larger than char depending on the value of BOOL_TYPE_SIZE.
|
||
Front ends which want to override this size (i.e. Java) can redefine
|
||
boolean_type_node before calling build_common_tree_nodes_2. */
|
||
boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
|
||
TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
|
||
TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
|
||
TYPE_PRECISION (boolean_type_node) = 1;
|
||
|
||
/* Fill in the rest of the sized types. Reuse existing type nodes
|
||
when possible. */
|
||
intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
|
||
intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
|
||
intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
|
||
intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
|
||
intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
|
||
|
||
unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
|
||
unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
|
||
unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
|
||
unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
|
||
unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
|
||
|
||
access_public_node = get_identifier ("public");
|
||
access_protected_node = get_identifier ("protected");
|
||
access_private_node = get_identifier ("private");
|
||
}
|
||
|
||
/* Call this function after calling build_common_tree_nodes and set_sizetype.
|
||
It will create several other common tree nodes. */
|
||
|
||
void
|
||
build_common_tree_nodes_2 (int short_double)
|
||
{
|
||
/* Define these next since types below may used them. */
|
||
integer_zero_node = build_int_cst (integer_type_node, 0);
|
||
integer_one_node = build_int_cst (integer_type_node, 1);
|
||
integer_three_node = build_int_cst (integer_type_node, 3);
|
||
integer_minus_one_node = build_int_cst (integer_type_node, -1);
|
||
|
||
size_zero_node = size_int (0);
|
||
size_one_node = size_int (1);
|
||
bitsize_zero_node = bitsize_int (0);
|
||
bitsize_one_node = bitsize_int (1);
|
||
bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
|
||
|
||
boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
|
||
boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
|
||
|
||
void_type_node = make_node (VOID_TYPE);
|
||
layout_type (void_type_node);
|
||
|
||
/* We are not going to have real types in C with less than byte alignment,
|
||
so we might as well not have any types that claim to have it. */
|
||
TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
|
||
TYPE_USER_ALIGN (void_type_node) = 0;
|
||
|
||
null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
|
||
layout_type (TREE_TYPE (null_pointer_node));
|
||
|
||
ptr_type_node = build_pointer_type (void_type_node);
|
||
const_ptr_type_node
|
||
= build_pointer_type (build_type_variant (void_type_node, 1, 0));
|
||
fileptr_type_node = ptr_type_node;
|
||
|
||
float_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
|
||
layout_type (float_type_node);
|
||
|
||
double_type_node = make_node (REAL_TYPE);
|
||
if (short_double)
|
||
TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
|
||
else
|
||
TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
|
||
layout_type (double_type_node);
|
||
|
||
long_double_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
|
||
layout_type (long_double_type_node);
|
||
|
||
float_ptr_type_node = build_pointer_type (float_type_node);
|
||
double_ptr_type_node = build_pointer_type (double_type_node);
|
||
long_double_ptr_type_node = build_pointer_type (long_double_type_node);
|
||
integer_ptr_type_node = build_pointer_type (integer_type_node);
|
||
|
||
/* Fixed size integer types. */
|
||
uint32_type_node = build_nonstandard_integer_type (32, true);
|
||
uint64_type_node = build_nonstandard_integer_type (64, true);
|
||
|
||
/* Decimal float types. */
|
||
dfloat32_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
|
||
layout_type (dfloat32_type_node);
|
||
SET_TYPE_MODE (dfloat32_type_node, SDmode);
|
||
dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
|
||
|
||
dfloat64_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
|
||
layout_type (dfloat64_type_node);
|
||
SET_TYPE_MODE (dfloat64_type_node, DDmode);
|
||
dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
|
||
|
||
dfloat128_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
|
||
layout_type (dfloat128_type_node);
|
||
SET_TYPE_MODE (dfloat128_type_node, TDmode);
|
||
dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
|
||
|
||
complex_integer_type_node = build_complex_type (integer_type_node);
|
||
complex_float_type_node = build_complex_type (float_type_node);
|
||
complex_double_type_node = build_complex_type (double_type_node);
|
||
complex_long_double_type_node = build_complex_type (long_double_type_node);
|
||
|
||
/* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
|
||
#define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
|
||
sat_ ## KIND ## _type_node = \
|
||
make_sat_signed_ ## KIND ## _type (SIZE); \
|
||
sat_unsigned_ ## KIND ## _type_node = \
|
||
make_sat_unsigned_ ## KIND ## _type (SIZE); \
|
||
KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
|
||
unsigned_ ## KIND ## _type_node = \
|
||
make_unsigned_ ## KIND ## _type (SIZE);
|
||
|
||
#define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
|
||
sat_ ## WIDTH ## KIND ## _type_node = \
|
||
make_sat_signed_ ## KIND ## _type (SIZE); \
|
||
sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
|
||
make_sat_unsigned_ ## KIND ## _type (SIZE); \
|
||
WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
|
||
unsigned_ ## WIDTH ## KIND ## _type_node = \
|
||
make_unsigned_ ## KIND ## _type (SIZE);
|
||
|
||
/* Make fixed-point type nodes based on four different widths. */
|
||
#define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
|
||
MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
|
||
MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
|
||
MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
|
||
MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
|
||
|
||
/* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
|
||
#define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
|
||
NAME ## _type_node = \
|
||
make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
|
||
u ## NAME ## _type_node = \
|
||
make_or_reuse_unsigned_ ## KIND ## _type \
|
||
(GET_MODE_BITSIZE (U ## MODE ## mode)); \
|
||
sat_ ## NAME ## _type_node = \
|
||
make_or_reuse_sat_signed_ ## KIND ## _type \
|
||
(GET_MODE_BITSIZE (MODE ## mode)); \
|
||
sat_u ## NAME ## _type_node = \
|
||
make_or_reuse_sat_unsigned_ ## KIND ## _type \
|
||
(GET_MODE_BITSIZE (U ## MODE ## mode));
|
||
|
||
/* Fixed-point type and mode nodes. */
|
||
MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
|
||
MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
|
||
MAKE_FIXED_MODE_NODE (fract, qq, QQ)
|
||
MAKE_FIXED_MODE_NODE (fract, hq, HQ)
|
||
MAKE_FIXED_MODE_NODE (fract, sq, SQ)
|
||
MAKE_FIXED_MODE_NODE (fract, dq, DQ)
|
||
MAKE_FIXED_MODE_NODE (fract, tq, TQ)
|
||
MAKE_FIXED_MODE_NODE (accum, ha, HA)
|
||
MAKE_FIXED_MODE_NODE (accum, sa, SA)
|
||
MAKE_FIXED_MODE_NODE (accum, da, DA)
|
||
MAKE_FIXED_MODE_NODE (accum, ta, TA)
|
||
|
||
{
|
||
tree t = targetm.build_builtin_va_list ();
|
||
|
||
/* Many back-ends define record types without setting TYPE_NAME.
|
||
If we copied the record type here, we'd keep the original
|
||
record type without a name. This breaks name mangling. So,
|
||
don't copy record types and let c_common_nodes_and_builtins()
|
||
declare the type to be __builtin_va_list. */
|
||
if (TREE_CODE (t) != RECORD_TYPE)
|
||
t = build_variant_type_copy (t);
|
||
|
||
va_list_type_node = t;
|
||
}
|
||
}
|
||
|
||
/* A subroutine of build_common_builtin_nodes. Define a builtin function. */
|
||
|
||
static void
|
||
local_define_builtin (const char *name, tree type, enum built_in_function code,
|
||
const char *library_name, int ecf_flags)
|
||
{
|
||
tree decl;
|
||
|
||
decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
|
||
library_name, NULL_TREE);
|
||
if (ecf_flags & ECF_CONST)
|
||
TREE_READONLY (decl) = 1;
|
||
if (ecf_flags & ECF_PURE)
|
||
DECL_PURE_P (decl) = 1;
|
||
if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
|
||
DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
|
||
if (ecf_flags & ECF_NORETURN)
|
||
TREE_THIS_VOLATILE (decl) = 1;
|
||
if (ecf_flags & ECF_NOTHROW)
|
||
TREE_NOTHROW (decl) = 1;
|
||
if (ecf_flags & ECF_MALLOC)
|
||
DECL_IS_MALLOC (decl) = 1;
|
||
if (ecf_flags & ECF_LEAF)
|
||
DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
|
||
NULL, DECL_ATTRIBUTES (decl));
|
||
|
||
built_in_decls[code] = decl;
|
||
implicit_built_in_decls[code] = decl;
|
||
}
|
||
|
||
/* Call this function after instantiating all builtins that the language
|
||
front end cares about. This will build the rest of the builtins that
|
||
are relied upon by the tree optimizers and the middle-end. */
|
||
|
||
void
|
||
build_common_builtin_nodes (void)
|
||
{
|
||
tree tmp, ftype;
|
||
|
||
if (built_in_decls[BUILT_IN_MEMCPY] == NULL
|
||
|| built_in_decls[BUILT_IN_MEMMOVE] == NULL)
|
||
{
|
||
ftype = build_function_type_list (ptr_type_node,
|
||
ptr_type_node, const_ptr_type_node,
|
||
size_type_node, NULL_TREE);
|
||
|
||
if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
|
||
local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
|
||
"memcpy", ECF_NOTHROW | ECF_LEAF);
|
||
if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
|
||
local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
|
||
"memmove", ECF_NOTHROW | ECF_LEAF);
|
||
}
|
||
|
||
if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
|
||
{
|
||
ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
|
||
const_ptr_type_node, size_type_node,
|
||
NULL_TREE);
|
||
local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
|
||
"memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
|
||
}
|
||
|
||
if (built_in_decls[BUILT_IN_MEMSET] == NULL)
|
||
{
|
||
ftype = build_function_type_list (ptr_type_node,
|
||
ptr_type_node, integer_type_node,
|
||
size_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
|
||
"memset", ECF_NOTHROW | ECF_LEAF);
|
||
}
|
||
|
||
if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
|
||
{
|
||
ftype = build_function_type_list (ptr_type_node,
|
||
size_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
|
||
"alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
|
||
}
|
||
|
||
/* If we're checking the stack, `alloca' can throw. */
|
||
if (flag_stack_check)
|
||
TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
|
||
|
||
ftype = build_function_type_list (void_type_node,
|
||
ptr_type_node, ptr_type_node,
|
||
ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_init_trampoline", ftype,
|
||
BUILT_IN_INIT_TRAMPOLINE,
|
||
"__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
|
||
|
||
ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_adjust_trampoline", ftype,
|
||
BUILT_IN_ADJUST_TRAMPOLINE,
|
||
"__builtin_adjust_trampoline",
|
||
ECF_CONST | ECF_NOTHROW);
|
||
|
||
ftype = build_function_type_list (void_type_node,
|
||
ptr_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_nonlocal_goto", ftype,
|
||
BUILT_IN_NONLOCAL_GOTO,
|
||
"__builtin_nonlocal_goto",
|
||
ECF_NORETURN | ECF_NOTHROW);
|
||
|
||
ftype = build_function_type_list (void_type_node,
|
||
ptr_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_setjmp_setup", ftype,
|
||
BUILT_IN_SETJMP_SETUP,
|
||
"__builtin_setjmp_setup", ECF_NOTHROW);
|
||
|
||
ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
|
||
BUILT_IN_SETJMP_DISPATCHER,
|
||
"__builtin_setjmp_dispatcher",
|
||
ECF_PURE | ECF_NOTHROW);
|
||
|
||
ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_setjmp_receiver", ftype,
|
||
BUILT_IN_SETJMP_RECEIVER,
|
||
"__builtin_setjmp_receiver", ECF_NOTHROW);
|
||
|
||
ftype = build_function_type_list (ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
|
||
"__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
|
||
|
||
ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_stack_restore", ftype,
|
||
BUILT_IN_STACK_RESTORE,
|
||
"__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
|
||
|
||
/* If there's a possibility that we might use the ARM EABI, build the
|
||
alternate __cxa_end_cleanup node used to resume from C++ and Java. */
|
||
if (targetm.arm_eabi_unwinder)
|
||
{
|
||
ftype = build_function_type_list (void_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
|
||
BUILT_IN_CXA_END_CLEANUP,
|
||
"__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
|
||
}
|
||
|
||
ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_unwind_resume", ftype,
|
||
BUILT_IN_UNWIND_RESUME,
|
||
((targetm.except_unwind_info (&global_options)
|
||
== UI_SJLJ)
|
||
? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
|
||
ECF_NORETURN);
|
||
|
||
/* The exception object and filter values from the runtime. The argument
|
||
must be zero before exception lowering, i.e. from the front end. After
|
||
exception lowering, it will be the region number for the exception
|
||
landing pad. These functions are PURE instead of CONST to prevent
|
||
them from being hoisted past the exception edge that will initialize
|
||
its value in the landing pad. */
|
||
ftype = build_function_type_list (ptr_type_node,
|
||
integer_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
|
||
"__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
|
||
|
||
tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
|
||
ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
|
||
"__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
|
||
|
||
ftype = build_function_type_list (void_type_node,
|
||
integer_type_node, integer_type_node,
|
||
NULL_TREE);
|
||
local_define_builtin ("__builtin_eh_copy_values", ftype,
|
||
BUILT_IN_EH_COPY_VALUES,
|
||
"__builtin_eh_copy_values", ECF_NOTHROW);
|
||
|
||
/* Complex multiplication and division. These are handled as builtins
|
||
rather than optabs because emit_library_call_value doesn't support
|
||
complex. Further, we can do slightly better with folding these
|
||
beasties if the real and complex parts of the arguments are separate. */
|
||
{
|
||
int mode;
|
||
|
||
for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
|
||
{
|
||
char mode_name_buf[4], *q;
|
||
const char *p;
|
||
enum built_in_function mcode, dcode;
|
||
tree type, inner_type;
|
||
|
||
type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
|
||
if (type == NULL)
|
||
continue;
|
||
inner_type = TREE_TYPE (type);
|
||
|
||
ftype = build_function_type_list (type, inner_type, inner_type,
|
||
inner_type, inner_type, NULL_TREE);
|
||
|
||
mcode = ((enum built_in_function)
|
||
(BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
|
||
dcode = ((enum built_in_function)
|
||
(BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
|
||
|
||
for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
|
||
*q = TOLOWER (*p);
|
||
*q = '\0';
|
||
|
||
built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
|
||
local_define_builtin (built_in_names[mcode], ftype, mcode,
|
||
built_in_names[mcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
|
||
|
||
built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
|
||
local_define_builtin (built_in_names[dcode], ftype, dcode,
|
||
built_in_names[dcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* HACK. GROSS. This is absolutely disgusting. I wish there was a
|
||
better way.
|
||
|
||
If we requested a pointer to a vector, build up the pointers that
|
||
we stripped off while looking for the inner type. Similarly for
|
||
return values from functions.
|
||
|
||
The argument TYPE is the top of the chain, and BOTTOM is the
|
||
new type which we will point to. */
|
||
|
||
tree
|
||
reconstruct_complex_type (tree type, tree bottom)
|
||
{
|
||
tree inner, outer;
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
|
||
TYPE_REF_CAN_ALIAS_ALL (type));
|
||
}
|
||
else if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
|
||
TYPE_REF_CAN_ALIAS_ALL (type));
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_array_type (inner, TYPE_DOMAIN (type));
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_function_type (inner, TYPE_ARG_TYPES (type));
|
||
}
|
||
else if (TREE_CODE (type) == METHOD_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
/* The build_method_type_directly() routine prepends 'this' to argument list,
|
||
so we must compensate by getting rid of it. */
|
||
outer
|
||
= build_method_type_directly
|
||
(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
|
||
inner,
|
||
TREE_CHAIN (TYPE_ARG_TYPES (type)));
|
||
}
|
||
else if (TREE_CODE (type) == OFFSET_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
|
||
}
|
||
else
|
||
return bottom;
|
||
|
||
return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
|
||
TYPE_QUALS (type));
|
||
}
|
||
|
||
/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
|
||
the inner type. */
|
||
tree
|
||
build_vector_type_for_mode (tree innertype, enum machine_mode mode)
|
||
{
|
||
int nunits;
|
||
|
||
switch (GET_MODE_CLASS (mode))
|
||
{
|
||
case MODE_VECTOR_INT:
|
||
case MODE_VECTOR_FLOAT:
|
||
case MODE_VECTOR_FRACT:
|
||
case MODE_VECTOR_UFRACT:
|
||
case MODE_VECTOR_ACCUM:
|
||
case MODE_VECTOR_UACCUM:
|
||
nunits = GET_MODE_NUNITS (mode);
|
||
break;
|
||
|
||
case MODE_INT:
|
||
/* Check that there are no leftover bits. */
|
||
gcc_assert (GET_MODE_BITSIZE (mode)
|
||
% TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
|
||
|
||
nunits = GET_MODE_BITSIZE (mode)
|
||
/ TREE_INT_CST_LOW (TYPE_SIZE (innertype));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return make_vector_type (innertype, nunits, mode);
|
||
}
|
||
|
||
/* Similarly, but takes the inner type and number of units, which must be
|
||
a power of two. */
|
||
|
||
tree
|
||
build_vector_type (tree innertype, int nunits)
|
||
{
|
||
return make_vector_type (innertype, nunits, VOIDmode);
|
||
}
|
||
|
||
/* Similarly, but takes the inner type and number of units, which must be
|
||
a power of two. */
|
||
|
||
tree
|
||
build_opaque_vector_type (tree innertype, int nunits)
|
||
{
|
||
tree t;
|
||
innertype = build_distinct_type_copy (innertype);
|
||
t = make_vector_type (innertype, nunits, VOIDmode);
|
||
TYPE_VECTOR_OPAQUE (t) = true;
|
||
return t;
|
||
}
|
||
|
||
|
||
/* Given an initializer INIT, return TRUE if INIT is zero or some
|
||
aggregate of zeros. Otherwise return FALSE. */
|
||
bool
|
||
initializer_zerop (const_tree init)
|
||
{
|
||
tree elt;
|
||
|
||
STRIP_NOPS (init);
|
||
|
||
switch (TREE_CODE (init))
|
||
{
|
||
case INTEGER_CST:
|
||
return integer_zerop (init);
|
||
|
||
case REAL_CST:
|
||
/* ??? Note that this is not correct for C4X float formats. There,
|
||
a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
|
||
negative exponent. */
|
||
return real_zerop (init)
|
||
&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
|
||
|
||
case FIXED_CST:
|
||
return fixed_zerop (init);
|
||
|
||
case COMPLEX_CST:
|
||
return integer_zerop (init)
|
||
|| (real_zerop (init)
|
||
&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
|
||
&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
|
||
|
||
case VECTOR_CST:
|
||
for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
|
||
if (!initializer_zerop (TREE_VALUE (elt)))
|
||
return false;
|
||
return true;
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
|
||
if (!initializer_zerop (elt))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
case STRING_CST:
|
||
{
|
||
int i;
|
||
|
||
/* We need to loop through all elements to handle cases like
|
||
"\0" and "\0foobar". */
|
||
for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
|
||
if (TREE_STRING_POINTER (init)[i] != '\0')
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Build an empty statement at location LOC. */
|
||
|
||
tree
|
||
build_empty_stmt (location_t loc)
|
||
{
|
||
tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
|
||
SET_EXPR_LOCATION (t, loc);
|
||
return t;
|
||
}
|
||
|
||
|
||
/* Build an OpenMP clause with code CODE. LOC is the location of the
|
||
clause. */
|
||
|
||
tree
|
||
build_omp_clause (location_t loc, enum omp_clause_code code)
|
||
{
|
||
tree t;
|
||
int size, length;
|
||
|
||
length = omp_clause_num_ops[code];
|
||
size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
|
||
|
||
record_node_allocation_statistics (OMP_CLAUSE, size);
|
||
|
||
t = ggc_alloc_tree_node (size);
|
||
memset (t, 0, size);
|
||
TREE_SET_CODE (t, OMP_CLAUSE);
|
||
OMP_CLAUSE_SET_CODE (t, code);
|
||
OMP_CLAUSE_LOCATION (t) = loc;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
|
||
includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
|
||
Except for the CODE and operand count field, other storage for the
|
||
object is initialized to zeros. */
|
||
|
||
tree
|
||
build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
|
||
|
||
gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
|
||
gcc_assert (len >= 1);
|
||
|
||
record_node_allocation_statistics (code, length);
|
||
|
||
t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
|
||
|
||
TREE_SET_CODE (t, code);
|
||
|
||
/* Can't use TREE_OPERAND to store the length because if checking is
|
||
enabled, it will try to check the length before we store it. :-P */
|
||
t->exp.operands[0] = build_int_cst (sizetype, len);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Helper function for build_call_* functions; build a CALL_EXPR with
|
||
indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
|
||
the argument slots. */
|
||
|
||
static tree
|
||
build_call_1 (tree return_type, tree fn, int nargs)
|
||
{
|
||
tree t;
|
||
|
||
t = build_vl_exp (CALL_EXPR, nargs + 3);
|
||
TREE_TYPE (t) = return_type;
|
||
CALL_EXPR_FN (t) = fn;
|
||
CALL_EXPR_STATIC_CHAIN (t) = NULL;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
|
||
FN and a null static chain slot. NARGS is the number of call arguments
|
||
which are specified as "..." arguments. */
|
||
|
||
tree
|
||
build_call_nary (tree return_type, tree fn, int nargs, ...)
|
||
{
|
||
tree ret;
|
||
va_list args;
|
||
va_start (args, nargs);
|
||
ret = build_call_valist (return_type, fn, nargs, args);
|
||
va_end (args);
|
||
return ret;
|
||
}
|
||
|
||
/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
|
||
FN and a null static chain slot. NARGS is the number of call arguments
|
||
which are specified as a va_list ARGS. */
|
||
|
||
tree
|
||
build_call_valist (tree return_type, tree fn, int nargs, va_list args)
|
||
{
|
||
tree t;
|
||
int i;
|
||
|
||
t = build_call_1 (return_type, fn, nargs);
|
||
for (i = 0; i < nargs; i++)
|
||
CALL_EXPR_ARG (t, i) = va_arg (args, tree);
|
||
process_call_operands (t);
|
||
return t;
|
||
}
|
||
|
||
/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
|
||
FN and a null static chain slot. NARGS is the number of call arguments
|
||
which are specified as a tree array ARGS. */
|
||
|
||
tree
|
||
build_call_array_loc (location_t loc, tree return_type, tree fn,
|
||
int nargs, const tree *args)
|
||
{
|
||
tree t;
|
||
int i;
|
||
|
||
t = build_call_1 (return_type, fn, nargs);
|
||
for (i = 0; i < nargs; i++)
|
||
CALL_EXPR_ARG (t, i) = args[i];
|
||
process_call_operands (t);
|
||
SET_EXPR_LOCATION (t, loc);
|
||
return t;
|
||
}
|
||
|
||
/* Like build_call_array, but takes a VEC. */
|
||
|
||
tree
|
||
build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
|
||
{
|
||
tree ret, t;
|
||
unsigned int ix;
|
||
|
||
ret = build_call_1 (return_type, fn, VEC_length (tree, args));
|
||
FOR_EACH_VEC_ELT (tree, args, ix, t)
|
||
CALL_EXPR_ARG (ret, ix) = t;
|
||
process_call_operands (ret);
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* Returns true if it is possible to prove that the index of
|
||
an array access REF (an ARRAY_REF expression) falls into the
|
||
array bounds. */
|
||
|
||
bool
|
||
in_array_bounds_p (tree ref)
|
||
{
|
||
tree idx = TREE_OPERAND (ref, 1);
|
||
tree min, max;
|
||
|
||
if (TREE_CODE (idx) != INTEGER_CST)
|
||
return false;
|
||
|
||
min = array_ref_low_bound (ref);
|
||
max = array_ref_up_bound (ref);
|
||
if (!min
|
||
|| !max
|
||
|| TREE_CODE (min) != INTEGER_CST
|
||
|| TREE_CODE (max) != INTEGER_CST)
|
||
return false;
|
||
|
||
if (tree_int_cst_lt (idx, min)
|
||
|| tree_int_cst_lt (max, idx))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true if it is possible to prove that the range of
|
||
an array access REF (an ARRAY_RANGE_REF expression) falls
|
||
into the array bounds. */
|
||
|
||
bool
|
||
range_in_array_bounds_p (tree ref)
|
||
{
|
||
tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
|
||
tree range_min, range_max, min, max;
|
||
|
||
range_min = TYPE_MIN_VALUE (domain_type);
|
||
range_max = TYPE_MAX_VALUE (domain_type);
|
||
if (!range_min
|
||
|| !range_max
|
||
|| TREE_CODE (range_min) != INTEGER_CST
|
||
|| TREE_CODE (range_max) != INTEGER_CST)
|
||
return false;
|
||
|
||
min = array_ref_low_bound (ref);
|
||
max = array_ref_up_bound (ref);
|
||
if (!min
|
||
|| !max
|
||
|| TREE_CODE (min) != INTEGER_CST
|
||
|| TREE_CODE (max) != INTEGER_CST)
|
||
return false;
|
||
|
||
if (tree_int_cst_lt (range_min, min)
|
||
|| tree_int_cst_lt (max, range_max))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if T (assumed to be a DECL) must be assigned a memory
|
||
location. */
|
||
|
||
bool
|
||
needs_to_live_in_memory (const_tree t)
|
||
{
|
||
if (TREE_CODE (t) == SSA_NAME)
|
||
t = SSA_NAME_VAR (t);
|
||
|
||
return (TREE_ADDRESSABLE (t)
|
||
|| is_global_var (t)
|
||
|| (TREE_CODE (t) == RESULT_DECL
|
||
&& !DECL_BY_REFERENCE (t)
|
||
&& aggregate_value_p (t, current_function_decl)));
|
||
}
|
||
|
||
/* Return value of a constant X and sign-extend it. */
|
||
|
||
HOST_WIDE_INT
|
||
int_cst_value (const_tree x)
|
||
{
|
||
unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
|
||
unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
|
||
|
||
/* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
|
||
gcc_assert (TREE_INT_CST_HIGH (x) == 0
|
||
|| TREE_INT_CST_HIGH (x) == -1);
|
||
|
||
if (bits < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
bool negative = ((val >> (bits - 1)) & 1) != 0;
|
||
if (negative)
|
||
val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
|
||
else
|
||
val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return value of a constant X and sign-extend it. */
|
||
|
||
HOST_WIDEST_INT
|
||
widest_int_cst_value (const_tree x)
|
||
{
|
||
unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
|
||
unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
|
||
|
||
#if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
|
||
gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
|
||
val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
|
||
<< HOST_BITS_PER_WIDE_INT);
|
||
#else
|
||
/* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
|
||
gcc_assert (TREE_INT_CST_HIGH (x) == 0
|
||
|| TREE_INT_CST_HIGH (x) == -1);
|
||
#endif
|
||
|
||
if (bits < HOST_BITS_PER_WIDEST_INT)
|
||
{
|
||
bool negative = ((val >> (bits - 1)) & 1) != 0;
|
||
if (negative)
|
||
val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
|
||
else
|
||
val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* If TYPE is an integral type, return an equivalent type which is
|
||
unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
|
||
return TYPE itself. */
|
||
|
||
tree
|
||
signed_or_unsigned_type_for (int unsignedp, tree type)
|
||
{
|
||
tree t = type;
|
||
if (POINTER_TYPE_P (type))
|
||
{
|
||
/* If the pointer points to the normal address space, use the
|
||
size_type_node. Otherwise use an appropriate size for the pointer
|
||
based on the named address space it points to. */
|
||
if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
|
||
t = size_type_node;
|
||
else
|
||
return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
|
||
}
|
||
|
||
if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
|
||
return t;
|
||
|
||
return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
|
||
}
|
||
|
||
/* Returns unsigned variant of TYPE. */
|
||
|
||
tree
|
||
unsigned_type_for (tree type)
|
||
{
|
||
return signed_or_unsigned_type_for (1, type);
|
||
}
|
||
|
||
/* Returns signed variant of TYPE. */
|
||
|
||
tree
|
||
signed_type_for (tree type)
|
||
{
|
||
return signed_or_unsigned_type_for (0, type);
|
||
}
|
||
|
||
/* Returns the largest value obtainable by casting something in INNER type to
|
||
OUTER type. */
|
||
|
||
tree
|
||
upper_bound_in_type (tree outer, tree inner)
|
||
{
|
||
double_int high;
|
||
unsigned int det = 0;
|
||
unsigned oprec = TYPE_PRECISION (outer);
|
||
unsigned iprec = TYPE_PRECISION (inner);
|
||
unsigned prec;
|
||
|
||
/* Compute a unique number for every combination. */
|
||
det |= (oprec > iprec) ? 4 : 0;
|
||
det |= TYPE_UNSIGNED (outer) ? 2 : 0;
|
||
det |= TYPE_UNSIGNED (inner) ? 1 : 0;
|
||
|
||
/* Determine the exponent to use. */
|
||
switch (det)
|
||
{
|
||
case 0:
|
||
case 1:
|
||
/* oprec <= iprec, outer: signed, inner: don't care. */
|
||
prec = oprec - 1;
|
||
break;
|
||
case 2:
|
||
case 3:
|
||
/* oprec <= iprec, outer: unsigned, inner: don't care. */
|
||
prec = oprec;
|
||
break;
|
||
case 4:
|
||
/* oprec > iprec, outer: signed, inner: signed. */
|
||
prec = iprec - 1;
|
||
break;
|
||
case 5:
|
||
/* oprec > iprec, outer: signed, inner: unsigned. */
|
||
prec = iprec;
|
||
break;
|
||
case 6:
|
||
/* oprec > iprec, outer: unsigned, inner: signed. */
|
||
prec = oprec;
|
||
break;
|
||
case 7:
|
||
/* oprec > iprec, outer: unsigned, inner: unsigned. */
|
||
prec = iprec;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Compute 2^^prec - 1. */
|
||
if (prec <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
high.high = 0;
|
||
high.low = ((~(unsigned HOST_WIDE_INT) 0)
|
||
>> (HOST_BITS_PER_WIDE_INT - prec));
|
||
}
|
||
else
|
||
{
|
||
high.high = ((~(unsigned HOST_WIDE_INT) 0)
|
||
>> (2 * HOST_BITS_PER_WIDE_INT - prec));
|
||
high.low = ~(unsigned HOST_WIDE_INT) 0;
|
||
}
|
||
|
||
return double_int_to_tree (outer, high);
|
||
}
|
||
|
||
/* Returns the smallest value obtainable by casting something in INNER type to
|
||
OUTER type. */
|
||
|
||
tree
|
||
lower_bound_in_type (tree outer, tree inner)
|
||
{
|
||
double_int low;
|
||
unsigned oprec = TYPE_PRECISION (outer);
|
||
unsigned iprec = TYPE_PRECISION (inner);
|
||
|
||
/* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
|
||
and obtain 0. */
|
||
if (TYPE_UNSIGNED (outer)
|
||
/* If we are widening something of an unsigned type, OUTER type
|
||
contains all values of INNER type. In particular, both INNER
|
||
and OUTER types have zero in common. */
|
||
|| (oprec > iprec && TYPE_UNSIGNED (inner)))
|
||
low.low = low.high = 0;
|
||
else
|
||
{
|
||
/* If we are widening a signed type to another signed type, we
|
||
want to obtain -2^^(iprec-1). If we are keeping the
|
||
precision or narrowing to a signed type, we want to obtain
|
||
-2^(oprec-1). */
|
||
unsigned prec = oprec > iprec ? iprec : oprec;
|
||
|
||
if (prec <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
low.high = ~(unsigned HOST_WIDE_INT) 0;
|
||
low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
|
||
}
|
||
else
|
||
{
|
||
low.high = ((~(unsigned HOST_WIDE_INT) 0)
|
||
<< (prec - HOST_BITS_PER_WIDE_INT - 1));
|
||
low.low = 0;
|
||
}
|
||
}
|
||
|
||
return double_int_to_tree (outer, low);
|
||
}
|
||
|
||
/* Return nonzero if two operands that are suitable for PHI nodes are
|
||
necessarily equal. Specifically, both ARG0 and ARG1 must be either
|
||
SSA_NAME or invariant. Note that this is strictly an optimization.
|
||
That is, callers of this function can directly call operand_equal_p
|
||
and get the same result, only slower. */
|
||
|
||
int
|
||
operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
|
||
{
|
||
if (arg0 == arg1)
|
||
return 1;
|
||
if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
|
||
return 0;
|
||
return operand_equal_p (arg0, arg1, 0);
|
||
}
|
||
|
||
/* Returns number of zeros at the end of binary representation of X.
|
||
|
||
??? Use ffs if available? */
|
||
|
||
tree
|
||
num_ending_zeros (const_tree x)
|
||
{
|
||
unsigned HOST_WIDE_INT fr, nfr;
|
||
unsigned num, abits;
|
||
tree type = TREE_TYPE (x);
|
||
|
||
if (TREE_INT_CST_LOW (x) == 0)
|
||
{
|
||
num = HOST_BITS_PER_WIDE_INT;
|
||
fr = TREE_INT_CST_HIGH (x);
|
||
}
|
||
else
|
||
{
|
||
num = 0;
|
||
fr = TREE_INT_CST_LOW (x);
|
||
}
|
||
|
||
for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
|
||
{
|
||
nfr = fr >> abits;
|
||
if (nfr << abits == fr)
|
||
{
|
||
num += abits;
|
||
fr = nfr;
|
||
}
|
||
}
|
||
|
||
if (num > TYPE_PRECISION (type))
|
||
num = TYPE_PRECISION (type);
|
||
|
||
return build_int_cst_type (type, num);
|
||
}
|
||
|
||
|
||
#define WALK_SUBTREE(NODE) \
|
||
do \
|
||
{ \
|
||
result = walk_tree_1 (&(NODE), func, data, pset, lh); \
|
||
if (result) \
|
||
return result; \
|
||
} \
|
||
while (0)
|
||
|
||
/* This is a subroutine of walk_tree that walks field of TYPE that are to
|
||
be walked whenever a type is seen in the tree. Rest of operands and return
|
||
value are as for walk_tree. */
|
||
|
||
static tree
|
||
walk_type_fields (tree type, walk_tree_fn func, void *data,
|
||
struct pointer_set_t *pset, walk_tree_lh lh)
|
||
{
|
||
tree result = NULL_TREE;
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
/* We have to worry about mutually recursive pointers. These can't
|
||
be written in C. They can in Ada. It's pathological, but
|
||
there's an ACATS test (c38102a) that checks it. Deal with this
|
||
by checking if we're pointing to another pointer, that one
|
||
points to another pointer, that one does too, and we have no htab.
|
||
If so, get a hash table. We check three levels deep to avoid
|
||
the cost of the hash table if we don't need one. */
|
||
if (POINTER_TYPE_P (TREE_TYPE (type))
|
||
&& POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
|
||
&& POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
|
||
&& !pset)
|
||
{
|
||
result = walk_tree_without_duplicates (&TREE_TYPE (type),
|
||
func, data);
|
||
if (result)
|
||
return result;
|
||
|
||
break;
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case COMPLEX_TYPE:
|
||
WALK_SUBTREE (TREE_TYPE (type));
|
||
break;
|
||
|
||
case METHOD_TYPE:
|
||
WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
|
||
|
||
/* Fall through. */
|
||
|
||
case FUNCTION_TYPE:
|
||
WALK_SUBTREE (TREE_TYPE (type));
|
||
{
|
||
tree arg;
|
||
|
||
/* We never want to walk into default arguments. */
|
||
for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
|
||
WALK_SUBTREE (TREE_VALUE (arg));
|
||
}
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
/* Don't follow this nodes's type if a pointer for fear that
|
||
we'll have infinite recursion. If we have a PSET, then we
|
||
need not fear. */
|
||
if (pset
|
||
|| (!POINTER_TYPE_P (TREE_TYPE (type))
|
||
&& TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
|
||
WALK_SUBTREE (TREE_TYPE (type));
|
||
WALK_SUBTREE (TYPE_DOMAIN (type));
|
||
break;
|
||
|
||
case OFFSET_TYPE:
|
||
WALK_SUBTREE (TREE_TYPE (type));
|
||
WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
|
||
called with the DATA and the address of each sub-tree. If FUNC returns a
|
||
non-NULL value, the traversal is stopped, and the value returned by FUNC
|
||
is returned. If PSET is non-NULL it is used to record the nodes visited,
|
||
and to avoid visiting a node more than once. */
|
||
|
||
tree
|
||
walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
|
||
struct pointer_set_t *pset, walk_tree_lh lh)
|
||
{
|
||
enum tree_code code;
|
||
int walk_subtrees;
|
||
tree result;
|
||
|
||
#define WALK_SUBTREE_TAIL(NODE) \
|
||
do \
|
||
{ \
|
||
tp = & (NODE); \
|
||
goto tail_recurse; \
|
||
} \
|
||
while (0)
|
||
|
||
tail_recurse:
|
||
/* Skip empty subtrees. */
|
||
if (!*tp)
|
||
return NULL_TREE;
|
||
|
||
/* Don't walk the same tree twice, if the user has requested
|
||
that we avoid doing so. */
|
||
if (pset && pointer_set_insert (pset, *tp))
|
||
return NULL_TREE;
|
||
|
||
/* Call the function. */
|
||
walk_subtrees = 1;
|
||
result = (*func) (tp, &walk_subtrees, data);
|
||
|
||
/* If we found something, return it. */
|
||
if (result)
|
||
return result;
|
||
|
||
code = TREE_CODE (*tp);
|
||
|
||
/* Even if we didn't, FUNC may have decided that there was nothing
|
||
interesting below this point in the tree. */
|
||
if (!walk_subtrees)
|
||
{
|
||
/* But we still need to check our siblings. */
|
||
if (code == TREE_LIST)
|
||
WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
|
||
else if (code == OMP_CLAUSE)
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
else
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (lh)
|
||
{
|
||
result = (*lh) (tp, &walk_subtrees, func, data, pset);
|
||
if (result || !walk_subtrees)
|
||
return result;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case ERROR_MARK:
|
||
case IDENTIFIER_NODE:
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
case FIXED_CST:
|
||
case VECTOR_CST:
|
||
case STRING_CST:
|
||
case BLOCK:
|
||
case PLACEHOLDER_EXPR:
|
||
case SSA_NAME:
|
||
case FIELD_DECL:
|
||
case RESULT_DECL:
|
||
/* None of these have subtrees other than those already walked
|
||
above. */
|
||
break;
|
||
|
||
case TREE_LIST:
|
||
WALK_SUBTREE (TREE_VALUE (*tp));
|
||
WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
|
||
break;
|
||
|
||
case TREE_VEC:
|
||
{
|
||
int len = TREE_VEC_LENGTH (*tp);
|
||
|
||
if (len == 0)
|
||
break;
|
||
|
||
/* Walk all elements but the first. */
|
||
while (--len)
|
||
WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
|
||
|
||
/* Now walk the first one as a tail call. */
|
||
WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
|
||
}
|
||
|
||
case COMPLEX_CST:
|
||
WALK_SUBTREE (TREE_REALPART (*tp));
|
||
WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
constructor_elt *ce;
|
||
|
||
for (idx = 0;
|
||
VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
|
||
idx++)
|
||
WALK_SUBTREE (ce->value);
|
||
}
|
||
break;
|
||
|
||
case SAVE_EXPR:
|
||
WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
|
||
|
||
case BIND_EXPR:
|
||
{
|
||
tree decl;
|
||
for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
|
||
{
|
||
/* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
|
||
into declarations that are just mentioned, rather than
|
||
declared; they don't really belong to this part of the tree.
|
||
And, we can see cycles: the initializer for a declaration
|
||
can refer to the declaration itself. */
|
||
WALK_SUBTREE (DECL_INITIAL (decl));
|
||
WALK_SUBTREE (DECL_SIZE (decl));
|
||
WALK_SUBTREE (DECL_SIZE_UNIT (decl));
|
||
}
|
||
WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
|
||
}
|
||
|
||
case STATEMENT_LIST:
|
||
{
|
||
tree_stmt_iterator i;
|
||
for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
|
||
WALK_SUBTREE (*tsi_stmt_ptr (i));
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE:
|
||
switch (OMP_CLAUSE_CODE (*tp))
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
case OMP_CLAUSE_SHARED:
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
case OMP_CLAUSE_IF:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
case OMP_CLAUSE_DEFAULT:
|
||
case OMP_CLAUSE_UNTIED:
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
|
||
WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
|
||
case OMP_CLAUSE_COLLAPSE:
|
||
{
|
||
int i;
|
||
for (i = 0; i < 3; i++)
|
||
WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
}
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
{
|
||
int i;
|
||
for (i = 0; i < 4; i++)
|
||
WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
case TARGET_EXPR:
|
||
{
|
||
int i, len;
|
||
|
||
/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
|
||
But, we only want to walk once. */
|
||
len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
|
||
for (i = 0; i < len; ++i)
|
||
WALK_SUBTREE (TREE_OPERAND (*tp, i));
|
||
WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
|
||
}
|
||
|
||
case DECL_EXPR:
|
||
/* If this is a TYPE_DECL, walk into the fields of the type that it's
|
||
defining. We only want to walk into these fields of a type in this
|
||
case and not in the general case of a mere reference to the type.
|
||
|
||
The criterion is as follows: if the field can be an expression, it
|
||
must be walked only here. This should be in keeping with the fields
|
||
that are directly gimplified in gimplify_type_sizes in order for the
|
||
mark/copy-if-shared/unmark machinery of the gimplifier to work with
|
||
variable-sized types.
|
||
|
||
Note that DECLs get walked as part of processing the BIND_EXPR. */
|
||
if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
|
||
{
|
||
tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
|
||
if (TREE_CODE (*type_p) == ERROR_MARK)
|
||
return NULL_TREE;
|
||
|
||
/* Call the function for the type. See if it returns anything or
|
||
doesn't want us to continue. If we are to continue, walk both
|
||
the normal fields and those for the declaration case. */
|
||
result = (*func) (type_p, &walk_subtrees, data);
|
||
if (result || !walk_subtrees)
|
||
return result;
|
||
|
||
result = walk_type_fields (*type_p, func, data, pset, lh);
|
||
if (result)
|
||
return result;
|
||
|
||
/* If this is a record type, also walk the fields. */
|
||
if (RECORD_OR_UNION_TYPE_P (*type_p))
|
||
{
|
||
tree field;
|
||
|
||
for (field = TYPE_FIELDS (*type_p); field;
|
||
field = DECL_CHAIN (field))
|
||
{
|
||
/* We'd like to look at the type of the field, but we can
|
||
easily get infinite recursion. So assume it's pointed
|
||
to elsewhere in the tree. Also, ignore things that
|
||
aren't fields. */
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
continue;
|
||
|
||
WALK_SUBTREE (DECL_FIELD_OFFSET (field));
|
||
WALK_SUBTREE (DECL_SIZE (field));
|
||
WALK_SUBTREE (DECL_SIZE_UNIT (field));
|
||
if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
|
||
WALK_SUBTREE (DECL_QUALIFIER (field));
|
||
}
|
||
}
|
||
|
||
/* Same for scalar types. */
|
||
else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
|
||
|| TREE_CODE (*type_p) == ENUMERAL_TYPE
|
||
|| TREE_CODE (*type_p) == INTEGER_TYPE
|
||
|| TREE_CODE (*type_p) == FIXED_POINT_TYPE
|
||
|| TREE_CODE (*type_p) == REAL_TYPE)
|
||
{
|
||
WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
|
||
WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
|
||
}
|
||
|
||
WALK_SUBTREE (TYPE_SIZE (*type_p));
|
||
WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
|
||
}
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
|
||
{
|
||
int i, len;
|
||
|
||
/* Walk over all the sub-trees of this operand. */
|
||
len = TREE_OPERAND_LENGTH (*tp);
|
||
|
||
/* Go through the subtrees. We need to do this in forward order so
|
||
that the scope of a FOR_EXPR is handled properly. */
|
||
if (len)
|
||
{
|
||
for (i = 0; i < len - 1; ++i)
|
||
WALK_SUBTREE (TREE_OPERAND (*tp, i));
|
||
WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
|
||
}
|
||
}
|
||
/* If this is a type, walk the needed fields in the type. */
|
||
else if (TYPE_P (*tp))
|
||
return walk_type_fields (*tp, func, data, pset, lh);
|
||
break;
|
||
}
|
||
|
||
/* We didn't find what we were looking for. */
|
||
return NULL_TREE;
|
||
|
||
#undef WALK_SUBTREE_TAIL
|
||
}
|
||
#undef WALK_SUBTREE
|
||
|
||
/* Like walk_tree, but does not walk duplicate nodes more than once. */
|
||
|
||
tree
|
||
walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
|
||
walk_tree_lh lh)
|
||
{
|
||
tree result;
|
||
struct pointer_set_t *pset;
|
||
|
||
pset = pointer_set_create ();
|
||
result = walk_tree_1 (tp, func, data, pset, lh);
|
||
pointer_set_destroy (pset);
|
||
return result;
|
||
}
|
||
|
||
|
||
tree *
|
||
tree_block (tree t)
|
||
{
|
||
char const c = TREE_CODE_CLASS (TREE_CODE (t));
|
||
|
||
if (IS_EXPR_CODE_CLASS (c))
|
||
return &t->exp.block;
|
||
gcc_unreachable ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Create a nameless artificial label and put it in the current
|
||
function context. The label has a location of LOC. Returns the
|
||
newly created label. */
|
||
|
||
tree
|
||
create_artificial_label (location_t loc)
|
||
{
|
||
tree lab = build_decl (loc,
|
||
LABEL_DECL, NULL_TREE, void_type_node);
|
||
|
||
DECL_ARTIFICIAL (lab) = 1;
|
||
DECL_IGNORED_P (lab) = 1;
|
||
DECL_CONTEXT (lab) = current_function_decl;
|
||
return lab;
|
||
}
|
||
|
||
/* Given a tree, try to return a useful variable name that we can use
|
||
to prefix a temporary that is being assigned the value of the tree.
|
||
I.E. given <temp> = &A, return A. */
|
||
|
||
const char *
|
||
get_name (tree t)
|
||
{
|
||
tree stripped_decl;
|
||
|
||
stripped_decl = t;
|
||
STRIP_NOPS (stripped_decl);
|
||
if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
|
||
return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
|
||
else
|
||
{
|
||
switch (TREE_CODE (stripped_decl))
|
||
{
|
||
case ADDR_EXPR:
|
||
return get_name (TREE_OPERAND (stripped_decl, 0));
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return true if TYPE has a variable argument list. */
|
||
|
||
bool
|
||
stdarg_p (const_tree fntype)
|
||
{
|
||
function_args_iterator args_iter;
|
||
tree n = NULL_TREE, t;
|
||
|
||
if (!fntype)
|
||
return false;
|
||
|
||
FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
|
||
{
|
||
n = t;
|
||
}
|
||
|
||
return n != NULL_TREE && n != void_type_node;
|
||
}
|
||
|
||
/* Return true if TYPE has a prototype. */
|
||
|
||
bool
|
||
prototype_p (tree fntype)
|
||
{
|
||
tree t;
|
||
|
||
gcc_assert (fntype != NULL_TREE);
|
||
|
||
t = TYPE_ARG_TYPES (fntype);
|
||
return (t != NULL_TREE);
|
||
}
|
||
|
||
/* If BLOCK is inlined from an __attribute__((__artificial__))
|
||
routine, return pointer to location from where it has been
|
||
called. */
|
||
location_t *
|
||
block_nonartificial_location (tree block)
|
||
{
|
||
location_t *ret = NULL;
|
||
|
||
while (block && TREE_CODE (block) == BLOCK
|
||
&& BLOCK_ABSTRACT_ORIGIN (block))
|
||
{
|
||
tree ao = BLOCK_ABSTRACT_ORIGIN (block);
|
||
|
||
while (TREE_CODE (ao) == BLOCK
|
||
&& BLOCK_ABSTRACT_ORIGIN (ao)
|
||
&& BLOCK_ABSTRACT_ORIGIN (ao) != ao)
|
||
ao = BLOCK_ABSTRACT_ORIGIN (ao);
|
||
|
||
if (TREE_CODE (ao) == FUNCTION_DECL)
|
||
{
|
||
/* If AO is an artificial inline, point RET to the
|
||
call site locus at which it has been inlined and continue
|
||
the loop, in case AO's caller is also an artificial
|
||
inline. */
|
||
if (DECL_DECLARED_INLINE_P (ao)
|
||
&& lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
|
||
ret = &BLOCK_SOURCE_LOCATION (block);
|
||
else
|
||
break;
|
||
}
|
||
else if (TREE_CODE (ao) != BLOCK)
|
||
break;
|
||
|
||
block = BLOCK_SUPERCONTEXT (block);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* If EXP is inlined from an __attribute__((__artificial__))
|
||
function, return the location of the original call expression. */
|
||
|
||
location_t
|
||
tree_nonartificial_location (tree exp)
|
||
{
|
||
location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
|
||
|
||
if (loc)
|
||
return *loc;
|
||
else
|
||
return EXPR_LOCATION (exp);
|
||
}
|
||
|
||
|
||
/* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
|
||
nodes. */
|
||
|
||
/* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
|
||
|
||
static hashval_t
|
||
cl_option_hash_hash (const void *x)
|
||
{
|
||
const_tree const t = (const_tree) x;
|
||
const char *p;
|
||
size_t i;
|
||
size_t len = 0;
|
||
hashval_t hash = 0;
|
||
|
||
if (TREE_CODE (t) == OPTIMIZATION_NODE)
|
||
{
|
||
p = (const char *)TREE_OPTIMIZATION (t);
|
||
len = sizeof (struct cl_optimization);
|
||
}
|
||
|
||
else if (TREE_CODE (t) == TARGET_OPTION_NODE)
|
||
{
|
||
p = (const char *)TREE_TARGET_OPTION (t);
|
||
len = sizeof (struct cl_target_option);
|
||
}
|
||
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
/* assume most opt flags are just 0/1, some are 2-3, and a few might be
|
||
something else. */
|
||
for (i = 0; i < len; i++)
|
||
if (p[i])
|
||
hash = (hash << 4) ^ ((i << 2) | p[i]);
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Return nonzero if the value represented by *X (an OPTIMIZATION or
|
||
TARGET_OPTION tree node) is the same as that given by *Y, which is the
|
||
same. */
|
||
|
||
static int
|
||
cl_option_hash_eq (const void *x, const void *y)
|
||
{
|
||
const_tree const xt = (const_tree) x;
|
||
const_tree const yt = (const_tree) y;
|
||
const char *xp;
|
||
const char *yp;
|
||
size_t len;
|
||
|
||
if (TREE_CODE (xt) != TREE_CODE (yt))
|
||
return 0;
|
||
|
||
if (TREE_CODE (xt) == OPTIMIZATION_NODE)
|
||
{
|
||
xp = (const char *)TREE_OPTIMIZATION (xt);
|
||
yp = (const char *)TREE_OPTIMIZATION (yt);
|
||
len = sizeof (struct cl_optimization);
|
||
}
|
||
|
||
else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
|
||
{
|
||
xp = (const char *)TREE_TARGET_OPTION (xt);
|
||
yp = (const char *)TREE_TARGET_OPTION (yt);
|
||
len = sizeof (struct cl_target_option);
|
||
}
|
||
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
return (memcmp (xp, yp, len) == 0);
|
||
}
|
||
|
||
/* Build an OPTIMIZATION_NODE based on the current options. */
|
||
|
||
tree
|
||
build_optimization_node (void)
|
||
{
|
||
tree t;
|
||
void **slot;
|
||
|
||
/* Use the cache of optimization nodes. */
|
||
|
||
cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
|
||
&global_options);
|
||
|
||
slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
|
||
t = (tree) *slot;
|
||
if (!t)
|
||
{
|
||
/* Insert this one into the hash table. */
|
||
t = cl_optimization_node;
|
||
*slot = t;
|
||
|
||
/* Make a new node for next time round. */
|
||
cl_optimization_node = make_node (OPTIMIZATION_NODE);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a TARGET_OPTION_NODE based on the current options. */
|
||
|
||
tree
|
||
build_target_option_node (void)
|
||
{
|
||
tree t;
|
||
void **slot;
|
||
|
||
/* Use the cache of optimization nodes. */
|
||
|
||
cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
|
||
&global_options);
|
||
|
||
slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
|
||
t = (tree) *slot;
|
||
if (!t)
|
||
{
|
||
/* Insert this one into the hash table. */
|
||
t = cl_target_option_node;
|
||
*slot = t;
|
||
|
||
/* Make a new node for next time round. */
|
||
cl_target_option_node = make_node (TARGET_OPTION_NODE);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Determine the "ultimate origin" of a block. The block may be an inlined
|
||
instance of an inlined instance of a block which is local to an inline
|
||
function, so we have to trace all of the way back through the origin chain
|
||
to find out what sort of node actually served as the original seed for the
|
||
given block. */
|
||
|
||
tree
|
||
block_ultimate_origin (const_tree block)
|
||
{
|
||
tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
|
||
|
||
/* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
|
||
nodes in the function to point to themselves; ignore that if
|
||
we're trying to output the abstract instance of this function. */
|
||
if (BLOCK_ABSTRACT (block) && immediate_origin == block)
|
||
return NULL_TREE;
|
||
|
||
if (immediate_origin == NULL_TREE)
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
tree ret_val;
|
||
tree lookahead = immediate_origin;
|
||
|
||
do
|
||
{
|
||
ret_val = lookahead;
|
||
lookahead = (TREE_CODE (ret_val) == BLOCK
|
||
? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
|
||
}
|
||
while (lookahead != NULL && lookahead != ret_val);
|
||
|
||
/* The block's abstract origin chain may not be the *ultimate* origin of
|
||
the block. It could lead to a DECL that has an abstract origin set.
|
||
If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
|
||
will give us if it has one). Note that DECL's abstract origins are
|
||
supposed to be the most distant ancestor (or so decl_ultimate_origin
|
||
claims), so we don't need to loop following the DECL origins. */
|
||
if (DECL_P (ret_val))
|
||
return DECL_ORIGIN (ret_val);
|
||
|
||
return ret_val;
|
||
}
|
||
}
|
||
|
||
/* Return true if T1 and T2 are equivalent lists. */
|
||
|
||
bool
|
||
list_equal_p (const_tree t1, const_tree t2)
|
||
{
|
||
for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
|
||
if (TREE_VALUE (t1) != TREE_VALUE (t2))
|
||
return false;
|
||
return !t1 && !t2;
|
||
}
|
||
|
||
/* Return true iff conversion in EXP generates no instruction. Mark
|
||
it inline so that we fully inline into the stripping functions even
|
||
though we have two uses of this function. */
|
||
|
||
static inline bool
|
||
tree_nop_conversion (const_tree exp)
|
||
{
|
||
tree outer_type, inner_type;
|
||
|
||
if (!CONVERT_EXPR_P (exp)
|
||
&& TREE_CODE (exp) != NON_LVALUE_EXPR)
|
||
return false;
|
||
if (TREE_OPERAND (exp, 0) == error_mark_node)
|
||
return false;
|
||
|
||
outer_type = TREE_TYPE (exp);
|
||
inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
|
||
if (!inner_type)
|
||
return false;
|
||
|
||
/* Use precision rather then machine mode when we can, which gives
|
||
the correct answer even for submode (bit-field) types. */
|
||
if ((INTEGRAL_TYPE_P (outer_type)
|
||
|| POINTER_TYPE_P (outer_type)
|
||
|| TREE_CODE (outer_type) == OFFSET_TYPE)
|
||
&& (INTEGRAL_TYPE_P (inner_type)
|
||
|| POINTER_TYPE_P (inner_type)
|
||
|| TREE_CODE (inner_type) == OFFSET_TYPE))
|
||
return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
|
||
|
||
/* Otherwise fall back on comparing machine modes (e.g. for
|
||
aggregate types, floats). */
|
||
return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
|
||
}
|
||
|
||
/* Return true iff conversion in EXP generates no instruction. Don't
|
||
consider conversions changing the signedness. */
|
||
|
||
static bool
|
||
tree_sign_nop_conversion (const_tree exp)
|
||
{
|
||
tree outer_type, inner_type;
|
||
|
||
if (!tree_nop_conversion (exp))
|
||
return false;
|
||
|
||
outer_type = TREE_TYPE (exp);
|
||
inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
|
||
return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
|
||
&& POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
|
||
}
|
||
|
||
/* Strip conversions from EXP according to tree_nop_conversion and
|
||
return the resulting expression. */
|
||
|
||
tree
|
||
tree_strip_nop_conversions (tree exp)
|
||
{
|
||
while (tree_nop_conversion (exp))
|
||
exp = TREE_OPERAND (exp, 0);
|
||
return exp;
|
||
}
|
||
|
||
/* Strip conversions from EXP according to tree_sign_nop_conversion
|
||
and return the resulting expression. */
|
||
|
||
tree
|
||
tree_strip_sign_nop_conversions (tree exp)
|
||
{
|
||
while (tree_sign_nop_conversion (exp))
|
||
exp = TREE_OPERAND (exp, 0);
|
||
return exp;
|
||
}
|
||
|
||
static GTY(()) tree gcc_eh_personality_decl;
|
||
|
||
/* Return the GCC personality function decl. */
|
||
|
||
tree
|
||
lhd_gcc_personality (void)
|
||
{
|
||
if (!gcc_eh_personality_decl)
|
||
gcc_eh_personality_decl = build_personality_function ("gcc");
|
||
return gcc_eh_personality_decl;
|
||
}
|
||
|
||
/* Try to find a base info of BINFO that would have its field decl at offset
|
||
OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
|
||
found, return, otherwise return NULL_TREE. */
|
||
|
||
tree
|
||
get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
|
||
while (true)
|
||
{
|
||
HOST_WIDE_INT pos, size;
|
||
tree fld;
|
||
int i;
|
||
|
||
if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
|
||
return binfo;
|
||
if (offset < 0)
|
||
return NULL_TREE;
|
||
|
||
for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
|
||
{
|
||
if (TREE_CODE (fld) != FIELD_DECL)
|
||
continue;
|
||
|
||
pos = int_bit_position (fld);
|
||
size = tree_low_cst (DECL_SIZE (fld), 1);
|
||
if (pos <= offset && (pos + size) > offset)
|
||
break;
|
||
}
|
||
if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
|
||
return NULL_TREE;
|
||
|
||
if (!DECL_ARTIFICIAL (fld))
|
||
{
|
||
binfo = TYPE_BINFO (TREE_TYPE (fld));
|
||
if (!binfo)
|
||
return NULL_TREE;
|
||
}
|
||
/* Offset 0 indicates the primary base, whose vtable contents are
|
||
represented in the binfo for the derived class. */
|
||
else if (offset != 0)
|
||
{
|
||
tree base_binfo, found_binfo = NULL_TREE;
|
||
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
||
if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
|
||
{
|
||
found_binfo = base_binfo;
|
||
break;
|
||
}
|
||
if (!found_binfo)
|
||
return NULL_TREE;
|
||
binfo = found_binfo;
|
||
}
|
||
|
||
type = TREE_TYPE (fld);
|
||
offset -= pos;
|
||
}
|
||
}
|
||
|
||
/* Returns true if X is a typedef decl. */
|
||
|
||
bool
|
||
is_typedef_decl (tree x)
|
||
{
|
||
return (x && TREE_CODE (x) == TYPE_DECL
|
||
&& DECL_ORIGINAL_TYPE (x) != NULL_TREE);
|
||
}
|
||
|
||
/* Returns true iff TYPE is a type variant created for a typedef. */
|
||
|
||
bool
|
||
typedef_variant_p (tree type)
|
||
{
|
||
return is_typedef_decl (TYPE_NAME (type));
|
||
}
|
||
|
||
/* Warn about a use of an identifier which was marked deprecated. */
|
||
void
|
||
warn_deprecated_use (tree node, tree attr)
|
||
{
|
||
const char *msg;
|
||
|
||
if (node == 0 || !warn_deprecated_decl)
|
||
return;
|
||
|
||
if (!attr)
|
||
{
|
||
if (DECL_P (node))
|
||
attr = DECL_ATTRIBUTES (node);
|
||
else if (TYPE_P (node))
|
||
{
|
||
tree decl = TYPE_STUB_DECL (node);
|
||
if (decl)
|
||
attr = lookup_attribute ("deprecated",
|
||
TYPE_ATTRIBUTES (TREE_TYPE (decl)));
|
||
}
|
||
}
|
||
|
||
if (attr)
|
||
attr = lookup_attribute ("deprecated", attr);
|
||
|
||
if (attr)
|
||
msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
|
||
else
|
||
msg = NULL;
|
||
|
||
if (DECL_P (node))
|
||
{
|
||
expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
|
||
if (msg)
|
||
warning (OPT_Wdeprecated_declarations,
|
||
"%qD is deprecated (declared at %s:%d): %s",
|
||
node, xloc.file, xloc.line, msg);
|
||
else
|
||
warning (OPT_Wdeprecated_declarations,
|
||
"%qD is deprecated (declared at %s:%d)",
|
||
node, xloc.file, xloc.line);
|
||
}
|
||
else if (TYPE_P (node))
|
||
{
|
||
tree what = NULL_TREE;
|
||
tree decl = TYPE_STUB_DECL (node);
|
||
|
||
if (TYPE_NAME (node))
|
||
{
|
||
if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
|
||
what = TYPE_NAME (node);
|
||
else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
|
||
&& DECL_NAME (TYPE_NAME (node)))
|
||
what = DECL_NAME (TYPE_NAME (node));
|
||
}
|
||
|
||
if (decl)
|
||
{
|
||
expanded_location xloc
|
||
= expand_location (DECL_SOURCE_LOCATION (decl));
|
||
if (what)
|
||
{
|
||
if (msg)
|
||
warning (OPT_Wdeprecated_declarations,
|
||
"%qE is deprecated (declared at %s:%d): %s",
|
||
what, xloc.file, xloc.line, msg);
|
||
else
|
||
warning (OPT_Wdeprecated_declarations,
|
||
"%qE is deprecated (declared at %s:%d)", what,
|
||
xloc.file, xloc.line);
|
||
}
|
||
else
|
||
{
|
||
if (msg)
|
||
warning (OPT_Wdeprecated_declarations,
|
||
"type is deprecated (declared at %s:%d): %s",
|
||
xloc.file, xloc.line, msg);
|
||
else
|
||
warning (OPT_Wdeprecated_declarations,
|
||
"type is deprecated (declared at %s:%d)",
|
||
xloc.file, xloc.line);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (what)
|
||
{
|
||
if (msg)
|
||
warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
|
||
what, msg);
|
||
else
|
||
warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
|
||
}
|
||
else
|
||
{
|
||
if (msg)
|
||
warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
|
||
msg);
|
||
else
|
||
warning (OPT_Wdeprecated_declarations, "type is deprecated");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#include "gt-tree.h"
|